

nternational Conference on Science and Technology for FAIR in Europe 2014

Development of the Time-Of-Flight System for the CBM Experiment

Ingo Deppner for the CBM-TOF Group

Physikalisches Institut Uni. Heidelberg

Outline:

- Motivation / CBM-ToF Requirements
- Working principle of Resistive Plate Chambers
- Rate capability of MRPCs
- Low resistive glass
- Conceptual design of the ToF wall
- MRPC description and test result
- ToF project time table
- Summary / Next Steps

Ingo Deppner 13 -17 Oct. 2014

Motivation and Requirements

CBM-ToF Requirements

- > full system time resolution $\sigma_T \sim 80$ ps
- Efficiency > 95 %
- Rate capability ≤ 25 kHz/cm²
- Free streaming DAQ
- Polar angular range 2.5° 25°
- Low power electronics (~100.000 channels).
- Pile-up < 5%</p>
- Occupancy < 5 % (for Au-Au(central) at E=25 GeV/A)

Charged hadron identification is provided by Time-of-Flight (ToF) measurement

Compressed Baryonic Matter Experiment at FAIR facility @ GSI

Maximal interaction rate for heavy systems is 10 MHz

Ingo Deppner 13 -17 Oct. 2014 ICST for FAIR

2

Incident particle flux

Working principle of an RPC

(a) A traversing particle (thin yellow arrow) ionizes the gas in the gap.

(b) Electrons and ions drift towards the electrodes developing an avalanche and inducing a signal in the readout electrode.

CBM

TOF

(c1) Since the drift velocity of the ions is much smaller than for the electrons their contribution to the signal is negligible.

(d1) The charges are deposited on the surface of the resistive material building up an opposite electric field. This temporarily leads to a blind spot in the counter which is limiting the rate capability.

 $E_0 = 120 \text{ kV/cm}$

Ingo Deppner 13 -17 Oct. 2014

configuration

First MRPC 1996

E. Cerron Zeballos, I. Crotty, D. Hatzifotiadou, J. Lamas Valverde, S. Neupane, M.C.S. Williams, A. Zichichi Nucl.Instrum.Meth. A374 (1996) 132-136

Ingo Deppner 13 -17 Oct. 2014 ICST for FAIR

5

configuration

Rate capability of MRPCs

Time resolution:
$$\sigma_T = \sigma_0 + K_T \overline{q} \phi \rho d$$

Efficiency: $\epsilon = \epsilon_0 - K_\epsilon \overline{q} \phi \rho d$

φ: incident ch. particle fluxρ: electrode bulk resistivityd: electrode thickness

CBM

TOF

How to increase the rate capability?

- Lowering the resistivity of the electrode material
 - different materials

1) float glass: $\rho = 3x10^{12} \Omega cm$

- 2) low resistive glass:
- $\rho \approx 10^{10} \ \Omega cm$
- 3) ceramics: $\rho \approx 10^9 \ \Omega cm$
- warming the electrodes

$$\rho \cong \rho_{T_0} 10^{(T_0 - T)/\Delta T}$$

• Decreasing the electrode thickness

Low resistive glass

13 -17 Oct. 2014

ToF wall layout

	M6	M5	M5	M4	M5	M5	M6	
M6	WIG	M5	M5	M4	M5	M5	WIG	M6
	M6	M5	M5	M4	M5	M5	M6	
M6	WIO	M5	M5	M4	M5	M5	WIO	M6
	M6	M5	M5	M4	M5	M5	M6	
M6	WIO	M5	M5	M4	M5	M5	WIO	M6
	M6	M5	M5	M4	M5	M5	M6	
M6	WIO	M5	M5	M4	M5	M5	IVIO	M6
	M6	M5	M5	M4	M5	M5	M6	
M6	IVIO	M5	M5	M4	M5	M5	IVIO	M6
		M5	M5	M4	M5	M5	MG	
M6	IVIO	M5	M5	M4	M5	M5	IVIO	M6
		M5				M5	MC	
M6	IVIO	M5				M5	IVIO	M6
	M5	M5	IVI3	MI	IVI3	M5	M5	
M6	M5	M5				M5	M5	M6
	M5	M5				M5	M5	
M6	M5	M5	M2		M2	M5	M5	M6
	M5	M5				M5	M5	
M6	M5	M5				M5	M5	M6
	M5	M5				M5	M5	
M6		M5	IVI3	INIT	M3 M5	M5		M6
	MIG	M5				M5	IVI6	
M6		M5	M5	M4	M5	M5	MG	M6
	IVIO	M5	M5	M4	M5	M5	IVID	
M6		M5	M5	M4	M5	M5	NG	M6
	IVI6	M5	M5	M4	M5	M5	IVIB	
M6		M5	M5	M4	M5	M5	MG	M6
	IVIO	M5	M5	M4	M5	M5	IVID	
M6		M5	M5	M4	M5	M5	NG	M6
	IVI6	M5	M5	M4	M5	M5	IVID	
M6	146	M5	M5	M4	M5	M5	MG	M6
	Mb	M5	M5	M4	M5	M5	IVI6	
M6		M5	M5	M4	M5	M5	NG	M6
	IVI6	M5	M5	M4	M5	M5	IVID	
		-						

- 6 types of modules (M1 – M6) only
- A module contains several MRPC counters
- Region containing counters equipped with float glass
 - Region containing counters equipped with low resistive glass

٠

ToF wall layout

		MS	MS	MA	MS	MS		
	M6	IVIJ	IVIJ	1714	IVIJ	UND	M6	
M6		M5	M5	M4	M5	M5		M6
		M5	M5	M4	M5	M5	MC	
M6	IVID	M5	M5	M4	M5	M5	IVIO	M6

6 types of modules (M1 – M6) only

Module	Number	Module size	Number of	Number of	Number of	Number
notation	of		MRPCs	MRPCs	cells per	of cells
	modules	mm ³	per module	in total	module	in total
M1	2	$1270 \times 1417 \times 239$	32	64	2048	4096
M2	2	$2140\times705\times239$	27	54	1728	3456
M3	4	$1850 \times 1417 \times 239$	42	168	2688	10752
M4	24	$1802 \times 490 \times 110$	5	120	160	3840
M5	132	$1802 \times 490 \times 110$	5	660	160	21120
M6	62	$1802\times740\times110$	5	310	160	9920
Sum	226			1376		53184

Table 3.1: Numbers and dimensions of the modules.

		WD	WIJ	1014	WIJ	IVIJ				out channels
	IVI6	M5	M5	MA	M5	M5	- MD			-, 100000 ieuu
M6		M5	M5	M4	M5	M5		M6		⇒ 106368 read-
	1010	M5	M5	M4	M5	M5	INIO			
IVID	M6	IVIS	IVI5	IVI4	IVIS	IVI5	M6	IVID		

ToF wall layout

More realistic layout

- Frame is constructed out of industrial aluminum profiles (company: Item)
- Thick profiles are used only for the outer frame and one bar behind each column (\approx 30 % of a radiation length (X_{0.Al} = 8,72cm))
- > Modules are screwed on thin profiles of 80 mm x 16 mm cross section with a typical radiation length of 6%
- > About 250 kg of material is placed in front of the counters
- Module are mounted without electrical connection to the frame (Teflon spacers)
- \succ Wall is movable in beam direction from 6 m to 12 from the target

Modules

a: MRPC, b: Preamplifier (PADI), c: feed-through PCB, d: connectors, e: crate, f: TDC and read out

Ingo Deppner 13 -17 Oct. 2014

MRPC arrangement

MRPC arrangement

/	NEEC2	NRPC2	MRPC2	MRPC2	MRPC2	MIPC2	MRPCE	NRPC2	MREC2	MRPC2	NERCE	MRPC2	NRHC2	MRPC2	MRPC2	MRPCZ.
	MRPC2	MRPC2	MRPCZ	MRPCI	MRACE:	MRPC2	MRPC2	MRPC2	MBPC2	MRPC3	NBPC2	MBPC2	MRACZ.	MRPC2	MRPC2	MRPCZ
	WRPCL	MRPC2	MRFC2	MRRC2	MRPC2	MRPC2	MAPCE	MRPC2	NRPCZ	MRPCZ	NRIFCZ	NRPC2	MRPC2	MRPC2	MRPC2	MRPC2

MRPC notation	MRPC1	MRPC2	MRPC3a	MRPC3b	MRPC4
Number of MRPCs	40	246	580	200	310
Active area [mm ²]	300×100	300 imes 200	320×270	320×270	320×530
Number of Strips per MRPC	64	64	32	32	32
Strip length [mm]	100	200	270	270	530
Granularity (cell size) [mm ²]	472.4	944.8	2700	2700	5300
Number of gas gaps	10	10	8	8	8
Gap size μ m	140	140	220	220	220
Glass size [mm ²]	320 × 100	320×200	330 imes 280	330 imes 280	330 × 540
Glass thickness [mm]	0.7	0.7	1.0	0.5	0.5
Number of glass plates	12	12	9	9	9
Glass type	low res.	low res.	low res.	float	float
Total glass surface [m ²]	15.36	188.93	482.33	166.32	497.18

Table 3.2: Numbers and dimensions of different MRPC counters.

MRPC1/2 prototypes

MRPC1/2 prototypes are developed in NIPNE Bucharest

Ingo Deppner 13 -17 Oct. 2014

MRPC3/4 prototypes

Ingo Deppner 13 -17 Oct. 2014

Alternative solution for M1 to M3

Module	Number	Module size	Number of	Number of	Number of	Number
notation	of		MRPCs	MRPCs	cells per	of cells
	modules	mm ³	per module	in total	module	in total
M1P	24	$1802\times370\times110$	38	912	912	21888
M2P	6	$1802\times370\times110$	41	246	984	5904
Sum	30			1158		27792

Table E.1: Numbers and dimensions of the modules.

Pad MRPC prototypes are developed in Tsinghua-Univ. Beijing

Ingo Deppner 13 -17 Oct. 2014

Alternative solution for M1 to M3

Pad MRPC prototypes are developed in Tsinghua-Univ. Beijing

Ingo Deppner 13 -17 Oct. 2014

Forward Zone

ToF – Project Timeline

RPC type	res. material	efficiency	time resolution	rate capability
Ceramic MRPC	Ceramic	≈ 90 %	≈ 70 ps	≈ 500 kHz/cm²
Pad MRPC	sem. glass	≈ 95 %	≈ 50 ps	> 30 kHz/cm ²
Narrow strip RPC	sem. Glass	> 95 %	≈ 50 ps	> 30 kHz/cm ²
Wide Strip (Beijing)	sem. glass	> 95 %	≈ 60 ps	> 30 kHz/cm ²
Wide Strip (HD)	float glass	> 95 %	≈ 40 ps	1 – 10 ¹⁾ kHz/cm ²
Wide Strip (Hefei)	float glass	> 95 %	≈ 60 ps	≈ 1 kHz/cm²

The CBM requirements are fulfilled, however only in the spot response of the counters

¹⁾ rate capability of float glass
can be improved by warming up
by a ~ factor 10/ 26 K

Ingo Deppner 13 -17 Oct. 2014

Time line

✓ Demonstrators	end 2010
✓ Electronics chain	end 2011
✓ Full-size demonstrator	end 2012
✓ TDR submission	16.12.2013
✓ TDR re-submission	soon
Full-size modules with 'final' electronics	mid. 2015
Construction	2015-2017
Integration	2017-2018
ToF ready for beam	01.05.2019

Summary / Next steps

Summary

- > Rate capability of MRPC can be increased by using low resistive electrode material.
- ➢ For the inner part (M1 to M3) of the wall two different concepts are available.
- The design of all MRPC types are driven by the free- streaming readout impedance matching is realized.
- > All available types of MRPC detectors fulfill the CBM ToF requirements in a spot response.
- Since the gas exchange in the gas gaps of the counters is dominated by diffusion, the performance of all MRPC types has to be tested under full load conditions only available with heavy ion beams.

Next steps

- > Building a complete module M6 incl. electronics till summer 2015.
- Load test for all available full size prototypes in spring 2015 with heavy ions at SPS.
- Selection of the different layouts and counter configurations next year based on system aspects.

Thank you for your attention

CBM To

CBM ToF Group:

- Beijing, China, Department of Engineering Physics, Tsinghua University (THU): Zhi Deng, Yi Wang, Jingbo Wang, Xianglei Zhu
- Bucharest, Romania, Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH): D. Bartos, A. Balaceanu, G. Caragheorgheopol, F. Constantin, V. Duta, M. Petris, M. Petrovici,
- L. Radulescu, V. Simion
- Dresden, Germany, Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf (HZDR): K. Heidel, R. Kotte, A. Laso Garcia, L. Naumann, J. Wüstenfeld
- Darmstadt, Germany, GSI Helmholtz Center for Heavy Ion Research GmbH (GSI):
- M. Ciobanu, H. Deppe, H. Flemming, J. Frühauf, M. Kis, K. Koch, P. Koczon, W. Niebur
- Frankfurt, Germany, Institute for Computer Science, Goethe Universität Frankfurt (IRI):
- J. Gebelein, U. Kebschull, J. Lehrbach, S. Manz, A. Oancea
- Hefei, China, Department of Modern Physics, University of Science & Technology of China (USTC):
- Ping Cao, Hongfang Chen, Cheng Li, Ming Shao, Yongjie Sun, Zebo Tang, Yifei Zhang
- Heidelberg, Germany, Physikalisches Institut, University of Heidelberg (UHEI-PI):
- I. Deppner, N. Herrmann, K. Hildenbrand, P.-A. Loizeau, C. Simon
- Moscow, Russia, Institute for Theoretical and Experimental Physics (ITEP): A. Akindinov, S. Belogurov, S. Kiselev, D. Malkevich, A. Nedosekin, V. Plotnikov, M. Prokudin, R. Sultanov
- Wuhan, China, Institute of Particle Physics, Hua-zhong Normal University (CCNU): Changzhou Xiang, Nu Xu, Daicui Zhou

Engineering design of the CBM experiment

Nominal ToF position is between 6 m and 10 m from the target

Movable design allows for optimization of the detection efficiency of weakly decaying particles (Kaons)

Ingo Deppner 13 -17 Oct. 2014

Beijing Multi-strip MRPC design

Parameters

activo aroa
strips
strip / gap
glass type
glass thickness
number of gaps
gap width

20 x 12.5 cm² 8 22 / 3 mm float glass 0 35 mm

Beijing MRPC

0.35 mm 10 250 μm

Hefei MRPC

32 x 27 cm² 16 17 / 3 mm float glass 0.33 mm 10 220 μm

Hefei Multi-strip MRPC design

Reflectometer measurement on the small RPC

180 connector non twisted part 140 100 twisted twisted RPC pair cabe pair cabe 60 feed through 20 gas box C1 20.00Ω/di 🗐 🗧 0.0Ω B-Main Q Q 2.00000ns 🗐 🕂 48.400n 🗐 🕂

Rise time measurement on the small RPC

Impedance = 93 Ω

Ingo Deppner 13 -17 Oct. 2014 ICST for FAIR

25

Ingo Deppner 13 -17 Oct. 2014 ICST for FAIR

26

T0 – determination

Diamond start counter

- use HADES development,
- develop DAQ interface,
- limited to reaction rates ~ 100kHz

Software solution

- available for all systems
- needs fast particles from reaction
- demonstrated to work for central and semi-central heavy system

Beam fragmentation counter

- peripheral HI reaction have fast particles from projectile fragmentation
- equip region E with timing counters (BFTC)

Reaction counter

- needed for high rate pA reactions (charm at SIS 100)
- reaction counter at polar angles $35^{\circ} < \theta < 60^{\circ}$.

CBM Collaboration Meeting, Dubna, 27.09.2013

N.Herrmann, PI, Uni-HD

19

Ingo Deppner 13 -17 Oct. 2014 ICST for FAIR

28

Main parameters comparison	PADI-1	PADI-2	PADI-6	PADI-8
Channels per chip	3	4	4	8
PA Bandwidth (MHz)	280	293	416	411
PA Voltage Gain	74	87	244	251
Conversion Gain (mV/fC)	6.3	7.8	35	30
Baseline DC offset σ (mV)	6.7	21.9	5.9	1
PA Noise (mV _{RMS})	3.37	2.19	5.82	5.5
Equivalent Noise Charge (e _{RMS})	3512	1753	1039	1145
Threshold type	Extern	Extern	Ext. & DAC	DAC
Threshold dynamics (± mV)	Non.lin. 280	Non.lin. 300	Lin. 500	Lin. 750
Input Impedance Range (Ω)	30-450	37 - 370	38 - 165	30 - 160
Power consumption (mW/channel)	21.6	17.4	17.7	17

Table 3.4: Main parameters of the PADI chip family.

Gas system: closed loop,

CBM ToF Wall: Gas-System Parameters				
detector surface	120 m^2			
gas volume in the whole system	7.2 m^3			
gas volume in the detectors	6 m^3			
gas mixture (CH ₂ FCF ₃ :C ₄ H ₁₀ :SF ₆)	85:5:10 vol. $\%$			
gas-exchange rate relative to full volume	1/day			
maximum flow (purging)	15 l/min			
nominal flow (recirculating)	4 l/min			
detector leakage-rate	$< 0.1 \; \mathrm{slm}$			
max. water vapor level	1000 ppm			
max. oxygen level	100 ppm			

CBM Physics topics

- Deconfinement / phase transition at high $\rho_{\rm B}$
- QCD critical endpoint
- The equation-of-state at high ρ_B
- chiral symmetry restoration at high $\rho_{\rm B}$

Observables

- excitation function and flow of strangeness and charm
- collective flow of hadrons
- > particle production at threshold energies
- excitation function of event-by-event fluctuations
- excitation function of low-mass lepton pairs
- in-medium modifications of hadrons $(\rho, \omega, \phi \rightarrow e + e - (\mu + \mu -), D)$

Kaon acceptance depends critically on TOF resolution

