

The target buildings

The FAIR Secondary Beam Targets

Super FRS

- High-Z primary beam (up to U)
- High dE/dx:
 Rotating target
 Target in vacuum
- Target in shielded trench (nearly 6000 t iron!)
 in large hall
 similar to PSI Target E or Fermilab pbar target
- Fragmentation of primary beam particles
- Huge variety of fragments: complex separator

pbar

Primary proton beam

Low dE/dx: Fixed target Target in air

Target station in shielded tunnel (7 m thick walls) similar to CERN North area target station

Creation of a particle-antiparticle-pair

Very wide angular distribution: magnetic horn

negative particles: pbar, π-, K-"simple" separator, optimized for high acceptance

Super FRS Target Wheel

d = 450mm (old)

New design planned: Larger wheel without transverse motion

biggest issue, bearings in vacuum

Super FRSTarget Chamber

Hot cell in SuperFRS building

Hot cell in SuperFRS building

Target exchange at the Paul-Scherrer-Institut

Hot cell in Super FRS building

Super-FRS (Overview)

FAIR / CERN / FNAL pbar Sources

	FAIR	CERN (AC+AA)	FNAL
E(p), E(pbar)	29 GeV, 3 GeV	25 GeV, 2.7 GeV	120 GeV, 8 GeV
acceptance	240 π mm mrad	200 π mm mrad	\approx 30 π mm mrad
protons / pulse	2.5×10^{13}	1 - 2 × 10 ¹³	≥ 5 × 10 ¹²
pulse length	single bunch (50 ns)	5 bunches in 400 ns	single bunch 1.6 µs
cycle time	10 s (5 s after upgrade)	4.8 s	1.5 s

pbar Target and Magnetic Horn

pbar Distribution After the Target

From $\sim 2.5 \times 10^{-4}$ pbar / (p cm target) $\sim 5 \times 10^{-6}$ (or 2 %) are "collectable"

R.P. Duperray et al., Phys. Rev. **D** 68, 094017 (2003)

MARS Simulation of the pbar Yields

Collecting phars: Magnetic Horn

Collecting phars: Magnetic Horn

MARS Simulation of the pbar Yields

yield =
$$\frac{\text{pbars in the ellipse}}{\text{primary protons}}$$
$$= 2 \times 10^{-5}$$

pbar Target station

The pbar separator

Dose rates during operation

The pbar building

The pbar building

Transport concept in building 6c

Target station and transport container

- Transport container is placed in front of target station.
- Door of target station and transport container are opened.
- Component is gripped by a quick coupling system.
- Trolley moves the component via rail system into the transport container.
- Doors are closed.

Overview of transport

pbar shielding flask: technical design

Transport outside of the building

Special design for trailer necessary; no standard vehicle avaliable.

Hot cell in SuperFRS building

The FAIR Secondary Beam Targets

Super FRS

- High-Z primary beam (up to U)
- High dE/dx:
 Rotating target
 Target in vacuum
- Target in shielded trench (nearly 6000 t iron!)
 in large hall
 similar to PSI Target E or Fermilab pbar target
- Fragmentation of primary beam particles
- Huge variety of fragments: complex separator

pbar

Primary proton beam

Low dE/dx: Fixed target Target in air

Target station in shielded tunnel (7 m thick walls) similar to CERN North area target station

Creation of a particle-antiparticle-pair

Very wide angular distribution: magnetic horn

negative particles: pbar, π-, K-"simple" separator, optimized for high acceptance

