The Dual Representation as a Tool to Check Expansion Methods

Y. Delgado, E. Grünwald, C. Gattringer

University of Graz, Austria

Sign Problem in QCD and Beyond
Darmstadt, February 2014

Motivation: Sign problem of QCD

- Method: Dual representation. Write the partition sum in terms of dual variables.
- We start using simpler models:
- \mathbb{Z}_{3} spin model (this talk)
[Y. D., H. G. Evertz, C. Gattringer (PRL 2011, CPC 2012)]
- SU(3) spin model [Y. D., C. Gattringer (NPB 2011, NPB 2012)]
- Relativistic Bose gas [C. Gattringer, T. Kloiber (NPB 2012, PLB 2012)]
- \mathbb{Z}_{3} gauge-Higgs model [C. Gattringer, A. Schmidt (PRD 2012)]
- U(1) gauge-Higgs model [Y .D., C. Gattringer, A. Schmidt (CPC 2012, PRL 2013)]

An effective theory for QCD thermodynamics

$$
S_{e f f}=-\sum_{x}\left(\tau \sum_{\nu=1}^{3}\left[P(x) P(x+\hat{\nu})^{*}+c . c .\right]+\kappa\left[e^{\mu} P(x)+e^{-\mu} P(x)^{*}\right]\right)
$$

- The degrees of freedom are:

$$
P(x) \in \mathbb{Z}(3)=\left\{1, e^{+i 2 \pi / 3}, e^{-i 2 \pi / 3}\right\}
$$

- P is related to the Polyakov loop, which is a static source quark.

$$
\begin{aligned}
& T<T_{c}:\langle P\rangle=0 \rightarrow \text { quarks confined } \\
& T>T_{c}:\langle P\rangle \neq 0 \rightarrow \text { quarks deconfined }
\end{aligned}
$$

- τ increases with the temperature, and κ decreases with the quark mass.

Remarks

- The deconfined transition of pure gluodynamics can be understood through the spontaneous breaking of center symmetry.

$$
\sum_{x} \tau \sum_{\nu=1}^{3}\left[P(x) P(x+\hat{\nu})^{*}+c . c .\right]
$$

- Description by an effective 3d center symmetric spin model. Yaffe and Svetitsky (1981).
- Our theory also contains center symmetry breaking terms and chemical potential. These terms come from the fermion determinant.

$$
\sum_{x} \kappa\left[e^{\mu} P(x)+e^{-\mu} P(x)^{*}\right]
$$

- The structure of the new terms can be obtained from hopping expansion.

Dual representation - 1

- Effective center model still has complex action \Rightarrow new variables!
- For the neighbor interaction and magnetic term, we use the Ansatz:

$$
\begin{aligned}
& e^{\tau\left[P(x) P(x+\hat{\nu})^{*}+c . c .\right]}=C \sum_{b_{x, \nu}=-1}^{+1} B^{\left|b_{x, \nu}\right|}\left[P(x) P(x+\hat{\nu})^{*}\right]^{b_{x, \nu}} \\
& e^{\kappa e^{\mu} P(x)+\kappa e^{-\mu} P(x)^{*}}=\sum_{s_{x}=-1}^{+1} M_{s_{x}} P(x)^{s_{x}}
\end{aligned}
$$

- C, B and M_{s} are real and positive numbers.
- New variables:
- dimers : $b_{x, \nu} \in\{-1,0,+1\}$ on the link (x, ν).
- monomers: $s_{x} \in\{-1,0,+1\}$ on the site x.

Dual representation - 2

- The partition function in the flux representation:

$$
Z=\sum_{\{b, s\}}\left(\prod_{x, \nu} B^{\left|b_{x, \nu}\right|}\right)\left(\prod_{x} M_{s_{x}}\right) \prod_{x} T\left(\sum_{\nu}\left[b_{x, \nu}-b_{x-\hat{\nu}, \nu}\right]+s_{x}\right)
$$

- Only real and positive contributions.
- Constraint $T(n)$: flux conservation modulo 3 at every site.
F. Karsch et al.(1984)
A. Patel,T. DeGrand,C. DeTar(1983)
Y. Delgado, H.G. Evertz, C. Gattringer (2011)

Numerical analysis

- Study the $\tau-\mu$ phase diagram.
- Identify the phase boundaries between confinement and deconfinement.
- Analyze the nature of the transitions.
- Location of the transition lines determined from the maxima of the Polyakov loop susceptibility χ_{P} and the heat capacity C.
- Cross check expansion methods.
- MC simulation: Worm Algorithm
[N. Prokof'ev and B. Svistunov (2001); Y. Delgado, H.G. Evertz, C. Gattringer (2012)]

Order parameter $\langle P\rangle / V$

- $\langle P\rangle / V \rightarrow 0$, center symmetry is broken very mildly \Rightarrow confined phase
- $\langle P\rangle / V \rightarrow 1$, center symmetry broken \Rightarrow deconfined phase

[^0]
Determination of phase boundaries

- Location of phase boundaries determined by the maxima of χ_{P} and C.

Expansion Methods

- We compare exact results obtained from the dual representation with different expansion techniques:
- Fugacity expansion
- Regular Taylor expansion
- Improved Taylor expansion
- Goal: Find a better method that could be applied to full QCD.
Y. Delgado, E. Grünwald, C. Gattringer (2013)

Fugacity Expansion - 1

- Rewriting the partition sum:

$$
Z=\sum_{q \in \mathbb{Z}} e^{\mu q} Z_{q}
$$

The sum runs over all particle number q.

- The canonical partition sum Z_{q}

$$
Z_{q}=\sum_{P} e^{\tau \sum_{x, \nu}[P(x) P(x+\hat{\nu}) *+c . c .]} D_{q}
$$

- D_{q} is the "fermion part" of the action projected to a fixed quark number.

$$
D_{q}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} d \phi e^{i \phi q} \exp \left(\kappa\left[e^{i \phi} H+e^{-i \phi} H^{*}\right]\right)=e^{i \theta q} I_{q}(2 \kappa R)
$$

where $H=\sum_{x} P(x)=R e^{i \theta}$

Fugacity Expansion - 2

- Distribution of the coefficients in the fugacity series.

Y. Delgado, E. Grünwald, C. Gattringer (2013)

Taylor expansions

- Regular Taylor Expansion (RTE):
- Expansion parameter: μ

$$
\ln Z=\sum_{n=0}^{\infty} \frac{\mu^{n}}{n!}\left(\frac{\partial}{\partial \mu}\right)^{n} \ln Z
$$

- Improved Taylor Expansion (ITE):
- Expansion parameter: $\rho=\kappa\left(e^{\mu}-1\right)$ and $\bar{\rho}=\kappa\left(e^{-\mu}-1\right)$
- The action is given by:

$$
e^{-S_{\mu}}=e^{-S_{0}} e^{\rho H+\bar{\rho} H^{*}}
$$

- Expanding the second factor:

$$
Z(\mu)=Z(0)\left[1+\left\langle\rho H+\bar{\rho} H^{*}\right\rangle_{0}+\frac{1}{2}\left\langle\left(\rho H+\bar{\rho} H^{*}\right)^{2}\right\rangle_{0}+\ldots\right]
$$

Regular Taylor expansion

- $\kappa=0.001$

Improved Taylor expansion

- $\kappa=0.001$

Fugacity Exp. vs. ITE vs. RTE

Y. Delgado, E. Grünwald, C. Gattringer (2013)

Summary

- Considerable progress was made towards rewriting several systems in the dual representation, where the sign problem is solved exactly.
- Our results can be used as reference to test other approaches:
- Complex Langevin [G. Aarts, F. A. James (2012)]
- Fugacity expansion and improved Taylor expansion
[Y. D., E. Grünwald, C. Gattringer (2013)]

Outlook

- Dual representation of non-Abelian theories ??
- Comparison of the fugacity expansion and the improved Taylor expansion for full QCD. [Y. D., M. Wilfing, C. Gattringer (2013)]

Summary

- Considerable progress was made towards rewriting several systems in the dual representation, where the sign problem is solved exactly.
- Our results can be used as reference to test other approaches:
- Complex Langevin [G. Aarts, F. A. James (2012)]
- Fugacity expansion and improved Taylor expansion
[Y. D., E. Grünwald, C. Gattringer (2013)]

Outlook

- Dual representation of non-Abelian theories ??
- Comparison of the fugacity expansion and the improved Taylor expansion for full QCD. [Y. D., M. Wilfing, C. Gattringer (2013)]

Thank you for your attention!

[^0]: Y. Delgado, H.G. Evertz, C. Gattringer (2011)

