Results and Future Plans of the COMPASS Experiment

Tobias Weisrock for the COMPASS Collaboration

Johannes Gutenberg-Universität Mainz

October 14, 2014

bmb+f - Förderschwerpunkt

COMPASS

Großgeräte der physikalischen Grundlagenforschung

Outline

The COMPASS Experiment

Physics with Hadron Beam

Physics with Muon Beam

Future Physics at COMPASS

The COMPASS Experiment

Tobias Weisrock (JGU Mainz)

The COMPASS Experiment

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

The COMPASS Physics Program

Hadron Beam

- Spectroscopy
- OZI violation and spin alignment
- Chiral dynamics
- Pion polarisability
- Radiative widths

Muon Beam

- Parton distribution functions
- Fragmentation functions
- Nucleon spin structure
- Search for Z_c(3900)

Physics with Hadron Beam

Mesons in the Constituent Quark Model

- Intrinsic spin S = 0 or S = 1
- Total angular momentum $\vec{J} = \vec{L} + \vec{S}$
- Parity $P = (-1)^{L+1}$
- Charge conjugation $C = (-1)^{L+S}$

"Exotic Mesons"

QCD allows also for states with J^{PC} forbidden in $|q\bar{q}\rangle$ systems:

- Hybrids |qqqg>
- Glueballs $|gg\rangle$
- Tetraquarks/Molecules

Production of Mesons in Diffractive Dissociation

Soft scattering (target proton remains intact)

- Beam particle is excited into intermediate state X⁻
- X⁻ decays into n particles
- Large \sqrt{s} and low t
 - Pomeron exchange
- Goal: Use kinematic distributions of final state particles to
 - Disentangle resonances X⁻
 - Determine mass, width and quantum numbers
- Method: partial wave analysis (PWA)

Partial Wave Analysis

Isobar Model:

- \blacktriangleright X⁻ decays via successive two-body decays
- "Wave": Unique combination of quantum numbers and isobar J^{PC}[isobar bachelor]L

Analysis done in two steps:

- 1. Fit to spin-density matrix in independent bins of 3π -mass and t' to obtain intensities and phase correlations of single waves ("Mass-independent fit")
- 2. Breit-Wigner fit to extract resonance parameters ("Mass-dependent fit")

$\pi^- p ightarrow \pi^- \pi^+ \pi^- p$

- ▶ 96M 3 π events on liquid hydrogen target (world's largest dataset)
- > PWA in 100 bins of $M_{3\pi}$ and 11 bins of t' with 88 waves
- Results will be published soon

PWA of $\pi^- p o \pi^- \pi^+ \pi^- p$

New axial resonance $a_1(1420)$

- ▶ $1^{++}[f_0(980)\pi]P$ wave shows resonant structure
- Can be explained by new resonance
- Mass: 1412-1422 MeV/c²
- ▶ Width: 130-150 MeV/c^2

Measurement of OZI Violation

- \blacktriangleright Compare ω and ϕ production
- $\blacktriangleright F_{\text{OZI}} \propto \frac{d\sigma(pp \rightarrow p\varphi p)/dx_F}{d\sigma(pp \rightarrow p\omega p)/dx_F}$

- OZI violation observed
 - Factor 4, x_F dependence
- Larger F_{OZI} found by other experiments
 - ω production resonantly enhanced
 - \rightarrow different production mechanisms
 - \blacktriangleright cut on ω/φ momentum to remove resonances
- \Rightarrow OZI violation factor 8 observed
 - no x_F dependence
 - in agreement with SPHINX results at low energy
 - Study of spin alignment and production mechanisms

[NPB 886 (2014) 1078, hep-ex/1405.6376]

Measurement of Pion Polarisability

Polarisability = "Reaction" of pion to external electromagnetic field

 χ PT prediction:

 $2\alpha_{\pi} = \alpha_{\pi} - \beta_{\pi} = (5.7 \pm 1.0) \times 10^{-4} \text{ fm}^3$

COMPASS: Primakoff reaction

[hep-ex/1405.6377, submitted to PRL]

Measurement of Pion Polarisability

Polarisability = "Reaction" of pion to external electromagnetic field

 χ PT prediction:

$$2\alpha_{\pi} = \alpha_{\pi} - \beta_{\pi} = (5.7 \pm 1.0) \times 10^{-4} \text{ fm}^3$$

COMPASS: Primakoff reaction

 $\left[\text{hep-ex}/1405.6377,\,\text{submitted to PRL}\right]$

Tobias Weisrock (JGU Mainz)

Measurement:

- Deviation from point-like cross section
- Assume $\alpha_{\pi} = -\beta_{\pi}$
- Measure muon fake-polarisability

Result:

Measurement of Chiral Dynamics in 3π Final States

- $\pi^{-}Pb \rightarrow \pi^{-}\pi^{+}\pi^{-}Pb$
- Coulomb region, $t' < 0.001 \text{ GeV}^2/c^2$
- Replace PWA amplitudes at low masses by "xPT-like" amplitude

First measurement of cross section:

- Results in agreement with LO χPT
- More data available (Ni target)

[PRL 108 (2012) 192001, hep-ex/1111.5954]

Radiative Widths of $a_2(1320)$ and $\pi_2(1670)$ $X \rightarrow \pi \gamma$

- Access to electromagnetic transitions
- Experimentally challenging
- Use inverse process

- Primakoff contribution has M = 1
- $\sigma_{_{diffractive}} \propto t'^{M} e^{-bt'}$
- Primakoff dominant at low t'
- Disentangle contributions via PWA

 $\mathfrak{a}_2(1320)$: Good agreement

 $\pi_2(1670)$: First measurement

[EPJA 50 (2014) 79, hep-ex/1403.2644]

Physics with Muon Beam

Search for $Z_c(3900)$

2013: Discovery of charged charmonium state $Z_c(3900)$

COMPASS:

- virtual photon may behave like J/ψ (vector meson dominance)
- Z_c(3900) production with virtual pion from nucleon target

sizable production cross section
 [Q.-Y. Lin et al, Phys. Rev. D 88, 114009 (2013)]

no signal observed

 $\Rightarrow \; BR(Z_c(3900) \rightarrow J/\psi\pi) \; \text{seems to} \\ \text{be small} \;$

[hep-ex/1407.6186, submitted to PLB]

The Nucleon in the Quark Parton Model

Semi-Inclusive Deep Inelastic Scattering

Parton Distribution Functions

- Muon scattering of polarised nuclear target
- Virtual photon interacts with single parton

Accessible:

- Momentum fraction x of the parton
- Parton spin
- ▶ Transverse parton momentum k_T

Parton Distribution Functions

Leading Order: 8 transverse momentum dependent PDFs

Parton Distribution Functions

Leading Order: 8 transverse momentum dependent PDFs

Sivers and Boer-Mulders: Process dependent

Future Physics at COMPASS

Drell-Yan at COMPASS

Goal: Measure sign flip: Sivers(DY) = -Sivers(SIDIS)

Lepton pair production in hadron-hadron scattering

$$\pi^- p \to \mu^+ \mu^- + X$$

Hadronic final state X absorbed

Generalised Parton Distributions

Deeply-Virtual Compton Scattering

Compton scattering on single parton

- Real photon in final state
- Target remains intact

"Nucleon Tomography"

Accessible:

- Momentum fraction x of the parton
- Parton spin
- Transverse distance b_{\perp}

Summary

- \blacktriangleright COMPASS studies QCD over a large range of Q^2
- Only very selective highlights shown here
- \rightarrow Many more analyses finished or ongoing

Future Plans

2014 Drell-Yan comissioning and first data taking

2015 Drell-Yan on transversely polarised target

16/17 DVCS to measure GPDs & SIDIS on unpolarised target

Summary

- \blacktriangleright COMPASS studies QCD over a large range of Q^2
- Only very selective highlights shown here
- \rightarrow Many more analyses finished or ongoing

Future Plans

2014 Drell-Yan comissioning and first data taking

2015 Drell-Yan on transversely polarised target

16/17 DVCS to measure GPDs & SIDIS on unpolarised target

Thank you for your attention

Further Analyses