

THE CBM RICH DETECTOR

TARIQ MAHMOUD

INTERNATIONAL CONFERENCE ON SCIENCE AND TECHNOLOGY FOR FAIR IN EUROPE

13-17. OCTOBRE • WORMS • GERMANY

OUTLINE

- Introduction
- The Concept of the RICH Detector
- R&D
 - Photon Detectors
 - Mirror System
- Laterally Scaled Prototype
 - Number of Hits per Ring
 - Ring Radius
 - Particle Identification
- Physics Potential
- Conclusion

INTRODUCTION

- Precision measurements at high baryon density region for:
 (i) high order baryon correlations
 - (i) high order baryon correlations
 - (ii) flavor productions (**s**, **c**);
 - (iii) dileptons (**e**, μ);
 - In particular <u>rare probes</u> such as charm and low-mass vector mesons

RHIC

 $20 \le \mu_B \le 420 \text{ MeV}$ small temperature variation

<u>CBM</u>

 $400 \le \mu_B \le 750 \text{ MeV}$ temperature changes dramatically!

THE CBM EXPERIMENT

TOF: hadron identification

TRD: tracking

- RICH: electron identification
- pion rejection factor of $\geq 10^4$

JUSTUS-LIEBIG-

RICI

MISSION

Efficient and clean electron identification with momenta below 8GeV/c

PHILOSOPHY

Build a stable, robust and fast focusing RICH detector relying to a large extend on components from industry.

eV/c] CHALLENGES

- ${\scriptstyle \scriptsize \odot}$ Interaction rates up to 10 MHz ${\rightarrow}$ up to 700kHz/pixel
- ${\scriptstyle \scriptsize {\tiny \bullet}}$ RICH behind STS ${\rightarrow}$ secondary $e^{\pm} {\rightarrow}$ high ring density
- ${\scriptstyle \scriptsize \odot}$ High track densities ${\rightarrow}$ problem of ring-track mismatches
- Photon detector plane faces:
 - Second Second
 - Neutron fluency < 3.10^{11} n-eq/cm²/year
 - Magnetic field ≈ 25 mT
 - \rightarrow causing gain deterioration

- Gaseous radiator.
- Multi-anode Photomultiplier Tubes (MAPMT).
- Focusing mirror system.

	N ₂	C0 ₂	C_4F_{10}	Aerogil	C ₅ F ₁₀	Quartz
n-1 [10 ⁻⁴]	2.98	4.3	14	300	2700	4700
p _{th} (e) [GeV]	0.02	0.017	0.01	0.002	7•10-4	5•10-4
$p_{th}(\pi)$ [GeV]	5.72	4.76	2.64	0.57	0.19	0.14

- To separate electrons from pions we need a gas radiator!
- Nitrogen seems to be the best choice ... but

	Radiator length	Full length	Mirror radius	Mirror size	Photo detector size	No. of channels
CO2	1.76m	2.1m	3m	11.8m ²	3.7m ²	55k
N2	2.5m	2.9m	4.5m	22.8m ²	9m ²	200k

	N ₂	C0 ₂	C₄F ₁₀	Aerogil	C ₅ F ₁₀	Quartz
n-1 [10 ⁻⁴]	2.98	4.3	14	300	2700	4700
p _{th} (e) [GeV]	0.02	0.017	0.01	0.002	7•10-4	5•10-4
$p_{th}(\pi)$ [GeV]	5.72	4.76	2.64	0.57	0.19	0.14

- To separate electrons from pions we need a gas radiator!
- Nitrogen seems to be the best choice ... but

	Radiator length	Full length	Mirror radius	Mirror size	Photo detector size	No. of channels
C02	1.76m	2.1m	3m	11.8m ²	3.7m ²	55k
N2	2.5m	2.9m	4.5m	22.8m ²	9m ²	200k

... due to costs and place reasons:

CO₂ is chosen
• CO₂;
$$\gamma_{th} = 33$$

• $p_{\pi,th} = 4.76 \text{ GeV/c}$
• V $\approx 30 \text{ m}^3$
• Length=1.7 m

P+4= m + δco2= 4.3 × /0" C- 17.4 //eV K² 17 Gov T¹ 4.6 Gov β 32 Gov

FOUR MAIN PROPERTIES:

- Quantum efficiency (QE)
- Single photon detection
- Crosstalk
- Tolerance of magnetic field

HAMAMATSU: Multi-anode Photomultiplier Tubes (MAPMT);

H8500: borosilicate glass and Bialkali cathode, 12-dynodes. (52x52 mm², 8x8 pixel)
 H10966: H8500 → Super-Bialkali cathode, 8-dynodes. (52x52 mm², 8x8 pixel)
 R11265: → Super-Bialkali cathode, 12-dynodes. (26x26 mm², 4x4 pixel)

H12700: based on H8500, with dynode structure of R11265.

<u>PHOTONIS</u>: Micro Channel Plate (MCP)

» XP85012: quartz glass and Bialkali cathode. (59x59 mm², 8x8 pixel)

PHOTON DETECTOR: QUANTUM EFFICIENCY

PHOTON DETECTOR: SINGLE PHOTON & CROSSTALK

FOUR MAIN PROPERTIES:

- Quantum efficiency (QE)
- Single photon detection
- Crosstalk
- Tolerance of magnetic field

- Peak at 0 due to crosstalk
- Shape of R11265 spectra with and without crosstalk suppression almost Identical.
- Crosstalk in R11265 is less than H8500.
- XP85012 MCPs show significantly high crosstalk.
- MAPMTs of Hamamatsu show a better single photon detection capability.
- PMTs with SBA and 12 dynodes show almost no crosstalk.

PHOTON DETECTOR: MAGNETIC FIELD TOLERANCE

- HAMAMATSU: Multi-anode Photomultiplier Tubes (MAPMT);
 H8500: borosilicate glass and Bialkali cathode, 12-dynodes.
 R11265: → Super-Bialkali cathode, 12-dynodes.
- H12700: based on H8500, with dynode structure of R11265. Also with blue-shifted cathode

PROPERTIES:

Significantly improved single photon spectrum.

HAMAMATSU: Multi-anode Photomultiplier Tubes (MAPMT);
 H8500: borosilicate glass and Bialkali cathode, 12-dynodes.
 R11265: → Super-Bialkali cathode, 12-dynodes.

 H12700: based on H8500, with dynode structure of R11265. Also with blue-shifted cathode

PROPERTIES:

- Significantly improved single photon spectrum.
- Higher quantum efficiency.

HAMAMATSU: Multi-anode Photomultiplier Tubes (MAPMT);
H8500: borosilicate glass and Bialkali cathode, 12-dynodes.
R11265: → Super-Bialkali cathode, 12-dynodes.

 H12700: based on H8500, with dynode structure of R11265. Also with blue-shifted cathode

PROPERTIES:

- Significantly improved single photon spectrum.
- Higher quantum efficiency.

HAMAMATSU: Multi-anode Photomultiplier Tubes (MAPMT); ■ H8500: borosilicate glass and Bialkali cathode, 12-dynodes. ■ R11265: → Super-Bialkali cathode, 12-dynodes.

 H12700: based on H8500, with dynode structure of R11265. Also with blue-shifted cathode

PROPERTIES:

- Significantly improved single photon spectrum.
- Higher quantum efficiency.
- Higher collection efficiency.

Planning to use H12700 • 2.4 m², 55k Ch.

THE MIRROR SYSTEM

<u>Homogeneity</u>: Influences the photons distribution \rightarrow ring fitting performance

- D_0 is a measure of the mirror homogeneity.
- It is the diameter of a circle containing 95% of reflected light and being emitted through a point source.
- Required is a $D_0 <= 3$ mm.

THE MIRROR SYSTEM

Required is a $D_0 <= 3$ mm.

<u>Homogeneity</u>: Influences the photons distribution \rightarrow ring fitting performance

Reflectivity: Influences the number of photons \rightarrow ring quality

THE RICH PROTOTYPE

Laterally scaled prototype

THE RICH PROTOTYPE

THE RICH PROTOTYPE: N-HITS

JUSTUS-LIEBIG-UNIVERSITAT GIESSEN

RICH

THE RICH PROTOTYPE: N-HITS

THE RICH PROTOTYPE: RING RADIUS

One finds: r_{MC} =1.05* r_{data}

RICI

THE RICH PROTOTYPE: PION SUPPRESSION FACTOR

RICH

THE RICH PROTOTYPE: PION SUPPRESSION FACTOR

USTUS-LIEBIG

RICH

UNIVERSITÄ

THE RICH PROTOTYPE: OTHER TESTS

Sustem parameters | Alarms | Database | DAD32 | About GAS SYSTEM PTB SV3 Provides pure CO₂ gas Onstant over pressure of 2 mbar. DRYER Determine impurity tolerances Δz_{RotX} F2 2 2.0mbar (PT-4 RICH 294.2K (TT-1) **MIRROR DISPLACEMENT** CO2 • Deteriorate the resolution of ring fit \rightarrow Determine displacement tolerances beam Power supply on: **NEW ELECTRONICS** (switching regulators) x10(x30) Using standard

Compact with good time resolution

A beam Dr. Subset of the second sec

NEXT BEAM TIME (NOV14)

- Test new PMTs
- Test updated new electronics
- Test mirror alignment system

PHYSICS PERFORMANCE

25 AGeV:

Mass resolution: 13.6 MeV (ω) and 44 MeV (J/ψ)
 LMVM spectra for SIS100 show similar quality
 J/ψ in central pAu at 30GeV with S/B=1.25 ("thick" 1% int. length target)

- RICH is essential for the CBM experiment at SIS100 & SIS300.
- A concept has been established to cope with the CBM (FAIR) environment.
- Individual components tested and chosen.
- Concept verified through a real dimension prototype.
- Simulation under realistic conditions show very promising physics performance.
- TDR is approved.
- Next:
 - Clarify some open issues: readout electronics, geometry optimisation, mirror alignment controlling system.
 - Start building the detector.

TARIQ MAHMOUD

INTERNATIONAL CONFERENCE ON SCIENCE AND TECHNOLOGY FOR FAIR IN EUROPE

13-17. Octobre • Worms • Germany

NEW ELECTRONICS

Integrated Cherencov ring: left half nXYter, right half TRBRICH

GAS SYSTEM

Normal operation:

- Constant differential pressure of 2 mbar ± 1%
- O_2 (H₂O) impurity about 80 (250) ppm

Tested up to:

- O₂ impurity of 10000 ppm
- \bullet H₂O impurity of 1100 ppm

THE RADIATOR

	Radiator length [m]	Full length [m]	Mirror radius [m]	Mirror size [m²]	Photon detector plane [m ²]	# of channels
C0 ₂	1.7	2.1	3	11.8	3.7	55k

MIRROR DISPLACEMENT

201

WLS COATING - SBA PHOTOCATHODE

MAPMTs for beam time – QE

expectation: 17% more hits with WLS coating

TARIQ

2012

THE RICH CONCEPT: MIRROR

Homogeneity:Influences the photons distribution \rightarrow ring fitting performanceReflectivity:Influences the number of photons \rightarrow ring quality

Homogeneity:

- \bullet D₀ as a measure of the mirror homogeneity.
- Reflect a point-like source on the mirror and record its image.
- Ideally the image is also point-like. In Reality, inhomogeneity causes a nonhomogenous spot (picture).
- \bullet D₀ is the diameter, of a circle, which contains 95% of the reflected light

	required	FLABEG	COMPAS	JLO OLOMOUC
D _o (mm)	≤3	Very bad	2.3	2.3

JLO OLOMOUC

mm

6 mm

6 mm

FLABEG

6 mm

COMPAS

4 mm