Status of EXL

Mirko von Schmid for the EXL collaboration

The EXL project within NUSTAR at FAIR

EXL experiments at the ESR

- GSI experiment E105 at the ESR
- Commissioning with stable ²⁰Ne and ⁵⁸Ni beams on H₂ and ⁴He
- Physics aim: Nuclear matter distribution in doubly-magic ⁵⁶Ni by elastic proton scattering
- Proof of principle: GMR in ⁵⁸Ni(α, α')
- Experimental parameters ⁵⁶Ni:
 - beam energy 400 MeV/u
 - particles stored $\approx 3 \cdot 10^6$
 - ► target density ≈ 3 · 10¹³ cm⁻²
 - revolution frequency \approx 2 MHz
 - luminosity of $\approx 2 \cdot 10^{26} \frac{\text{particles}}{\text{s cm}^2}$

Experimental setup at the ESR

aperture to improve angular resolution (1 mm/2 mm slits)

Pictures: M. Lindemulder

Preliminary results: ⁵⁶Ni(p,p)⁵⁶Ni at 400 MeV/u Energy reconstruction

15.10.2014 | International Conference on Science and Technology for FAIR in Europe 2014 | Mirko von Schmid | 5

Preliminary results: ⁵⁶Ni(p,p)⁵⁶Ni at 400 MeV/u Advantage of the aperture (1 mm)

TECHNISCHE UNIVERSITÄT DARMSTADT

Preliminary results: ⁵⁶Ni(p,p)⁵⁶Ni at 400 MeV/u Cross section fitted with Glauber multiple-scattering theory

Evolution of total matter radii in Ni isotopes

Data taken with the 2nd DSSD at 32.5°

Preliminary results: 58 Ni(α , α') 58 Ni at 100 MeV/u Alpha inelastic scattering by J.C. Zamora

^{15.10.2014 |} International Conference on Science and Technology for FAIR in Europe 2014 | Mirko von Schmid | 10

Preliminary results: ⁵⁸Ni(α , α')⁵⁸Ni at 100 MeV/u Giant monopole resonance by J.C. Zamora

RPA

eliminary

35

30

PRC 61, 067307 (2000)

PRC 73, 014314 (2006)

[3] G. Colò et al. Comput. Phys. Commun. 184 (2013)

RPA calculation [3]

present data

25

Preliminary results: ²⁰Ne(p, d)¹⁹Ne at 50 MeV/u Transfer reaction from Experiment E087 by J.C. Zamora

TECHNISCHE

DARMSTADT

Conclusion

- First successful nuclear reaction experiment with stored exotic beams ever!
- Analysis of ⁵⁶Ni(p,p) cross section using Glauber multiple-scattering theory:
 - Preliminary matter radius of ⁵⁶Ni: $R_m \approx 3.5$ fm
 - Model independent analysis using sum-of-gaussians density distribution in the works.
- Successfully demonstrated the possibility to study giant resonances and transfer reactions with EXL.

Outlook

Upgraded detector setup covering a substantially larger solid angle is planed

Future experiments possible at ESR (GSI), HIRFL-CSR (Lanzhou), TSR@ISOLDE (CERN) and at FAIR.

Thank you for your attention

TECHNISCHE UNIVERSITÄT DARMSTADT

S. Bagchi¹, S. Bönig², M. Csatlós³, I. Dillmann⁴, C. Dimopoulou⁴, P. Egelhof⁴, V. Eremin⁵, T. Furuno⁶, H. Geissel⁴, R. Gernhäuser⁷, M. N. Harakeh¹, A.-L. Hartig², S. Ilieva², N. Kalantar-Nayestanaki¹, O. Kiselev⁴, H. Kollmus⁴, C. Kozhuharov⁴, A. Krasznahorkay³, T. Kröll², M. Kuilman¹, S. Litvinov⁴, Yu. A. Litvinov⁴, M. Mahjour-Shafiei^{1,8}, M. Mutterer⁴, D. Nagae⁹, M.A. Najafi¹, C. Nociforo⁴, F. Nolden⁴, U. Popp⁴, C. Rigollet¹, S. Roy¹, C. Scheidenberger⁴, M. von Schmid², M. Steck⁴, B. Streicher^{2,4}, L. Stuhl³, M. Takechi⁴, M. Thürauf², T. Uesaka¹⁰, H. Weick⁴, J. S. Winfield⁴, D. Winters⁴, P. J. Woods¹¹, T. Yamaguchi¹², K. Yue^{2,4,13}, J.C. Zamora², J. Zenihiro¹⁰

 1
 KVI-CART, Groningen

 2
 Technische Universität Darmstadt

 3
 ATOMKI, Debrecen

 4
 GSI, Darmstadt

 5
 Ioffe Physico-Technical Institute, St.Petersburg

 6
 Kyoto University

 7
 Technische Universität München

⁸ University of Tehran
 ⁹ University of Tsukuba
 ¹⁰ RIKEN Nishina Center
 ¹¹ The University of Edinburgh
 ¹² Saitama University
 ¹³ Institute of Modern Physics, Lanzhou

This work was supported by BMBF (06DA9040I and 05P12RDFN8), the European Commission within the Seventh Framework Programme through IA-ENSAR (contract no. RII3-CT-2010-262010), HIC for FAIR, GSI-RUG/KVI collaboration agreement and TU Darmstadt-GSI cooperation contract.

