HV-MAPS (High Voltage Monolithic Active Pixel Sensors) for the Panda Luminosity Detector

Tobias Weber for the Panda Luminosity Detector Group in collaboration with the Heidelberg Mu3e group

International Conference on Science and Technology for FAIR 15.10.2014

Physics Program

- hadron spectroscopy
- nucleon structure

- hyper nuclei
- hadrons in matter

Measurements at PANDA

- > $p\bar{p}$ -formation experiments
- production experiments
- \Rightarrow luminosity measurement

Introduction

Luminosity Detector

- reconstruction of scattering angle of elastic proton-antiproton scattering
- four silicon tracker stations
- 400 HV-MAPS in total

High Voltage Monolithic Active Pixel Sensors

- 180 nm technology
- > bias voltage (\approx 60 V)
 - 14 μm depletion layer
 - fast charge collection
- radiation tolerant

- leading edge discriminator
- thinnable to less than 50 µm

High Voltage Monolithic Active Pixel Sensors

- size of 2x2 cm² with 80x80 μm² pixels
- digital part on one chip side, active area > 90%
- frequency up to 40 MHz
- LVDS-Link @ 400-800 Mbps

High Voltage Monolithic Active Pixel Sensors

MuPix 4 Prototype

- 40x32 pixels with 80 μm x 92 μm
- column logic on chip
- parallel data readout (no serial link)
- readout and slow control by FPGA-Board
- time stamp generation on FPGA

Characterization of Analogue Part: Shaper

 use laser pulse to measure latency and ToT in dependence of threshold

Characterization of Analogue Part: Shaper

- use laser pulse to measure latency and ToT in dependence of threshold
- shaping time well below 1 μs

Characterization of Analogue Part: Energy Separation

$$^{55}\mathrm{Fe} \xrightarrow{\mathcal{EC}} {}^{55}\mathrm{Mn^*}
ightarrow {}^{55}\mathrm{Mn} + \gamma$$
(5.8 keV)

DESY Test Beam, October 2013

Mu3e group with EUDET-telescope

- electron beam with 3-5 GeV
- measurement of sensor efficiency

DESY Test Beam, October 2013

Test Beam Results

MuPix 4: A Hybrid Strixel

- ➤ timing problem in row address readout ⇒ Projection of hits into first two rows
- high noise in few pixels

Spatial Resolution

- spatial resolution given by pixel size
- \blacktriangleright charge sharing with surrounding pixels $\approx 10\%$
- > rectangular cut on hit-track distance $|d_i| < 0.95 \cdot \text{pitch}_i$

Global Efficiency

- ▶ efficiency up to 99%
- row dependence caused by tune DAC settings

Global Efficiency

- ▶ efficiency up to 99%
- row dependence caused by tune DAC settings

Test Beam Results

Global Efficiency

- row coordinate from track, column information for matching
- no usage of tune DACs

homogeneous efficiency distribution of 99%

Test Beam Results

MuPix 6

- solve the MuPix 4 readout issues
- additional shaping stage to improve signal-to-noise
- A columns with MuPix 4 shaping stage for comparison

Response of RC-CR shaper stage

Test Beams at MAMI (Mainz) and COSY (Jülich)

Test Beam Results

Test Beams at MAMI (Mainz) and COSY (Jülich)

- digital readout working
- Landau shaped time-over-threshold distribution

PANDA DAQ

- generation of online trigger
- synchronisation of sub-detectors

Luminosity Detector Frontend Board

- Hades Trigger and Readout Board (TRBv3)
- 5x Lattice ECP3-150 FPGAs
- main FPGA for UDP/inter FPGA connectivity
- four side FPGAs for sensor IO

Luminosity DAQ

Summary

- test beam in October 2013 at DESY
 - efficiencies look promising
- test beams at MAMI and COSY in Summer 2014
 - problem with row address readout solved by MuPix 6

Outlook

- MuPix 7 submitted in September 2014
 - serial data link
 - time stamp generation on chip

Thank you for your attention!

Backup Slides

Abbildung 5.2: Ereignisraten auf der ersten Detektorebene bei $1.5 \frac{GeV}{c}$ Strahlimpuls. ξ 5.4: Ereignisraten auf der ersten Detektorebene bei $1.5 \frac{GeV}{c}$ Strahlimpuls.

Antiprotonen Impuls $\left[\frac{GeV}{c}\right]$	Benutzter Wert	Rate [kHz]
1.5	Sensor 1	183, 2
1.5	Sensor 3	19, 0
15.0	Sensor 1	40, 0

Ebene	Seite	Sensor	Dosis [Gy $0.795s$]	Dosis [Gy a]
1	vorn	3	$6.64 \cdot 10^{-5}$	1317
1	vorn	1	$38.5 \cdot 10^{-5}$	7636
4	hinten	3	$16.4\cdot 10^{-5}$	3253
4	hinten	1	$159.4\cdot10^{-5}$	31615

Radiation doses

Tabelle 4.4: Maximal deponierte Dosis be
i $1.5\frac{GeV}{c}$ aus der Simulation und extrapolierte Dosis für ein Betriebsjahr.

Ebene	Seite	Sensor	Dosis [Gy $1.6s$]	Dosis [Gy a]
1	vorn	3	$6.98\cdot 10^{-5}$	688
1	vorn	1	$7.19\cdot10^{-5}$	709
4	hinten	3	$20.2\cdot 10^{-5}$	1990
4	hinten	1	$18.7\cdot10^{-5}$	1843

 \rightarrow should not be an issue.