Open questions in hadron spectroscopy and dynamics

Adam Szczepaniak
Indiana University Jefferson Lab

What can we learn about QCD from studying hadron spectrum

What are the "effective" constituents of hadrons (focus on glue)

How to identify new phenomena in hadron spectrum

QED bound states
"weak" + "few"
\rightarrow complex

Spectrum "solves" QCD: HI $\Psi>=$ EI $\Psi>$

QCD bound states "strong" + "many"
\rightarrow complex++

Models

Glashow,Salam,Weinberg

glueball meson

hybrid meson

Emergent degrees of freedom should be different from the "bare" constituent

$$
\begin{array}{ll}
\text { peak in intensity } & 180^{\circ} \text { phase change } \\
\text { (cross section) } & \text { in the amplitude }
\end{array}
$$

Two key issues:

1. How to identify resonance in the data

2. How to connect with QCD

2.Connection with QCD

Confinement in QCD

in absence of isolated quarks we have to content with emergent properties of confinement

- linearly rising potential
-Casimir and N -ality scaling
- Regge trajectories

Anatomy of Confinement

All gluons are equal but some are more equal than others:
provide confinement => long range correlations are confined => short range correlations
massive, effective

$$
\int d y \frac{\rho(y)}{|x-y|} \rightarrow \int d y \frac{\rho(y)}{\nabla D}(x, y, A)
$$

long range
\uparrow instantaneous potential

0++ 1++ 2++ 0+- 1+- 1+- 1+- 2+- 2+- 3+-

QCD Hamiltonian

$$
H=H_{D}+H_{Y M}+H_{C}
$$

Casimir Scaling and Constituent particles

$$
\begin{aligned}
K & =\frac{1}{2} \frac{g}{\nabla \cdot D}\left(-\nabla^{2}\right) \frac{g}{\nabla \cdot D} \\
H_{C} & =\int d \mathbf{x} d \mathbf{y} \rho^{a}(\mathbf{x}) K[\mathbf{x}, \mathbf{y}, \mathbf{A}]_{a b} \rho^{b}(\mathbf{y})
\end{aligned}
$$

two-body

one-body

three-body

$$
J_{g}^{P_{g} C_{g}} \times L_{Q \bar{Q}} \times S_{Q \bar{Q}}
$$

JPC glue

$$
\begin{aligned}
& \downarrow \begin{array}{c}
\mathrm{\rho c} \overline{\mathrm{QQ}} \\
\downarrow \\
\downarrow \\
1^{+-} \times 0_{S_{Q \bar{Q}}^{-}}^{-+}=1^{-} \\
1^{+-} \times 1_{S_{Q \bar{Q}}^{-1}=1}^{-}=0^{-+}, 1^{-+}, 2^{-+}
\end{array}
\end{aligned}
$$

gluons behave as 1+- quasi-particle
Prediction of (Coulomb gauge) QCD
radiative decays

PANDA@FAIR

hybrid $\rightarrow \gamma$ meson

$0^{-+} \mathrm{I}^{-+} 2^{-+} \mathrm{I}^{--}$have comparable decays rates $\mathrm{O}(100 \mathrm{keV})$

Hadrons Beyond Confinement

String-like properties and Regge behavior

Normal ("Casimir" hadrons) follow linear Regge trajectories (J vs M^{2}).

relativistic "spinning stick" : J ~ M ${ }^{2}$

They survive even in
presence of open decay channels

Mesons

Baryons

But there are known exceptions

Example of known non-ordinary: σ

Possible evidence for nonqq nature of light scalars

300400500600700800

800825850875900925950

FIG. 1: Modulus of amplitudes in different meson-meson channels for $N_{c}=3$ (thick line) $N_{c}=5$ (thin continuous line) and $N_{c}=10$ (thin dotted line), scaled at $\mu=770 \mathrm{MeV}$.

Pelaez

Striking similarity with Yukawa potential
non-ordinary o Rea ordinary trajectory

Quark model vs Regge classification

PANDA@FAIR
$p \bar{p} \rightarrow 2^{--} \rightarrow \gamma \eta_{c}$
$p \bar{p} \rightarrow 2^{--} \rightarrow D \bar{D}^{*}$
Same question in charmonium where is $\mathrm{J} / \Psi_{2} \mathrm{~J}^{\mathrm{PC}}=2^{--}$

1. How to identify resonances in the data

Why Amplitude Analysis

Experimental Measurement
QCD Measurement
Physics quantities: form factors, resonance parameters masses, etc.

Reaction amplitudes

doMeasured = Detector Acceptance \otimes dPS IAI ${ }^{2}$

Amplitude construction

Axiomatic S-matrix principles:
(not the same as based on a a microscopic model/theory, e.g. unitary diagrams vs Feynman diagrams)
-Crossing relations:

A(s,t) describes all processes related by line reversal
-Analyticity: Cuts determined by unitarity (i.e. in the physical region, continuation is complicated, Mandelstam representation known only for 4-point function) Asymptotic behavior ($\mathrm{A}\left(\mathrm{s}_{\mathrm{i}}\right)<\mathrm{s}_{\mathrm{i}} \mathrm{O}\left(\log \mathrm{s}_{\mathrm{j}}\right)$) Bound state poles: Anomalous Thresholds (the XYZ's)
-Regge behavior: Analyticity
-of "the second kind"
-Global symmetries: EM, chiral, ...

- When cross-channel channel singularities are all nearby, there are no known amplitudes that satisfy all Smatrix constraints

(except perturbatively, e.g. chiral p.t.)
Two general class of models
- Two-body unitarization, of low partial waves
violate analyticity of the 2nd kind
- Resonance/Regge Duality
violate analyticity of individual partial waves

Isobar model

Dual Models

nearest singularity in exchange channel

Isobar model
$\sum_{l}^{L_{\text {max }}}(2 l+1) f_{l}(s) P_{l}\left(z_{s} \sim t\right)$
OK if

$$
(s-4) R^{2} \sim \frac{s-4}{m_{e}^{2}} \ll 1
$$

if s and t-channel singularities are close by truncation leads to unphysical dependence on cross-channel variable
then adding s and t channel "diagrams" results in double counting ...

Isobars represent a finite set of terms in p.w. expansion

"Forces" contribute to infinite number of p.w. not including them makes analysis truncation dependent

What may happen when amplitudes are unconstrained

- $\mathrm{X}^{+}(4050,4250)$ Belle $(2009) \overline{\mathrm{B}}^{0} \rightarrow \mathrm{~K}^{-}\left(\mathrm{X}_{\mathrm{cl}} \mathrm{T}^{+}\right)$

higher K* spins produced more "wiggles" in cross-channel
- $\mathrm{X}^{ \pm}$(4430) Belle (2009) $\overline{\mathrm{B}}^{0} \rightarrow \mathrm{~K}^{-}\left(\Psi^{\prime} \Pi^{+}\right), \mathrm{B}^{+} \rightarrow \mathrm{K}_{\mathrm{s}}^{0}\left(\Psi^{\prime} \pi^{+}\right)$
not seen in BaBar (also in $\mathrm{J} / \Psi \pi^{-}$)

PANDA@FAIR

Regge

Form Factors : Regge manifestations in multi-particle production in $\mathrm{e}^{+} \mathrm{e}^{-} / \overline{\mathrm{p}} \mathrm{p}$ and F.Factors ?

Electromagnetic Form Factors

$$
f_{V \pi}(s)=\int_{4 m^{2}}^{s_{i}} \frac{d s^{\prime}}{\pi} \frac{\Delta f_{V \pi}\left(s^{\prime}\right)}{s^{\prime}-s}+\sum_{i=0}^{N} C_{i} \omega^{i}(s)
$$

Black: standard VMD (fails to describe the data)

Blue: $\quad \mathrm{N}=0$
(C_{0} from $\Gamma_{\text {exp }}(V \rightarrow \pi \gamma)$)
Red: $\mathrm{N}=1$
Green: $\mathrm{N}=2$
(fit to the data)
Nature of the steep rise? Exp. analysis of $\phi \rightarrow \pi \gamma$ is very important
I. Danilkin et al.

Theory + Phenomenology + Data Analysis Synergy

theory

ammitn pircolites)
smicon parche (ial

A - Mal
Nom

Joint Physics Analysis Center

$\mathbf{e}^{+} \boldsymbol{e}^{-} \rightarrow \pi^{+} \pi^{-} \boldsymbol{J} / \psi$ at BESII

BESIII
[PRL110, 252001(2013)]
$525 \mathrm{pb}^{-1}$ data at 4.260 GeV

make a slide about p \bar p annihilation vs resonacnes

Backups

$\int^{N} d s \operatorname{Im} A(s, t)=\operatorname{Im} A_{\text {Regge }}(N, t)$

Dispersive analysis of $\omega / \phi \rightarrow 3 \pi$

Solution: (e.g. P-waves only)

$$
\begin{gathered}
\text { waves only) } \\
a^{R}(s)=\frac{1}{D(s)} \int_{4 m^{2}} \frac{d s^{\prime}}{\pi} \frac{\rho\left(s^{\prime}\right) N\left(s^{\prime}\right) A^{L}\left(s^{\prime}\right)}{s^{\prime}-s}
\end{gathered}
$$

Easily generalized to inelastic case

$$
a^{R}(s)=\frac{1}{D^{l}(s)}\left(\int_{4 m^{2}}^{s_{i}} \frac{d s^{\prime}}{\pi} \frac{\rho\left(s^{\prime}\right) N(s)\left(s^{\prime}\right) A^{L}\left(s^{\prime}\right)}{s^{\prime}-s}+A^{i n}(s)\right)
$$

el = only elastic cut
in = only inelastic cut

$$
\sqrt{s_{\mathrm{Pole}}^{\sigma}}=(446 \pm 6)-i(276 \pm 5) \mathrm{MeV}
$$

Dispersive analysis of $\omega / \phi \rightarrow 3 \pi$

Integral equation

$$
a^{R}(s)=\frac{1}{D^{e l}(s)}\left(\int_{4 m^{2}}^{s_{i}} \frac{d s^{\prime}}{\pi} \frac{\rho\left(s^{\prime}\right) N(s)\left(s^{\prime}\right) A^{L}\left(s^{\prime}\right)}{s^{\prime}-s}+\sum_{i=0}^{N} a_{i} \omega^{i}(s)\right)
$$

- $w(s)$ is the conformal map of inelastic contributions:

Coefficients ai play the role of improved subtraction constants

Niecknig et. al. 2012
Anisovich et. al. 1998

all details in: I. Danilkin et al., arXiv1076363

What may happen when amplitudes are unconstrained

$$
\gamma p \rightarrow \Theta^{+} K^{-} \pi^{+} \rightarrow\left(K^{+} n\right) K^{-} \pi^{+}
$$

$\int^{N} d s \operatorname{Im} A(s, t)=\operatorname{Im} A_{\text {Regge }}(N, t)$

old (but still surprisingly adequate) description of quarks in hadrons : quark model

- Dual models (Veneziano) $\quad A(s, t)=\frac{\Gamma(1-\alpha(s)) \Gamma(1-\alpha(t))}{\Gamma(2-\alpha(s)+\alpha(t))}$

$$
A(s, t)=\sum_{k} \frac{\beta_{k}(t)}{k-\alpha(s)}=\sum_{l} \frac{\beta_{k}(s)}{k-\alpha(t)}
$$

$$
\begin{aligned}
& \mathcal{A}_{n}(s, t ; N)=\frac{2 n-\alpha_{s}-\alpha_{t}}{\left(n-\alpha_{s}\right)\left(n-\alpha_{t}\right)} \sum_{i=1}^{n} a_{n, i}\left(-\alpha_{s}-\alpha_{t}\right)^{i-1} \\
& \times \frac{\Gamma\left(N+1-\alpha_{s}\right) \Gamma\left(N+1-\alpha_{t}\right)}{\Gamma(N+1-n) \Gamma\left(N+n+1-\alpha_{s}-\alpha_{t}\right)}
\end{aligned}
$$

Regge/Resonance duality

Can be generalized to any number of external particles

Can be extend to satisfy Mandelstam duality, but not known extensions to several trajectories

Early ideas about the origin of confinement

Strong, theoretical evidence (lattice) for gluon field excitations in hadron spectrum

Phenomenologically, gluons behave as axial vector, quasiparticles JPC^{1+-}

Lowest multiplet of "hybrid mesons" has $J P C=0^{-+}, 1^{-+}, 2^{-+}, 1^{--}$states

What about other non-quark model possibilities ?
Can these be detected and distinquished ?

In QED "bare particle" ~ observed particle

but in QCD e > 1
the nature of physical quarks and gluons remains a mystery

Monopole confinement scenario
in "empty vacuum"

Type-II supper conductor

in "magnetic condensate"

Plausible scenario: $H_{Q C D}=H_{\text {c.h.o. }}+$ non-linear
"physicalquarks" \rightarrow
quasi particles ingluon mean filed

The QCD vacuum is not empty. Rather it contains quantum fluctuations in the gluon field at all scales. (Image: University of Adelaide)
finite energy, localized solutions: solitons (monopoles, vortices , ...)

Monopoles and vortices have been long speculated to be candidate gluon field configurations responsible for confinement
"Can we quantitatively understand quark and gluon confinement in quantum chromodynamics and the existence of a mass gap" (in 10 Physics Questions to Ponder for a Millennium or Two)

- Y(4260) discovered by BaBar in J/ $/ \pi^{+} \pi^{-}$(2005) confirmed by CLEO,Belle other modes from BaBar ${ }^{\mathrm{PCC}}=1-$ (from e+e-) width $\mathrm{O}(100 \mathrm{MeV})$

Quantum Chromodynamics (QCD) = physics of quarks and gluons

Why is QCD special ?

$\checkmark \quad$ A single theory is responsible for phenomena at distance scales of the order of $10^{-15} \mathrm{~m}$ as well as of the order $10^{4} \mathrm{~m}$.

\checkmark It builds from objects (quarks and gluons) that do not exist in a common sense, $>95 \%$ mass comes from interactions!

Energy density budget
 matter, e.g. made from radiation (glue balls,hybrids) or novel plasmas.

