TRIUMF

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Ab initio calculations in nuclear physics

International Conference on Science and Technology for FAIR in Europe Worms, Germany October 13-17, 2014

Petr Navratil | TRIUMF

Accelerating Science for Canada Un accélérateur de la démarche scientifique canadienn

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Outline

- What is meant by *ab initio* in nuclear physics
- Ab initio nuclear structure and reaction approaches
 - Exact few-body calculations (A=3,4)
 - Quantum Monte Carlo (A≤12)
 - Nuclear Lattice EFT (A=4,8,12,16, 20, 24, 28)
 - Coupled Cluster Method (A≤132, magic, semi-magic)
 - In-medium Similarity Renormalization Group (A≤90, open shells)
 - Self-Consistent Green's Function Method (A≤78, open shells)
- No-core shell model (A≤26, hypernuclei)
- Including the continuum with the resonating group method
 - NCSM/RGM
 - NCSM with continuum
- Outlook

What is meant by ab initio in nuclear physics?

- First principles for Nuclear Physics:
 QCD
 - Non-perturbative at low energies
 - Lattice QCD in the future

Degrees of freedom: NUCLEONS

- Nuclei made of nucleons
- Interacting by nucleon-nucleon and three-nucleon potentials
 - Ab initio
 - \diamond All nucleons are active
 - \diamond Exact Pauli principle
 - \diamond Realistic inter-nucleon interactions
 - \diamond Accurate description of NN (and 3N) data
 - \diamond Controllable approximations

Chiral Effective Field Theory

- First principles for Nuclear Physics: QCD
 - Non-perturbative at low energies
 - Lattice QCD in the future
- For now a good place to start:
- Inter-nucleon forces from chiral effective field theory
 - Based on the symmetries of QCD
 - Chiral symmetry of QCD $(m_u \approx m_d \approx 0)$, spontaneously broken with pion as the Goldstone boson
 - Degrees of freedom: nucleons + pions
 - Systematic low-momentum expansion to a given order (Q/Λ_x)
 - Hierarchy
 - Consistency
 - Low energy constants (LEC)
 - Fitted to data
 - Can be calculated by lattice QCD

 Λ_{χ} ~1 GeV : Chiral symmetry breaking scale

The NN interaction from chiral EFT

PHYSICAL REVIEW C 68, 041001(R) (2003)

Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory

D. R. $Entem^{1,2,*}$ and R. Machleidt^{1,†}

Phase Shift (deg)

-10

-20

-30

0

- 24 LECs fitted to the *np* scattering data and the deuteron properties
 - Including c_i LECs (i=1-4) from pion-nucleon Lagrangian

Determination of NNN LECs c_D and c_E from the triton binding energy and the half life

- **Chiral EFT**: *c*_D also in the two-nucleon contact vertex with an external probe
- Calculate $\langle E_1^A \rangle = |\langle^3 \text{He}||E_1^A||^3 \text{H} \rangle|$
 - Leading order GT
 - N²LO: one-pion exchange plus contact
- A=3 binding energy constraint: $c_{\rm D}$ =-0.2±0.1 $c_{\rm E}$ =-0.205±0.015

Exact few-body calculations (A=3,4) Proton-³He elastic scattering with χ EFT NN+NNN

- Hypherspherical-harmonics variational calculations
 - M. Viviani, L. Girlanda, A. Kievski, L. E. Marcucci, and S. Rosati, EPJ Web Conf. 3 (2010) 05011; Few Body Syst. 54 (2013) 885
- A_v puzzle (almost) resolved with the chiral N³LO NN plus local chiral N²LO NNN
 - used with the NCSM and other methods

TRIUMF

Quantum Monte Carlo

Variational Monte Carlo (VMC): construct Ψ_V that

- Are fully antisymmetric and translationally invariant
- Have cluster structure and correct asymptotic form
- Contain non-commuting 2- & 3-body operator correlations from v_{ij} & V_{ijk}
- Are orthogonal for multiple J^{π} states
- Minimize $E_V = \langle \Psi_V | H | \Psi_V \rangle \geq E$ integrating by Metropolis Monte Carlo

These are $\sim 2^A \binom{A}{Z}$ component (270,336 for ¹²C) spin-isospin vectors in 3A dimensions

Green's function Monte Carlo (GFMC): project out the exact eigenfunction

- $\Psi(\tau) = \exp[-(H E_0)\tau]\Psi_V = \sum_n \exp[-(E_n E_0)\tau]a_n\Psi_n \Rightarrow \Psi_0$ at large τ
- Propagation done stochastically in small time slices $\Delta \tau$
- Exact $\langle H \rangle$ for local potentials; mixed estimates for other $\langle O \rangle$
- Constrained-path propagation controls fermion sign problem for $A \ge 8$
- Multiple excited states for same J^{π} stay orthogonal

Many tests demonstrate 1–2% accuracy for realistic $\langle H \rangle$

Wiringa, Pieper, Carlson, & Pandharipande, PRC **62**, 014001 (2000) Pieper, Varga, & Wiringa, PRC **66**, 044310 (2002) Pieper, Wiringa, & Carlson, PRC **70**, 054325 (2004) Pieper, NPA **751**, 516c (2005)

Quantum Monte Carlo: Eigenenergies of light nuclei

RIUMF

Quantum Monte Carlo: Magnetic moments and transitions light nuclei

PHYSICAL REVIEW C 87, 035503 (2013)

Quantum Monte Carlo calculations of electromagnetic moments and transitions in $A \leq 9$ nuclei with meson-exchange currents derived from chiral effective field theory

Nuclear Lattice Effective Field Theory Calculations E. Epelbaum, H. Krebs, T. Lahde, D. Lee, U.-G. Meissner

Discretized version of chiral EFT for nuclear dynamics

Gautam Rupak

 $\left[\left(\sum_{i=1}^{A}\frac{-\vec{\nabla}_{i}^{2}}{2m_{N}}+\mathcal{O}(m_{N}^{-3})\right)+\underbrace{V_{2N}+V_{3N}+V_{4N}+\dots}\right]|\Psi\rangle=E|\Psi\rangle$

Timo A. Lähde^{a,*}, Evgeny Epelbaum^b, Hermann Krebs^b, Dean Lee^c, Ulf-G. Meißner^{a,d,e},

Nuclear Lattice Effective Field Theory Calculations E. Epelbaum, H. Krebs, T. Lahde, D. Lee, U.-G. Meissner

Epelbaum, Krebs, Lee, Meissner, PRL 106, 192501 (2011)

Coupled-Cluster Method

• exponential Ansatz for wave operator $|\Psi
angle=e^{\hat{T}}|\Phi_0
angle$

• CCSD: truncate \hat{T} at the 2p2h excitation level, $\hat{T} = \hat{T}_1 + \hat{T}_2$

$$\hat{T}_n = \frac{1}{(n!)^2} \sum_{\substack{ijk...\\abc...}} t^{abc...}_{ijk...} \{ \hat{a}^{\dagger}_a \hat{a}^{\dagger}_b \hat{a}^{\dagger}_c \dots \hat{a}_k \hat{a}_j \hat{a}_i \}$$

• effects of T_3 clusters included approximately in ground-state calculations via $\Lambda CCSD(T)$ or CR-CC(2,3) method

State-of-the-art: Λ -CCSD(T) with 3N interaction

Coupled-Cluster calculations for heavy nuclei with chiral interactions

- current chiral Hamiltonians capable of describing the experimental trend of binding energies
- systematic overbinding indicates that there are still deficiencies
 consistent 3N interaction at N³LO, and 4N interactions

• charge radii are considerably too small

Coupled-cluster effective interactions (CCEI) for the shell model

G. R. Jansen, J. Engel, G. Hagen, P. Navratil, A. Signoracci, Phys. Rev. Lett. 113, 142502 (2014).

- Start from chiral NN(N3LO_{EM}) + 3NF(N2LO) interactions
- Solve for A+1 and A+2 using CC. Project A+1 and A+2 CC wave functions onto the *s-d* model space using Lee-Suzuki similarity transformation.
- Spectra of oxygen isotopes computed with coupled-cluster effective interaction (CCEI), and compared to experimental data and the phenomenological USD shell model interaction.

In-medium SRG approach: Application to Oxygen isotopes

 $E_{
ho}-E_{h},E_{
ho
ho'}-E_{hh'}: ext{ approx. 1p1h, 2p2h excitation energies}$

RIUMF

Magic, semi-magic and open-shell nuclei

In-medium SRG approach: Application to Ca and Ni isotopes

IM-SRG calculations for A~100 are routine, tin isotopes in progress

RIUMF

- controlled uncertainties & consistent results for different abintio methods
- systematic overbinding due to current chiral Hamiltonians results for new generation of chiral Hamiltonians soon

Self-Consistent Green's Function Method: Oxygen, Fluorine, Nitrogen isotopes

→ 3NF crucial for reproducing binding energies and driplines around oxygen → $d_{3/2}$ raised by genuine 3NF

Green's functions in medium-mass nuclei

Gorkov GF go beyond standard expansion schemes and are not limited to doubly closed-shells

- \circ Expansion around a Bogoliubov vacuum
- From few tens to hundreds of medium-mass open-shell systems (→ complete chains)

→ Systematic overbinding of medium-mass nuclei (in agreement with other ab initio methods)

- \rightarrow initial (full) 3NF are necessary to reproduce relative trends
- \rightarrow Relative energies (S_{2n}) well reproduced

No-core shell model

- No-core shell model (NCSM)
 - A-nucleon wave function expansion in the harmonic-oscillator (HO) basis
 - short- and medium range correlations
 - Bound-states, narrow resonances

NCSM calculations for light nuclei and hypernuclei

Flexible approach capable performing exact calculations for few-nucleon systems and accurate calculations for nuclei with A≤24 & hypernuclei

(a)

-25

-35

E [MeV]

 E^* [MeV]

8

Nmax

⁶Li

RIUMF

Testing chiral LO NY potentials with Λ - Σ mixing included

...outperform the Julich '04 **YN** potential

No-core shell model with continuum

No-core shell model (NCSM)

TRIUMF

- A-nucleon wave function expansion in the harmonic-oscillator (HO) basis
- short- and medium range correlations
- Bound-states, narrow resonances
- NCSM with Resonating Group Method (NCSM/RGM)
 - cluster expansion
 - proper asymptotic behavior
 - long-range correlations
 - NCSM with continuum (NCSMC)
 - unified description of bound and unbound states

$$N = N_{\max} + 1$$

$$N = 1$$

$$N = 0$$

$$M =$$

$$\Psi^{A} = \sum_{N=0} \sum_{i} c_{Ni} \Phi_{N}^{A}$$

$$\Psi^{A} = \sum_{\nu} \int d\vec{r} \varphi_{\nu}(\vec{r}) \mathcal{A}_{\nu} \Phi_{1\nu}^{(A-a)} \Phi_{2\nu}^{(a)} \delta(\vec{r} - \vec{r}_{A-a,a})$$

S. Baroni, P. N., and S. Quaglioni, PRL 110, 022505 (2013); PRC 87, 034326 (2013).

Coupled NCSMC equations

Scattering matrix (and observables) from matching solutions to known asymptotic with microscopic *R*-matrix on Lagrange mesh

n-⁴He & *p*-⁴He scattering within NCSMC

RIUMF

NCSM/RGM calculations of transfer reactions

$$\int dr r^{2} \left[\begin{pmatrix} \mathbf{r} \\ \mathbf{n} \\ \mathbf{n} \end{pmatrix} \hat{A}_{1}(H-E) \hat{A}_{1} \\ \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \end{pmatrix} \hat{A}_{2}(H-E) \hat{A}_{1} \\ \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \end{pmatrix} \hat{A}_{2}(H-E) \hat{A}_{1} \\ \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \end{pmatrix} \hat{A}_{2}(H-E) \hat{A}_{2} \\ \mathbf{n} \\ \mathbf{n$$

Straightforward to couple different mass partitions in the NCSM/RGM formalism

Applications to (d,p) and (d,n) reactions Example: ³He(d,p)⁴He

> Work in progress: ⁷Li(d,p)⁸Li & ⁸Li(d,p)⁹Li

Ab Initio Many-Body Calculations of the ${}^{3}H(d, n){}^{4}He$ and ${}^{3}He(d, p){}^{4}He$ Fusion Reactions

Petr Navrátil^{1,2} and Sofia Quaglioni²

Solar *p-p* chain

^{[®]TRIUMF ³He(⁴He,γ)⁷Be & ⁷Be(*p*,γ)⁸B radiative capture}

- NCSMC & NCSM/RGM calculations
 - Soft NN potential (chiral SRG-N³LO with with $\Lambda = 2.1$ fm⁻¹ & $\Lambda = 1.86$ fm⁻¹)

NCSM with continuum: ⁷He \leftrightarrow ⁶He+*n*

RIUMF

Structure of ⁹Be: bound states and resonances

⁹Be is a stable nucleus ... but all its excited states unbound A proper description requires to include effects of continuum

Three-nucleon interaction *and* continuum improve agreement with experiment for negative parity states

Continuum crucial for the description of positive-parity states

J. Langhammer, P. N., G. Hupin, S. Quaglioni, A. Calci, R. Roth, in preparation

ETRIUMF

p+¹⁰C scattering: structure of ¹¹N resonances

¹¹N from chiral NN+3N within NCSMC

¹¹N Expt. (TUNL evaluation)

– Preliminary

	J ^π .	Т	E _{res} [MeV]	E _x [Me	eV] F [keV]
	1/2+	3/2	1.35	0	"4100"
✓	1/2-	3/2	1.94	0.59	580
\checkmark	3/2-	3/2	4.69	3.34	280
	5/2+	3/2	4.75	3.40	1790
	3/2+	3/2	4.95	3.60	"4760"
	5/2⁻	3/2	5.95	4.60	470
	3/2-	3/2	7.68	6.33	620

$E_{\rm res}$ (MeV \pm keV)	$E_{\rm x}$ (MeV \pm keV)	$J^{\pi}; T$	Γ (keV)
1.49 ± 60	0	$\frac{1}{2}^+; \frac{3}{2}$	830 ± 30
2.22 ± 30	0.73 ± 70	$\frac{1}{2}^{-}$	600 ± 100
3.06 ± 80	(1.57 ± 80)		< 100
3.69 ± 30	2.20 ± 70	$\frac{5}{2}^{+}$	540 ± 40
4.35 ± 30	2.86 ± 70	$\frac{3}{2}^{-}$	340 ± 40
5.12 ± 80	(3.63 ± 100)	$(\frac{5}{2}^{-})$	< 220
5.91 ± 30	4.42 ± 70	$(\frac{5}{2}^{-})$	
6.57 ± 100	5.08 ± 120	$(\frac{3}{2}^{-})$	100 ± 60

$$\Gamma = \left. \frac{2}{\partial \delta(E_{kin}) / \partial E_{kin}} \right|_{E_{kin} = E_R}$$

Negative parity 1/2⁻ and 3/2⁻ resonances in a good agreement with the current evaluation

Positive parity resonances too broad - N_{max} convergence

RIUMF

p+¹⁰C scattering: structure of ¹¹N resonances

¹¹N from chiral NN+3N within NCSMC

¹¹N Expt. (TUNL evaluation)

- Preliminary

	J⊓	Т	E _{res} [MeV]	E _x [Me	eV] Γ[keV]
	1/2+	3/2	1.35	0	"4100"
✓	1/2-	3/2	1.94	0.59	580
\checkmark	3/2-	3/2	4.69	3.34	280
	5/2+	3/2	4.75	3.40	1790
	3/2+	3/2	4.95	3.60	"4760"
	5/2⁻	3/2	5.95	4.60	470
	3/2-	3/2	7.68	6.33	620

$E_{\rm res}$ (MeV \pm keV)	$E_{\rm x}$ (MeV \pm keV)	$J^{\pi}; T$	Γ (keV)	
1.49 ± 60	0	$\frac{1}{2}^+; \frac{3}{2}$	830 ± 30	
2.22 ± 30	0.73 ± 70	$\frac{1}{2}^{-}$	600 ± 100	
→ 3.06 ± 80	(1.57 ± 80)		< 100	
3.69 ± 30	2.20 ± 70	$\frac{5}{2}^{+}$	540 ± 40	
4.35 ± 30	2.86 ± 70	$\frac{3}{2}^{-}$	340 ± 40	
→ 5.12 ± 80	(3.63 ± 100)	$(\frac{5}{2}^{-})$	< 220	
→ 5.91 ± 30	4.42 ± 70	$(\frac{5}{2}^{-})$		
6.57 ± 100	5.08 ± 120	$(\frac{3}{2}^{-})$	100 ± 60	

No candidate for 3.06 MeV resonance

We predict only one 5/2⁻ resonance below the 3/2⁻₂

Calculations suggest that either 5.12 MeV or 5.91 MeV resonance might be 3/2⁺ instead

NCSMC resonance predictions more in line with assignments in ¹¹Be

NCSM/RGM for three-body clusters: Structure of ⁶He

⁵H \approx ⁴He + *n* + *n* in progress

Conclusions and Outlook

- Ab initio calculations of nuclear structure & reactions is a dynamic field with rapid advances
- Several exact methods applicable to few-nucleon systems (A=3,4)
- Significant progress in *ab initio* approaches for *p*-shell nuclei
- New very successful approaches to medium mass nuclei
- We developed a new unified approach to nuclear bound and unbound states
 - Merging of the NCSM and the NCSM/RGM = NCSMC
- Outlook:
 - Applications to astrophysics
 - nuclear reactions important for astrophysics (and fusion energy generation)
 - equation of state, symmetry energy
 - Neutrino physics
 - neutrino-nucleus cross sections
 - double beta decay nuclear matrix elements
 - Fundamental symmetries
 - nuclear corrections (CKM unitarity...)
 - Strangeness
 - hypernuclei