

Using Antiprotons for High Precision Studies of Hadrons

J. Ritman Forso

Forschungszentrum Juelich

Overview

- Some Puzzles About Matter
- Using Antimatter to Learn About Matter
- Physics Topics to be Studied at PANDA
- Overview of PANDA Detector
- Summary/Conclusions

Puzzle One: Hadronic Mass

- Visible matter is mostly atoms:
- The total is the sum of the parts
 - True to ~10⁻⁸ for an atom
 - True to ~10⁻² for nuclei

Atoms

4.9%

Dark Matter

26.8%

Jim Ritman

ICH

Dark

Energy 68.3%

ī a nìd a

Puzzle Two: Why Only Some Types of Hadrons?

Strong force: only "color neutral" objects (confinement)

Mesons and baryons are color neutral

Puzzle Two: What About Other Combinations?

• There are other ways to make color neutral objects:

 Why do we see hundreds of mesons and baryons, but it is not yet clear what the nature of some of the the new X,Y,Z states are?

Puzzle Three: How are Properties of the Whole Derived from the Constituents?

- How do effective degrees of freedom emerge from the underlying theory (e.g. hadrons from quarks)?
- What is the deep structure of e.g. the nucleon?
- How are its macroscopic properties determined by partons?
- Can we constrain theoretical approaches?

Hadron Physics with PANDA

- QCD well understood at high Q²
 Emergence of eff. DoF at low Q²
- Phenomena appear that are hard 0.8 to predict from QCD:
 e.g. confinement, nature of 0.6 hadrons, hadronic masses...
- To gain further insight precision experiments needed:
 - Statistics
 - Resolution
 - Exclusiveness

Why to Use Antiprotons ?

- Annihilation is a gluon rich process
- ~2 GeV annihilation energy "for free"
- All fermion-antifermion quantum numbers accessible (compared to e⁺e⁻) production reactions
- Very high mass resolution in formation reactions
- High angular momentum accessible

High Mass/Width Resolution, e.g.: |_{c1,2}

 $e^+e^- \rightarrow \psi' \rightarrow \gamma \chi_{1,2} \rightarrow \gamma (\gamma J / \psi) \rightarrow \gamma \gamma e^+e^-$

Invariant mass reconstruction depends on the detector resolution \approx 1 - 10 MeV

Formation:

dene (1 % bir

PANDA ≈ 50 keV

E760@Fermilab ≈ 240 keV

$$\bar{p}p \rightarrow \chi_{1,2} \rightarrow \gamma J / \psi \rightarrow \gamma e^+ e^-$$

Resonance scan: resolution depends on the beam resolution

HESR with PANDA and Electron Cooler

PANDA Scientific Program

p Momentum [GeV/c] Nucleon structure 10 12 15 2 0 4 6 8 E.M. processes $\Omega\overline{\Omega}$ DD $\Omega_{c}\overline{\Omega}_{c}$ $\Lambda_{c}\overline{\Lambda}_{c}$ Meson spectroscopy $D_s D_s$ - light mesons - charmonium qqqq ccqq - exotic states glueballs hybrids \geq nng,ssg ccg molecules/multiquarks \geq - open charm nng,ssg ccg Baryon/antibaryon production ggg,gg Charm in nuclei ggg Strangeness physics light qq CC - Hyperatoms $\pi,\rho,\omega,f_2,K,K^*$ **J/ψ, η**_c, χ_{cJ} -S = -2 nuclear system ≻ Ξ⁻ nuclei ΛΛ hypernuclei 2 3 1 4 5 6 Mass [GeV/c²]

Hadron Structure with Electromagnetic Probes

Proton EM Form Factors in Time-Like Region JÜLICH

Goal of PANDA Measurements

Extract Time-Like $|G_E|$ and $|G_M|$ for proton up to 14 $(GeV/c)^2$ from lepton angular distributions in $pp \rightarrow e^+e^-$ reaction and measure G_{eff} up to 30 $(GeV/c)^2$

Two major challenges:

- Decrease of sensitivity to G_E with increasing q^2
- Huge hadronic background $\sigma (pp \rightarrow \pi^+\pi^-) / \sigma (pp \rightarrow e^+e^-) \sim 10^6$

Time-Like Form Factor Measurement with PANDA : Estimates of Precision

$\mathcal{L} = 2 \text{ fb}^{-1}$

Sudol et al. EPJA 44 (2010) 373

 G_{eff} up to 30 (GeV/c)² : transition towards perturbative QCD

-VDM: F. lachello et al., PLB43, 171 (1973)

Charmonium-like Spectroscopy with Antiproton Annihilation

Charmonium Spectroscopy

New observations: We must go beyond simple quark models

in addition to many more open charm states

IÜLICH

Beyond standard quark configurations panda QCD allows much more than what we have observed: • ą q a Mesons Baryons **Exotics**: 0**°**0 0 hybrid: with gluon excitation may have J^{PC} not allowed for $q\bar{q}$ glueball: pure gluon state 4 quark state: compact 4-quark state a hadronic molecule bound state of two mesons

Courtesy C. Hanhart

How can PANDA contribute?

- $J/\psi\pi^+\pi^-$, $J/\psi\pi^0\pi^0$, $\chi_c\gamma \to J/\psi\gamma\gamma$, $J/\psi\gamma$, $J/\psi\eta$, $\eta_c\gamma$
- direct formation in pp: line shapes !
- Exotics: compare formation with production
- d target: pn with p spectator tagging, e.g. Z⁻(3900)

ī a nìd a

a) pion

b) proton

c) Z (3900)

Compare lineshapes in different final states!

Upper limit on the branching ratio by LHCb BR(X \rightarrow pp) < 0.002*BR(X \rightarrow J/ $\Psi\pi^{+}\pi^{-}$) And BR(J/ $\Psi\pi^{+}\pi^{-}$) > 0.026 [pdg12] Implies:

Here: assume σ =50 nb "Low lumi" – mode 2x10³¹

 $\Gamma < 1.2 \text{ MeV}$

Mass resolution < 100 keV

M. Galuska

Exotics production in pp collisions

• Production: all J^{PC} accessible

Hybrids

J^{PC} exotic

Exotic J^{PC} would be clear signal

G.Bali, EPJA 1 (2004) 1 (PS)

Non-qq Mesons: Charged cc-like States

- Manifestly exotic: tetra-quark or molecular nature
- Z(4430)[±] seen by Belle, not confirmed by BaBar
- Z(3900)[±] seen by BESIII, Belle
- X(4050) [±], X(4250) [±] seen by Belle

Belle, PRL 100 (2008) 142001

Non-qq Mesons: Charged cc-like States

- Planned studies with PANDA
 - production in pp: $\overline{pp} \rightarrow Z(4430)^{\pm} \pi^{\mp}$ $Z(4430)^{\pm} \rightarrow \psi(2S) \pi^{\pm} x$
 - formation in pn:
 pd → Z(4430)⁻ p_{spectator}
 → ψ(2S) π⁻ p_{spectator}
 must reconstruct the spectator proton reduced mass resolution

Open Charm Spectroscopy with Antiproton Annihilation

Open Charm: The D_s Spectrum

- Th./expt. in qualitative agreement for D states, but some details open
- Many new D_J mesons (e.g. LHCb)
- new narrow states (2003):
 D_s^{*}(2317) and D_s^{*}(2460), (and other
 broader states more recently)
- masses significantly lower than quark model expectation, and just below DK and D^{*}K threshold
- Widths are only upper limits
- Interpretation unclear: DK / D*K molecules, tetraquarks, chiral doublers, ...? Sensitive to width

Method: Threshold Scan

• reaction:
$$\bar{p}p \rightarrow D_s^{\pm} D_{s0}^* (2317)^{\mp}$$

$$\frac{\sigma(s)}{|M^2|} = \frac{\Gamma}{4\pi\sqrt{s}} \int_{-\infty}^{\sqrt{s}-m_{D_s}} \mathrm{d}m \frac{\sqrt{\left(s - (m + m_{D_s})^2\right)\left(s - (m - m_{D_s})^2\right)}}{\left(m - m_{D(2317)}\right)^2 + \left(\Gamma/2\right)^2}$$

- excitation function only depends on m and Γ of D_s(2317)
- experimental accuracy determined by beam quality (Δp, σ_p/p), not by detector resolution

Jim Ritman

Γ_{in} [keV]

Challenges in Open Charm Spectroscopy

Goals

Cross section measurement **Missing Mass** (1-100 nb ?) Ds missingmass ftm1 Events/8 [MeV/c²] 091 100 140 140 Entries 3455 TRUTH MATCHED VALUES Mean 2.442Measure width (&mass) p ⇒50 MeV/c D_S(2460 RMS 0.1108 with threshold scan $D_{s}(2535)$ Mixing between states 120 $D_{s}(2317)$ with same spin, e.g. 100 $D_{s1}(2460) \& D_{s1}(2535)$ 80 Chiral Symmetry Breaking⁶⁰ very precise mass 20 measurement of chiral 2.3 2.5 2.1 2.4 2.6 2.8 partners heavy light system Ds- missing mass [GeV/c²] $D_{s0}(2317) \& D_{s1}(2535)$

Semileptonic D_s Decays

- Semileptonic decay allow precision measurement of CKM matrix elements |V_{cd}| and |V_{cs}|
- Form factor quantifies transition
- FF provides new method to improve η,η' mixing angle
- Exclusive reco. of both D mesons
- Competitiveness requires
 full FAIR facility.

Baryon-Antibaryon Spectroscopy with Antiproton Annihilation

Baryon Spectroscopy

- significant fraction of $\overline{p}p$ cross section into final state BB + mesons
- almost nothing known on excited states of Ξ or Ω hyperons
- $\sigma(\overline{pp} \rightarrow \Xi \Xi) \approx \mu b$ $\sigma(\overline{p}p \rightarrow \Omega\overline{\Omega}) \approx 0.1 \ \mu b$

Ξ^{*} detection with PANDA

- characteristic event topology
- $\sigma \sim \mu b$: ~10⁷ Ξ /d produced
- final states to be studied: Ξ^{*} → Ξπ, Ξη, ΛΚ, ΣΚ, Ξ(1530) π, Ξππ, ...
- benchmark channel: 6.57 GeV/c $\overline{p} p \rightarrow \Xi^- \Xi^+ \pi^0$
- no empty regions or discontinuities in Dalitz plot

Charm Baryons with PANDA

- identification challenging
- Λ_c and Σ_c : max E* < 1 GeV
- cross section may reach ~1µb, but large uncertainty
- predicted narrow hidden charm baryon states
- can be searched for with PANDA in $N^*_{cc} \rightarrow N \eta_c$ and $N^* \rightarrow N J/\psi$ decay

Hadron Interactions: Double Strange Hypernuclei

LICH **p**an)da **Production Mechanism and Detection Strategy** kaons \bigcirc trigger hyperonantihyperon production at threshold 3 GeV/c +28MeV 2 slowing down A and capture of **Ξ**[−] in secondary target nucleus • Ξ⁻ atoms: x-rays conversion: 3 γ-spectroscopy of $\Xi^- p \rightarrow \Lambda \Lambda$ excited states $\Delta Q = 28 \text{ MeV}$ π 4 conversion probability ~5-10% decay pion spectroscopy [originally drawn by J. Pochodzalla et al.]

The PANDA Detector

All PANDA Systems

Target Systems

- Cluster target under construction 2x10¹⁵ / cm² @ 2 m from nozzle
- Pellet Target with two modes:
 - > Large pellets \rightarrow tracking
 - > Small pellets \rightarrow uniform lumi

Party for later	25
Technical Design Report 1	ar the
PANDA Internal Targe	ts:
The Cluster-Jet Target and Developen Target	ents for the Pallet
And the Spectrum of Spectrum	8
Partie Gammeren	
The interview of the Table Viewel have been the based on the term and the term of the billing of our of the term of other terms are required in the billing of the term of the same of the terms of the billing opping of the term of the term of the terms of the billing opping of the term of the terms of the terms of the billing opping of the term of the terms	anne de denne et active active Relett sage de la consensation et actives de la consensation et a

Tracking Detectors

Micro Vertex Detector MVD

• Measure open charm and strangeness, improve tracking resolution, self-triggering continuous readout

•

 Realize strip readout with PASTA ASIC (modified TOFPET)

Central Tracker

• STT Production under way Self-supporting \rightarrow Ultra-lightweight construction ~1% X₀, σ_r ~140 µm, specific energy loss

GEM Planar Tracker

- 3 disks in forward polar angles
- Detailed design ongoing

Forward Tracking Station

- 3 pairs of tracking stations,
 4 double layers of straw tubes each
- 2 design options for station 6
- Very high particle fluxes in stations 1&2
- Various prototypes completed
- Readout: on track

5000675

0.03811 0.03112

1471 / 1375

64.44 ± 0.11

 12.19 ± 0.15

10⁻¹ ltl

12

14 O [rad]

-0.06498 ± 0.00463

2.645e+05 ± 1.030e+03

Particle Identification Detectors

Barrel DIRC

- Compact design
- Profits from late technology decision (light readout)

10 11 1

• Still in R&D (test beams)

2012 data: track polar angle 122 deg

Disk DIRC

 Novel, compact PID detector developed for PANDA suitable for future detectors, prototype operated successfully R&D: Photosensors (lifetime) Readout/DAQ, Mechanics

Muon Detectors

- Barrel, Endcap, Muonfilter, Forward
- Various number of layers interleaved in the yoke
- Drift tubes with wire and cathode strip readout

PANDA Muon System

Strong Interaction Studies with Antiprotons

Page and an and

Calorimeters

Target Spectrometer Electro-Magnetic Calorimeter

- Rad. hard, fast, largest dynamic range (cooling)
- All endcap crystals produced
- Crystals for a barrel slice available
- Original producer no longer available: R&D needed to confirm alternatives

Magnet Systems

2T Solenoid Magnet

All PANDA Systems

The Computing Challenge

Detector Requirements from Physics Case

High luminosity and hadronic cross sections

High rate capability, 2 · 10⁷ s⁻¹ interactions

High data rate

High degree of radiation resistance

Cross section for electromagnetic Processes

PANDA Triaaer

"Trigger-less" DAQ Software Trigger

Reaction Rate (Hz)

PANDA – Event Simulation

Event Structure

Hitstream Display:

Jim Ritman

Dual Parton Model (DPM): Standard pp background generator

Black circles: Early isochrone Blue circles: Early skewed isochrone Green circles: Close isochrone Red circles: Late isochrone Black dots: MVD hits Green dots: MVD hits r/z > 0.3 Black+Red dots: Triplets/Skewlets Yellow tracks: Timed out track Blue tracks: Current track

DPM Benchmark: Realistic event rate and structure, continuous operation

Summary/Conclusions

- Many open questions on how complex structures are derived from underlying degrees of freedom
- Antiprotons provide precision measurements
- Broad/fascinating physics program at PANDA
- Accelerator and detector are on track

The PANDA Collaboration

~ 520 Members, 69 Institutes, 18 Countries Austria, Australia, Belarus, China, France, Germany, India, Italy, Poland, Romania, Russia, Spain, Sweden, Switzerland, Thailand, Netherlands, USA, UK

LICH

