## Novel Tests of QCD at FAIR



## International Conference on Science and Technology

 for FAIR in Europe October I3-17, 2014Stan Brodsky




October 16, 2014
Novel Tests of QCD at FAIR


## PANDA



October 16, 2014
Novel Tests of QCD at FAIR


## Proton-ANtiproton in DArmstadt (PANDA)

- Anti-Protons from HESR
- $E_{\max }=15 \mathrm{GeV}$
- Pellet or Gas Jet Targets
- Resolution $10^{-4}$ to $10^{-5}$
- $L_{\max }=2 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$


FAIR
Experimental highlights HIDETO ENYO


Compressed Baryonic Matter

- QCD chiral symmetry breaking/restoration
- EOS at high baryon density
- Origin of hadron masses
- Quark confinement
- Physics of neutron stars

Impressive array of diverse, fundamental physics



## PANDA

Antiproton Annihilation at Darmstadt)

- Glueballs and Hybrids
- Charm in Nuclei
> Charmonium
- Hyper nuclei
- D- meson Physics


NUclear
STructure,
Astrophysics and Reactions

- Super FRS
- DESPEC/HISPEC ELISe
- EXL LIMA
- LaSpec MATS
$\downarrow$ RB


## Novel Tests of QCD at GSI-FAIR

- Drell-Yan: Breakdown of pQCD Factorization
- Violation of Lam-Tung Relation
- Double Drell-Yan Reactions

$$
\bar{p} p \rightarrow \mu^{+} \mu^{-} \mu^{+} \mu^{-} X
$$

- Higher Twist Effects at High Xf
- Non-Universal Anti-Shadowing
- Diffractive Drell-Yan Reactions

$$
\bar{p} p \rightarrow \mu^{+} \mu^{-} p
$$

- Exclusive Processes


## QED Lagrangian

$$
\begin{aligned}
& \mathcal{L}_{Q E D}=-\frac{1}{4} \operatorname{Tr}\left(F^{\mu \nu} F_{\mu \nu}\right)+\sum_{\ell=1}^{n_{\ell}} i \bar{\Psi}_{\ell} D_{\mu} \gamma^{\mu} \Psi_{\ell}+\sum_{\ell=1}^{n_{\ell}} m_{\ell} \bar{\Psi}_{\ell} \Psi_{\ell} \\
& i D^{\mu}=i \partial^{\mu}-e A^{\mu} \quad F^{\mu \nu}=\partial^{\mu} A^{\mu}-\partial^{\nu} A^{\mu}
\end{aligned}
$$

# Yang Mills Gauge Principle: Phase Invariance at Every <br> Point of Space and Time 

Scale-Invariant Coupling Renormalizable
Nearly-Conformal Landau Pole

## OCD Lagrangian



Yang Mills Gauge Principle: Color Rotation and Phase Invariance at Every Point of Space and Time

Scale-Invariant Coupling Renormalizable Nearly-Conformal Asymptotic Freedom Color Confinement

## QCD Lagrangian


$\lim N_{C} \rightarrow 0$ at fixed $\alpha=C_{F} \alpha_{s}, n_{\ell}=n_{F} / C_{F}$
Analytic limit of QCD: Abelian Gauge Theory

$$
C_{F}=\frac{N_{C}^{2}-1}{2 N_{C}} \quad \mathbf{Q C D} \rightarrow \mathbf{Q E D}
$$

QED: Underlies Atomic Physics, Molecular Physics, Chemistry, Electromagnetic Interactions ...

QCD: Underlies Hadron Physics, Nuclear Physics, Strong Interactions, Jets

## TheoreticalTools

- Feynman diagrams and perturbation theory
- Bethe Salpeter Equation, Dyson-Schwinger Equations
- Lattice Gauge Theory
- Frame-Independent Light-Front Dynamics
- Light-Front Holography \& AdS/QCD !

$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

$$
\mathrm{e}^{\prime}
$$

## Measurements of hadron LF

 wavefunction are at fixed LF timeLike aflash photograph
Fixed $\tau=t+z / c$

$$
x_{b j}=x=\frac{k^{+}}{P^{+}}
$$

Each element of
flash photograph illuminated along the light front at afixed

$$
\tau=t+z / c
$$

Evolve in LF time

$$
\begin{gathered}
P^{-}=i \frac{d}{d \tau} \\
\text { Eigenvalue } \\
P^{-}=\frac{\mathcal{M}^{2}+\vec{P}_{\perp}^{2}}{P^{+}} \\
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}>
\end{gathered}
$$

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

Momentum space

$$
\begin{aligned}
\vec{k}_{\perp} \leftrightarrow \vec{z}_{\perp} \\
\vec{\Delta}_{\perp} \leftrightarrow \vec{b}_{\perp}
\end{aligned}
$$

Position space

Transverse density in position space
Transverse density in momentum space


Lore,
Pasquini

$\rightarrow \quad \int \mathrm{d} x$

+ Factorization-Breaking Lensing Corrections: Sivers, T-odd $\square$
 $\int \mathrm{d}^{2} k_{\perp}$


## QCD and the LF Hadron Wavefunctions

Heavy Quark Fock States


Initial and Final State Rescattering DDIS, DDIS, T-Odd

Non-Universal Antishadowing


- LF wavefunctions play the role of Schrödinger wavefunctions in Atomic Physics
- LFWFs=Hadron Eigensolutions: Direct Connection to QCD Lagrangian


$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

- Relativistic, frame-independent: no boosts, no disc contraction, Melosh built into LF spinors
- Hadronic observables computed from LFWFs: Form factors, Structure Functions, Distribution Amplitudes, GPDs, TMDs, Weak Decays, .... modulo `lensing' from ISIs, FSIs
- Cannot compute current matrix elements using instant form from eigensolutions alone -- need to include vacuum currents!
- Hadron Physics without LFWFs is like Biology without DNA!
- Hadron Physics without LFWFs is like Biology without DNA!

- Measurements are made at fixed $\tau$
- Causality is automatic

- Structure Functions are squares of LFWFs
- Form Factors are overlap of LFWFs
- LFWFs are frame-independent -- no boosts!
- No dependence on observer's frame
- LF Holography: Dual to AdS space
- LF Vacuum trivial -- no condensates!
- Profound implications for Cosmological Constant


## Angular Momentum on the Light-Front

$$
J^{z}=\sum_{i=1}^{n} s_{i}^{z}+\sum_{j=1}^{n-1} l_{j}^{z}
$$

Conserved
LF Fock state by Fock State!

LF Spin Sum Rule

$$
l_{j}^{z}=-\mathrm{i}\left(k_{j}^{1} \frac{\partial}{\partial k_{j}^{2}}-k_{j}^{2} \frac{\partial}{\partial k_{j}^{1}}\right)
$$

n-ı orbital angular momenta

Orbital angular momentum is a property of Light-Front Wavefunctions
Nonzero Anomalous Moment $->$ Nonzero orbital angular momentum

## Light-Front Schrödinger Equation

G. de Teramond, sjb

Relativistic LF single-variable radial equation for $Q C D$ \& QED

Frame Independent!

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{m^{2}}{x(1-x)}+\frac{-1+4 L^{2}}{\zeta^{2}}+U(\zeta, S, L)\right] \psi_{L F}(\zeta)=M^{2} \psi_{L F}(\zeta)
$$

$$
\begin{gathered}
\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2} \\
A d S / Q C D: \\
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

$$
\mathcal{M}_{n, L, S}^{2}=4 \kappa^{2}(n+L+S / 2)
$$



Massless pion in Chiral Limit!


Same slope in $n$ and L!

Pion Form Factor from AdS/QCD and Light-Front Holography


Pion Form Factor from AdS/QCD and Light-Front Holography


DressedAdS/QCD Current

Prediction from AdS/QCD: Meson LFWF


Provides Connection of Confinement to Hadron Structure

AdS/QCD Holographic Wave Function for the $\rho$ Meson and Diffractive $\rho$ Meson Electroproduction


(b) ZEUS

Prediction from
Light-Front Holography

$$
\psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k_{\perp}^{2}}{2 \kappa^{2} x(1-x)}}
$$






- Compute Dirac proton form factor using SU(6) flavor symmetry

$$
F_{1}^{p}\left(Q^{2}\right)=R^{4} \int \frac{d z}{z^{4}} V(Q, z) \Psi_{+}^{2}(z)
$$

- Nucleon AdS wave function

$$
\Psi_{+}(z)=\frac{\kappa^{2+L}}{R^{2}} \sqrt{\frac{2 n!}{(n+L)!}} z^{7 / 2+L} L_{n}^{L+1}\left(\kappa^{2} z^{2}\right) e^{-\kappa^{2} z^{2} / 2}
$$

- Normalization $\quad\left(F_{1}{ }^{p}(0)=1, \quad V(Q=0, z)=1\right)$

$$
R^{4} \int \frac{d z}{z^{4}} \Psi_{+}^{2}(z)=1
$$

- Bulk-to-boundary propagator [Grigoryan and Radyushkin (2007)]

$$
V(Q, z)=\kappa^{2} z^{2} \int_{0}^{1} \frac{d x}{(1-x)^{2}} x^{\frac{Q^{2}}{4 \kappa^{2}}} e^{-\kappa^{2} z^{2} x /(1-x)}
$$

- Find

$$
F_{1}^{p}\left(Q^{2}\right)=\frac{1}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)}
$$

with $\mathcal{M}_{\rho_{n}}^{2} \rightarrow 4 \kappa^{2}(n+1 / 2)$


October 16, 2014
Novel Tests of QCD at FAIR
Stan Brodsky

Using $S U(6)$ flavor symmetry and normalization to static quantities


## Spacelike Pauli Form Factor

From overlap of $L=1$ and $L=0$ LFWFs


## Nucleon Transition Form Factors

$$
F_{1 N \rightarrow N^{*}}^{p}\left(Q^{2}\right)=\frac{\sqrt{2}}{3} \frac{\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime \prime}}}\right)} .
$$

$A d S \backslash Q C D$
Light-Front Holography


Proton transition form factor to the first radial excited state. Data from JLab

## QCD Lagrangian

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} \operatorname{Tr}\left(G^{\mu \nu} G_{\mu \nu}\right)+\sum_{f=1}^{n_{f}} i \bar{\Psi}_{f} D_{\mu} \gamma^{\mu} \Psi_{f}+\sum_{f=1}^{n_{f}} \lim _{f} \bar{\Psi}_{f} \Psi_{f}
$$

$i D^{\mu}=i \partial^{\mu}-g A^{\mu} \quad G^{\mu \nu}=\partial^{\mu} A^{\mu}-\partial^{\nu} A^{\mu}-g\left[A^{\mu}, A^{\nu}\right]$

Classical Chiral Lagrangian is Conformally Invariant Where does the QCD Mass Scale $\Lambda_{\mathrm{QCD}}$ come from?

How does color confinement arise?

- de Alfaro, Fubini, Furlan:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

## Unique confinement potential!

## AdS/QCD

Soft-Wall Model

Single schemeindependent fundamental mass scale

$$
\kappa
$$

de Tèramond, Dosch, sjb


Light-Front Holography

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Confinement Potential!
Conformal symmetry

$$
\kappa \simeq 0.6 \mathrm{GeV}
$$

## Confinement scale:

$$
\left(m_{q}=0\right)
$$

$$
1 / \kappa \simeq 1 / 3 \mathrm{fm}
$$

de Alfaro, Fubini, Furlan:
Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

Semi-Classical Approximation to QCD Relativistic, frame-independent Unique color-confining potential Zero mass pion for massless quarks Regge trajectories with equal slopes in $n$ and $L$ Light-Front Wavefunctions

Light-Front Schrödinger Equation of the action


$$
\Lambda_{\overline{M S}}=0.5983 \kappa=0.5983 \frac{m_{\rho}}{\sqrt{2}}=0.4231 m_{\rho}=0.328 \mathrm{GeV}
$$



## Predict $\Lambda_{\overline{M S}}$ from $m_{p}$ or $m_{\rho}$ !

## Exclusive Processes: New Level of Testing QCD at GSI-FAIR

- Sensitivity to fundamental features of hadron dynamics, light-front wavefunctions, confinement mechanism, nonpertubative QCD
- Scattering and production mechanisms
- Gluon exchange (Zweig Rule) vs Quark Exchange
- QCD and Hadronization at the Amplitude Level
- Origin of Fundamental Mass Scale of QCD

PANDA: Remarkable Laboratory for Exclusive Hadronic Processes

$$
\bar{p} p \rightarrow \ell \bar{\ell}, \gamma \gamma, \gamma \pi^{0}, p p, K^{+} K^{-}, J / \psi, \eta_{c} \eta_{c}, Z_{c}^{+} \pi^{-}, \cdots
$$

- Test Fundamental Theorems of QCD
- High pt: Rigorous Factorization Theorems: Convolution of Hadron Distribution Amplitudes and Hard Scattering Amplitudes
- Counting Rules;
- Hadron Helicity Conservation
- Color Transparency
- Hadronization at the Amplitude Level
- Color Confinement, Hadron Structure, Production Mechanisms
- Creation of Heavy Flavors, Open and Hidden Charm, Exotic States, Gluonium


## High Mass/Width Resolution

## Panda: 50 KeV Resolution


$e^{+} e^{-} \rightarrow \psi^{\prime} \rightarrow \gamma \chi_{1,2} \rightarrow \gamma(\gamma \mathrm{~J} / \psi) \rightarrow \gamma \gamma e \cdot e$

- Invariant mass reconstruction depends
- on the detector resolution $\approx 10 \mathrm{MeV}$

Formation:
$\bar{p} p \rightarrow \chi_{1,2} \rightarrow \gamma \mathrm{~J} / \psi \rightarrow \gamma e^{+} e^{-}$
Resonance scan: resolution depends on the beam resolution


E760@Fermilab $\approx 240 \mathrm{keV}$

- PANDA $\approx 50 \mathrm{keV}$


## Anti-Shadowing



$$
Q^{2}=5 \mathrm{GeV}^{2}
$$



## Nuclear Shadowing in QCD



Shadowing depends on understanding leading twist-diffraction in DIS
Nuclear Shadowing not included in nuclear LFWF !
Dynamical effect due to virtual photon interacting in nucleus
Diffraction via Reggeon gives constructive interference!
Anti-shadowing not universal


Diffraction via Pomeron gives destructive interference!

## Shadowing

Origin of Regge Behavior of
Deep Inelastic Structure Functions

$$
F_{2 p}(x)-F_{2 n}(x) \propto x^{1 / 2}
$$

Antiquark interacts with target nucleus at energy $\widehat{s} \propto \frac{1}{x_{b j}}$

Regge contribution: $\sigma_{\bar{q} N} \sim \widehat{s}^{\alpha} R^{-1}$

Nonsinglet Kuti-Weisskoff $F_{2 p}-F_{2 n} \propto \sqrt{x}_{b j}$
 at small $x_{b j}$.

Landshoff,
Shadowing of $\sigma_{\bar{q} M}$ produces shadowing of nuclear structure function.

Polkinghorne, Short
Close, Gunion, sjb
Schmidt, Yang, Lu,



The one-step and two-step processes in DIS on a nucleus.

Coherence at small Bjorken $x_{B}$ :
$1 / M x_{B}=2 \nu / Q^{2} \geq L_{A}$.


If the scattering on nucleon $N_{1}$ is via exchange, the one-step and two-step amplitudes are opposite in phase, thus diminishing the $\bar{q}$ flux reaching $N_{2}$.
constructive in phase thus increasing the flux reaching $\mathrm{N}_{2}$

## Reggeon DDIS produces nuclear flavor-dependent anti-shadowing

## Reggeon <br> Exchange

Phase of two-step amplitude relative to one step:
$\frac{1}{\sqrt{2}}(1-i) \times i=\frac{1}{\sqrt{2}}(i+1)$

Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Different for couplings of $\gamma^{*}, Z^{0}, W^{ \pm}$
Criticaltest: Tagged Drell-Yan at PANDA

$$
\bar{p} A \rightarrow \mu^{+} \mu^{-} X
$$



Nuclear Antishadowing not universal !

## Shadowing and Antishadowing of DIS Structure Functions


S. J. Brodsky, I. Schmidt and J. J. Yang, "Nuclear Antishadowing in Neutrino Deep Inelastic Scattering," Phys. Rev. D 70, 116003 (2004) [arXiv:hep-ph/0409279].

## Modifies NuTeV extraction of $\sin ^{2} \theta_{W}$

Test in flavor-tagged lepton-nucleus collisions

## Tag forward fragments compare nuclear targets




Breakdown of pQCD Factorization Theorems

- Leading-Twist Bjorken Scaling!
$i \vec{S} \cdot \vec{p}_{\text {jet }} \times \vec{q}$

Hwang, Schmidt, sjb Collins

- Requires nonzero orbital angular momentum of quark
- Arises from the interference of Final-State QCD Coulomb phases in S- and P- waves;
- Wilson line effect -- Ic gauge prescription
- Relate to the quark contribution to the target proton anomalous magnetic moment and final-state QCD phases
- QCD phase at soft scale!
- New window to QCD coupling and running gluon mass in the IR
- QED S and P Coulomb phases infinite -- difference of phases finite!

- Alternate: Retarded and Advanced Gauge: Augmented LFWFs
- Sign Change for SSA for Drell-Yan lepton-pair production

Mulders, Boer Qiu, Sterman Pasquini, Xiao, Yuan, sjb

## Color interactions in QCD:

 Collins- Non-universality of Sivers Function (DIS vs. DY)
- Critical test of TMD Factorization


Attractive FSI DIS


Repulsive FSI
Drell-Yan

$$
\text { Sivers }_{\text {DIS }}=- \text { Sivers }_{\text {DY/w/Zo/ } / \gamma}
$$

Will explore in future 500 GeV Runs STAR also plans TMD evolution studies using W's
Stony Brook University
October 16, 2014
Novel Tests of QCD at FAIR

Both PHENIX and STAR installing upgrades for 2015 for direct photon DY measurement at forward rapidity

Opportunities at PANDA: Drell Yan sector for future precision studies

Abfhay Deshpande

## Dynamic

- Square of Target LFWFs
- No Wilson Line
- Probability Distributions
- Process-Independent
- T-even Observables
- No Shadowing, Anti-Shadowing
- Sum Rules: Momentum and J
- DGLAP Evolution; mod. at large $x$
- No Diffractive DIS


Modified by Rescattering: ISI \& FSI
Contains Wilson Line, Phases
No Probabilistic Interpretation
Process-Dependent - From Collision
T-Odd (Sivers, Boer-Mulders, etc.)
Shadowing, Anti-Shadowing, Saturation

## Sum Rules Not Proven

DGLAP Evolution
Hard Pomeron and Odderon Diffractive DIS


Hwang, Schmidt, sjb, Mulders, Boer Qiu, Sterman Collins, Qiu

Pasquini, Xiao, Yuan, sjb

## Example of Leading-Twist Lensing Correction



DY $\cos 2 \phi$ correlation at leading twist from double ISI
Product of Boer -
Mulders Functions

$$
h_{1}^{\perp}\left(x_{1}, \boldsymbol{p}_{\perp}^{2}\right) \times \bar{h}_{1}^{\perp}\left(x_{2}, \boldsymbol{k}_{\perp}^{2}\right)
$$

Double Initial-State Interactions generate anomalous $\cos 2 \phi$

Boer, Hang, sib
$\frac{1}{\sigma} \frac{d \sigma}{d \Omega} \propto\left(1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right)$
PQCD Factorization (Lam Tang): $\quad 1-\lambda-2 \nu=0$
$\frac{\nu}{2} \propto h_{1}^{\perp}(\pi) h_{1}^{\perp}(N)$


Violates Lam-Tung relation!

$$
\pi N \rightarrow \mu^{+} \mu^{-} X \mathrm{NA10}
$$



Measurement of Angular Distributions of Drell-Yan Dimuons in $p+d$ Interaction at $800 \mathrm{GeV} / \mathrm{c}$
(FNAL E866/NuSea Collaboration)


Parameter $\nu$ vs. $p_{T}$ in the Collins-Soper frame for three Drell-Yan measurements. Fits to the data using Eq. 3 and $M_{C}=2.4 \mathrm{GeV} / \mathrm{c}^{2}$ are also shown.

## Exclusive Processes at PANDA

- Detailed tests of QCD hadronization at the amplitude level
- Fundamental production and dynamical mechanisms
- Rigorous Scaling Laws at fixed $\mathrm{t} / \mathrm{s}$.
- Regge Trajectories become flat at large momentum transfer
- Exclusive Amplitudes: convolution of light front wavefunctions
- Probe color confinement, fundamental QCD scale.
- Color transparency measures color dipole size


## Time-like and Space-like EM Form Factors



## QCD Prediction:

$N=4 \times 3=12, n=N-2=10$
(10)

## Fixed CM angle scaling

$$
\begin{gathered}
\frac{d \sigma}{d t}(A+B \rightarrow C+D)=\frac{F(t / s)}{s^{N-2}} \quad \begin{array}{c}
\text { Matveev, Furarayyan, Tavknelidze }
\end{array} \\
N=N_{A}+N_{B}+N_{C}+N_{D} \\
s^{2} \frac{d \sigma}{d t}(p p \rightarrow p p)=\frac{F(t / s)}{s^{8}} \quad s \leftrightarrow u \\
\frac{d \sigma}{2} \frac{d \sigma}{d t}(\bar{p} p \rightarrow \bar{p} p)=\frac{F(t / u)}{u^{8}} \\
\frac{d \sigma}{d t}(\bar{p} p \rightarrow \bar{\Lambda} \Lambda)=\frac{F(t / s)}{s^{10}} \\
\frac{d \sigma}{d t}\left(\bar{p} p \rightarrow K^{-} K^{+}\right)=\frac{F(t / s)}{s^{8}}
\end{gathered}
$$

## Quark Counting Rules for Exclusive Processes

- Power-law fall-off of the scattering rate reflects degree of compositeness
- The more composite -- the faster the fall-off
- Powerlaw counts the number of quarks and gluon constituents
- Form factors: probability amplitude to stay intact

$$
F_{H}(Q) \propto \frac{1}{\left(Q^{2}\right)^{n-1}} \quad \mathrm{n}=\# \text { elementary constituents }
$$

## True for Hadrons and Atoms

$$
\begin{aligned}
M(\bar{p} p \rightarrow \bar{p} p)= & \sum_{i} M_{\text {Resonances }}+M_{\mathrm{QCD}} \\
& =\sum_{i} \frac{P_{i}^{J}\left(\cos \theta_{C M}, \phi\right)}{s-M^{2}+i \sqrt{s} \Gamma_{i}}+\frac{C}{t^{4} s^{4}}
\end{aligned}
$$

- pQCD Quark Counting Rules $\frac{d \sigma}{d t}(A+B \rightarrow C+D)=\frac{F_{A+B \rightarrow C+D}(t / s)}{s^{n} A+n_{B}+n_{C}+n_{D}-2}$
- Crossing Relations
- Hadron-Helicity Conservation
- Quark Interchange dominates Gluon Exchange
- Color Transparency
- Interference Patterns; Charm Threshold

Krisch, Crabb, et al
Unexpected
spin-spin
correlation in pp elastic scattering

polarizations normal to scattering plane


Spin Correlations in Elastic $p-p$ Scattering


Large $R_{N N}$ in $p p \rightarrow p p$ explained by

## $A_{n n}=1!$



QCD
Schwinger-Sommerfeld
Enhancement at Heavy Quark Threshold

Hebecker, Kuhn, sjb
S. J. Brodsky and G. F. de Teramond, "Spin Correlations, QCD Color Transparency And Heavy Quark Thresholds In Proton Proton Scattering," Phys. Rev. Lett. 60, 1924 (1988).
in $\bar{p} p \rightarrow \bar{p} p$ at $\sqrt{s}=5 \mathrm{GeV}$
Production of und $\bar{c} \mathrm{c}$ und octoquark resonance

$$
J=L=S=1, C=-, P=- \text { state }
$$

8 quarks in S-wave: odd parity

Large $R_{N N}$ in $p p \rightarrow p p$ explained by $B=2, J=L=1 \mid$ uuduud $c \bar{c}>$ resonance at $\sqrt{s} \sim 5 \mathrm{GeV}$

$$
\sigma(p p \rightarrow c \bar{c} X) \simeq 1 \mu b \text { at threshold } \quad \sigma(\gamma p \rightarrow c \bar{c} X) \simeq 1 n b \text { at threshold }
$$



Constituent Interchange
Spin exchange in atom-
Two-Photon Exchange (Vander Waal)

$$
\frac{d \sigma}{d t}=\frac{|M(s, t)|^{2}}{s^{2}}
$$

$M(t, u)_{\text {interchange }} \propto \frac{1}{u t^{2}}$
$M(s, t)_{\text {gluonexchange }} \propto s F(t)$
$p p \rightarrow p p$


$$
K^{+} p \rightarrow K^{+} p
$$



Constituent Interchange
Blankenbecler, Gunion, sjb

$M(t, u)_{\text {interchange }} \propto \frac{1}{u t^{2}}$

Non-linear Regge behavior:
$\alpha_{R}(t) \longrightarrow-1$

## Quark interchange description of pion-proton scattering



October 16, 2014
Novel Tests of QCD at FAIR
Stan Brodsky
SLA:

Blankenbecler, Gunion, sjb


$$
\frac{d \sigma}{d t}=\frac{|M(s, t)|^{2}}{s^{2}}
$$

$M(t, u)_{\text {interchange }} \propto \frac{1}{u t^{2}}$

$$
q_{\perp}^{2}=-t
$$

$$
\begin{array}{cc}
M(s, t)_{A+B \rightarrow C+D} & r_{\perp}^{2}=-u \\
=\frac{1}{2(2 \pi)^{3}} \int d^{2} k \int_{0}^{1} \frac{d x}{x^{2}(1-x)^{2}} \Delta \psi_{C}\left(\overrightarrow{\mathrm{k}}_{\perp}-x \overrightarrow{\mathrm{r}}_{\perp}, x\right) \psi_{D}\left(\overrightarrow{\mathrm{k}}_{\perp}+(1-x) \overrightarrow{\mathrm{q}}_{\perp}, x\right) \psi_{A}\left(\overrightarrow{\mathrm{k}}_{\perp}-x \overrightarrow{\mathrm{r}}_{\perp}+(1-x) \overrightarrow{\mathrm{q}}_{\perp}, x\right) \psi_{B}\left(\overrightarrow{\mathrm{k}}_{\perp}, x\right) \\
\Delta=s-\sum_{i} \frac{k_{\perp i}^{2}+m_{i}^{2}}{x_{i}}
\end{array}
$$

## Product of four frame-independent light-front wavefunctions

Agrees with electron exchange in atom-atom scattering in nonrelativistic limit
$p p \rightarrow p p$

$p p \rightarrow p p$


Gluon exchange: wrong energy and angle dependence

# Comparison of Exclusive Reactions at Large $\boldsymbol{t}$ 

B. R. Baller, ${ }^{\text {(a) }}$ G. C. Blazey, ${ }^{(b)}$ H. Courant, K. J. Heller, S. Heppelmann, ${ }^{(c)}$ M. L. Marshak, E. A. Peterson, M. A. Shupe, and D. S. Wahl ${ }^{(d)}$

University of Minnesota, Minneapolis, Minnesota 55455
D. S. Barton, G. Bunce, A. S. Carroll, and Y. I. Makdisi

Brookhaven National Laboratory, Upton, New York 11973
and
S. Gushue ${ }^{(\mathrm{e})}$ and J. J. Russell

Southeastern Massachusetts University, North Dartmouth, Massachusetts 02747
(Received 28 October 1987; revised manuscript received 3 February 1988)

Cross sections or upper limits are reported for twelve meson-baryon and two baryon-baryon reactions for an incident momentum of $9.9 \mathrm{GeV} / \mathrm{c}$, near $90^{\circ}$ c.m.: $\pi^{ \pm} p \rightarrow p \pi^{ \pm}, p \rho^{ \pm}, \pi^{+} \Delta^{ \pm}, K^{+} \Sigma^{ \pm},\left(\Lambda^{0} / \Sigma^{0}\right) K^{0}$; $K^{ \pm} p \rightarrow p K^{ \pm} ; p^{ \pm} p \rightarrow p p^{ \pm}$. By studying the flavor dependence of the different reactions, we have been able to isolate the quark-interchange mechanism as dominant over gluon exchange and quark-antiquark annihilation.

$$
\begin{aligned}
& \pi^{ \pm} p \rightarrow p \pi^{ \pm} \\
& K^{ \pm} p \rightarrow p K^{ \pm}, \\
& \pi^{ \pm} p \rightarrow p \rho^{ \pm} \\
& \pi^{ \pm} p \rightarrow \pi^{+} \Delta^{ \pm}, \\
& \pi^{ \pm} p \rightarrow K^{+} \Sigma^{ \pm}, \\
& \pi^{-} p \rightarrow \Lambda^{0} K^{0}, \Sigma^{0} K^{0}, \\
& p^{ \pm} p \rightarrow p p^{ \pm} .
\end{aligned}
$$




Crossing of Quark Interchange

$$
s^{2} \frac{d \sigma}{d t}\left(\bar{p} p \rightarrow K^{-} K^{+}\right)=\frac{\sigma_{0} \alpha^{2}}{2 s^{6}} \frac{(1+z)}{(1-z)^{3}}
$$

$\frac{d \sigma}{d t}\left(K^{-} p \rightarrow K^{-} p\right) / \frac{d \sigma}{d t}\left(\bar{p} p \rightarrow K^{-} K^{+}\right)=2(1-z)^{-1}$.
$\bar{p} p \rightarrow \Lambda_{c} \bar{\Lambda}_{c}$


Crossing of Constituent Interchange


$\bar{p} p \rightarrow \gamma$ transition form factor!

"Handbag" diagram

$$
\bar{p} p \rightarrow K^{+} K^{-}
$$



## Crossing of Constituent Interchange

Blankenbecler, Gunion, sjb
$\bar{p} p \rightarrow D^{0} \bar{D}^{0}$


## Crossing of Constituent Interchange

Also $\bar{p} p \rightarrow Z_{c}^{-} Z_{c}^{+}$, etc.

How much charm can $\bar{P} A N D A$ produce?
A. Khodjamirian, Ch. Klein, Th. Mannel and Y.-M. Wang


## Regge exchange model

How much charm can $\bar{P} A N D A$ produce?
A. Khodjamirian, Ch. Klein, Th. Mannel and Y.-M. Wang


Differential cross sections of $p \bar{p} \rightarrow \Lambda_{c} \bar{\Lambda}_{c}$, and $p \bar{p} \rightarrow D \bar{D}$ at $p_{\text {lab }}=15 \mathrm{GeV}$ calculated in QGS model. The dashed lines indicate the uncertainties causea by LCSR estimates of strong couplings.
$\bar{p} p \rightarrow D^{0} \bar{D}^{0}$


Bertsch, Gunion, Goldhaber, sjb
A. H. Mueller, sjb

Transparency

- Fundamental test of gauge theory in hadron physics
- Small color dipole moments interact weakly in nuclei
- Complete coherence at high energies
- Clear Demonstration of CT from Diffractive Di-Jets



## Production of Double-Charm Baryons!

$$
\bar{p} p \rightarrow \eta_{c}^{\prime}, \psi^{\prime} \text { suppressed }
$$

$p$
Solution to $J / \psi \rightarrow \rho \pi$ problem
Production of Quarkonium from |uud $\bar{c} c>$ Intrinsic Charm Fock state

## Fixed LF time

Proton 5 -quark Fock State:
Intrinsic Heavy Quarks

$$
x_{Q} \propto\left(m_{Q}^{2}+k_{\perp}^{2}\right)^{1 / 2}
$$

Rigorousprediction of QCD
Intrinsic Heary Quarks at high x!

## Minimal off-shellness

Probability $(\mathrm{QED}) \propto \frac{1}{M_{\ell}^{4}} \quad$ Probability $(\mathrm{QCD}) \propto \frac{1}{M_{Q}^{2}}$
Collins, Ellis, Gunion, Mueller, sjb
Polyakov, et al.

## Exotics production in pp collisions via OZI



- Production: all JPC accessible

Hybrids

| Gluon | $1^{-+}$ | $1^{+-}$ |
| :--- | :--- | :--- |
| ${ }^{1} \mathrm{~S}_{0,} \mathrm{O}^{-+}$ | $1^{++}$ | $1^{1-}$ |
| ${ }^{3} \mathrm{~S}_{1}, 1^{-}$ | $0^{-+}$ | $0^{+}$ |
|  | $1^{++}$ | $1^{-}$ |
|  | $22^{++}$ | $2^{-+}$ |

JPC exotic
Exotic JPC would be clear signal

Ritman


Production of Exotic Quarkonium from |uud c c> Fock state

## Non-q $\bar{q}$ Mesons: Charged $\bar{c} \bar{c}-l i k e ~ S t a t e s ~$

- Planned studies with PANDA
- production in $\mathrm{p} \overline{\mathrm{p}}$ :

$$
\begin{aligned}
& \overline{\mathrm{pp}} \rightarrow \mathrm{Z}(4430)^{ \pm} \pi^{\mp} \\
& Z(4430)^{ \pm} \rightarrow \psi(2 S) \Pi^{ \pm} x
\end{aligned}
$$

- formation in $\overline{\mathrm{p}}$ : $\overline{\mathrm{p} d} \rightarrow \mathrm{Z}(4430)^{-} \mathrm{p}_{\text {spectator }}$
$\rightarrow \psi(2 S) \pi^{-} p_{\text {spectator }}$
must reconstruct the spectator proton reduced mass resolution
J. Ritman


|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  |  |

Ritman
October 16, 2014

$Z_{c}^{+}([c u][\bar{c} \bar{d}]) \rightarrow \pi^{+} \psi^{\prime}$
Diquark-Diquark
Annihilation at large separation:
Lebed, Hwang, sjb
Dominance of large size $\Psi^{\prime}$ vs $J / \Psi \Psi^{\prime}$ decays

$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

$$
\mathrm{e}^{\prime}
$$

## Measurements of hadron LF

 wavefunction are at fixed LF timeLike aflash photograph
Fixed $\tau=t+z / c$

$$
x_{b j}=x=\frac{k^{+}}{P^{+}}
$$

Light-Front Wavefunctions: rigorous representation of atoms in quantum field theory

$$
\begin{aligned}
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}} & \text { Fixed } \tau=t+z / c \\
P^{+}, \vec{P}_{\perp} & \\
\Psi_{L F}\left(x, \vec{k}_{\perp}, \lambda_{i}\right) & x P^{+} \\
&
\end{aligned}
$$

Process Independent

Invariant under boosts! Independent of $P^{\mu}$

Cannot measure wavefunction at one instant time

Measure wavefunctions of moving atoms, nuclei, hadrons at fixed LF time:
Laser Interactions, Compton scattering, Electron Scattering

Exact frame-independent formulation of nonperturbative QCD!

$$
\begin{aligned}
& L^{Q C D} \rightarrow H_{L F}^{Q C D} \\
& H_{L F}^{Q C D}=\sum_{i}\left[\frac{m^{2}+k_{\perp}^{2}}{x}\right]_{i}+H_{L F}^{i n t} \\
& H_{L F}^{i n t} \text { : Matrix in Fock Space } \\
& H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}> \\
& \left|p, J_{z}>=\sum \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}> \\
& n=3 \\
& \text { Eigenvalues and Eigensolutions give Hadronic Spectrum } \\
& \text { and Light-Front wavefunctions } \\
& \text { (c) }
\end{aligned}
$$

DLCQ: Solve QCD $(1+1)$ for any quark mass and flavors


Extrapolated masses for $N=2,3$ and 4 meson and baryon.

a-c) First three states in $N=3$ meson spectrum for $m / g=1.6,2 \mathrm{~K}=24$. d) Eleventh

a-c) First three states in $N=3$ baryon spectrum, $2 K=21$. d) First $B=2$ state.

Hornbostel, Pauli, sjb


Higher Fock States of the Proton


Fixed LF time



Drell \&Yan, West Drell, sjb Exact LF formula
struck $\quad \vec{k}_{\perp i}^{\prime}=\vec{k}_{\perp i}+\left(1-x_{i}\right) \vec{q}_{\perp}$ spectators $\quad \vec{k}_{\perp i}^{\prime}=\vec{k}_{\perp i}-x_{i} \vec{q}_{\perp}$

Sum over Fock states
October 16, 2014

$$
\begin{aligned}
& \frac{F_{2}\left(q^{2}\right)}{2 M}=\sum_{a} \int[\mathrm{~d} x]\left[\mathrm{d}^{2} \mathbf{k}_{\perp}\right] \sum_{j} e_{j} \frac{1}{2} \times \\
& {\left[-\frac{1}{q^{L}} \psi_{a}^{\dagger *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\downarrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)+\frac{1}{q^{R}} \psi_{a}^{\downarrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\dagger}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)\right]} \\
& \mathbf{k}_{\perp i}^{\prime}=\mathbf{k}_{\perp i}-x_{i} \mathbf{q}_{\perp} \quad \mathbf{k}_{\perp j}^{\prime}=\mathbf{k}_{\perp j}+\left(1-x_{j}\right) \mathbf{q}_{\perp}
\end{aligned}
$$



Must have $\Delta \ell_{z}= \pm 1$ to have nonzero $F_{2}\left(q^{2}\right)$
Nonzero Proton Anomalous Moment -..>
Nonzero orbital quark angular momentum

Calculation of proton form factor in Instant Form $<p+q\left|J^{\mu}(0)\right| p>$



- Need to boost proton wavefunction: $\mathbf{p}$ to $\mathbf{p + q}$. Extremely complicated dynamical problem. Particle number changes
- Need to couple to all currents arising from vacuum!! Remain even after normal-ordering
- Instant-form WFs insufficient to calculate form factors
- Each time-ordered contribution is frame-dependent
- Normal order; Divide by disconnected vacuum diagrams
- Light-Front Wavefunctions are frame-independent
- Measurements are at fixed LF time
- No Boost of Colliding Hadrons
- Boosting an instant-form wavefunctions dynamical problem -- extremely complicated even in QED
- Light-Front Vacuum same as vacuum of free Hamiltonian-(up to $\mathbf{k}^{+}=\mathbf{o}$ modes; e.g. Higgs VEV is zero mode)
$\bullet$ Causal commutators using LF time; no normal-ordering needed
- Cluster decomposition theorem
- Zero anomalous gravitomagnetic moment
- Few LF $\tau$-ordered diagrams since all $\mathbf{k}^{+}>\mathbf{0}$, $\mathbf{J}^{\mathbf{z}}$ conserved
- Instant-Form Vacuum infinitely complex even in QED
- n! time-ordered diagrams in Instant Form

Recursion relations and scattering amplitudes in the light-front formalism C.A. Cruz-Santiago, A.M. Stasto

Bound States in Relativistic Quantum Field Theory:
Light-Front Wavefunctions
Dirac's Front Form: Fixed $\tau=t+z / c$


$$
\psi\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \quad x_{i}=\frac{k_{i}^{+}}{P^{+}}
$$

Invariant under boosts. Independent of $\mathbf{P}^{\boldsymbol{\mu}}$

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Direct connection to QCD Lagrangian
Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

## Goal: an analytic first approximation to QCD

- As Simple as Schrödinger Theory in Atomic Physics
$\bullet$ Relativistic, Frame-Independent, Color-Confining
- Confinement in QCD -- What sets the QCD mass scale?
- QCD Coupling at all scales

- Hadron Spectroscopy
- Light-Front Wavefunctions
- Form Factors, Structure Functions,Hadronic Observables
- Constituent Counting Rules
- Hadronization at the Amplitude Level
- Insights into QCD Condensates


## $H_{Q E D}$

## QED atoms: positronium

 and muoniumCoupled Fock states

$$
\left(H_{0}+H_{i n t}\right)|\Psi>=E| \Psi>
$$

$$
\left[-\frac{\Delta^{2}}{2 m_{\mathrm{red}}}+V_{\mathrm{eff}}(\vec{S}, \vec{r})\right] \psi(\vec{r})=E \psi(\vec{r})
$$

Effective two-particle equation

## Includes Lamb Shift, quantum corrections

$$
\begin{gathered}
{\left[-\frac{1}{2 m_{\mathrm{red}}} \frac{d^{2}}{d r^{2}}+\frac{1}{2 m_{\mathrm{red}}} \frac{\ell(\ell+1)}{r^{2}}+V_{\mathrm{eff}}(r, S, \ell)\right] \psi(r)=E \psi(r)} \\
V_{e f f} \rightarrow V_{C}(r)=-\frac{\alpha}{r} \\
\text { Semiclassical fúrst approximationto QED }
\end{gathered}
$$

SphericalBasis $\quad r, \theta, \phi$ Coulomb potential

## Bohr Spectrum

Schrödinger Eq.

## Bohr Atom

Electron transitions for the Hydrogen atom


Lyman series
$E(n)$ to $E(n=1)$

## Light-Front QCD

Fixed $\tau=t+z / c$


## AdS/QCD:

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Confining AdS/QCD effective potential

## Heavy Quark Potential is IR Divergent in QCD

$$
\begin{aligned}
V\left(Q^{2}\right)= & -\frac{(4 \pi)^{2} C_{F}}{Q^{2}} a\left(Q^{2}\right)\left[1+\left(c_{2,0}+c_{2,1} N_{f}\right) a\left(Q^{2}\right)+\left(c_{3,0}+c_{3,1} N_{f}+c_{3,2} N_{f}^{2}\right) a\left(Q^{2}\right)^{2}\right. \\
& \left.+\left(c_{4,0}+c_{4,1} N_{f}+c_{4,2} N_{f}^{2}+c_{4,3} N_{f}^{3}\right) a\left(Q^{2}\right)^{3}+8 \pi^{2} C_{A}^{3} \ln \frac{\mu_{I R}^{2}}{Q^{2}} a\left(Q^{2}\right)^{3}\right]
\end{aligned}
$$



$$
\log \kappa^{2} \zeta^{2}
$$

## Summation of H graphs: confining potential

Confinement eliminates IR divergences Self-consistent mass scale $k$

## Light-Front Schrödinger Equation

## G. de Teramond, sjb

Relativistic LF single-variable radial equation for $Q C D$ \& QED

Frame Independent!

$\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{m^{2}}{x(1-x)}+\frac{-1+4 L^{2}}{4 \zeta^{2}}+U(\zeta, S, L)\right] \psi_{L F}(\zeta)=M^{2} \psi_{L F}(\zeta)$

$$
\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2} .
$$


$U$ is the confining $Q C D$ potential Conjecture: 'H'-diagrams generate

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$



Sum powers of $\log \kappa^{2} \zeta^{2}$

## AdS/QCD

Soft-Wall Model

Single schemeindependent fundamental mass scale

$$
\kappa
$$

de Tèramond, Dosch, sjb


Light-Front Holography

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Confinement Potential!
Conformal symmetry

$$
\kappa \simeq 0.6 \mathrm{GeV}
$$

## Confinement scale:

$$
\left(m_{q}=0\right)
$$

$$
1 / \kappa \simeq 1 / 3 \mathrm{fm}
$$

de Alfaro, Fubini, Furlan:
Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

$$
\mathcal{M}_{n, L, S}^{2}=4 \kappa^{2}(n+L+S / 2)
$$



Massless pion in Chiral Limit!
Same slope in $n$ and $L$ !

CERN TH January 22, 2014

## AdS5: Conformal Template for QCD

## - Líght-Front Holography

with Guy de Teramond and Hans Guenter Dosch

Fixed $\tau=t+z / c$
Duality of AdS $_{5}$ with LF Hamiltonian Theory

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

- Light Front Wavefunctions:

Light-Front Schrödinger Equation Spectroscopy and Dynamics
$k_{\perp}(\mathrm{GeV})^{1.4}$

1.5

## Applications of AdS/CFT to QCD



Changes in physical length scale mapped to evolution in the 5th dimension z
in collaboration with Guy de Teramond

## AdS/CFT

- Isomorphism of $S O(4,2)$ of conformal QCD with the group of isometries of AdS space

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right), \quad \text { invariant measure }
$$

$x^{\mu} \rightarrow \lambda x^{\mu}, z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate $z$.

- AdS mode in $z$ is the extension of the hadron wf into the fifth dimension.
- Different values of $z$ correspond to different scales at which the hadron is examined.

$$
x^{2} \rightarrow \lambda^{2} x^{2}, \quad z \rightarrow \lambda z .
$$

$x^{2}=x_{\mu} x^{\mu}$ : invariant separation between quarks

- The AdS boundary at $z \rightarrow 0$ correspond to the $Q \rightarrow \infty$, UV zero separation limit.


## Dúlaton-Modified AdS/QCD

$$
d s^{2}=e^{\varphi(z)} \frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} x^{\mu} x^{\nu}-d z^{2}\right)
$$

- Soft-wall dilaton profile breaks conformal invariance $\quad e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}$
- Color Confinement
- Introduces confinement scale
- Uses $\mathrm{AdS}_{5}$ as template for conformal theory


## $\operatorname{LF}(3+1)$ <br> $A d S_{5}$ <br> de Tèramond, Dosch, sjb


$\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}$

$x$

Fixed $\tau=t+z / c$

$$
\begin{gathered}
\psi(x, \zeta)=\sqrt{x(1-x)} \zeta^{-1 / 2} \phi(\zeta) \\
(\mu R)^{2}=L^{2}-(J-2)^{2}
\end{gathered}
$$

Light-Front Holography: Unique mapping derived from equality of $L F$ and AdS formula for EM and gravitational current matrix elements and identical equations of motion

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

AdS Soft-Wall Schrodinger Equation for bound state of two scalar constituents:

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d z^{2}}-\frac{1-4 L^{2}}{4 z^{2}}+U(z)\right] \Phi(z)=\mathcal{M}^{2} \Phi(z)} \\
U(z)=\kappa^{4} z^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

Derived from variation of Action for Dillaton-Modified $A d S_{5}$

## Identical to Light-Front Bound State Equation!

$$
z \longleftrightarrow \zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

## Meson Spectrum in Soft Wall Model

Pion: Negative term for $J=0$ cancels positive terms from LFKE and potential

- Effective potential: $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)$
- LF WE

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)\right) \phi_{J}(\zeta)=M^{2} \phi_{J}(\zeta)
$$

- Normalized eigenfunctions $\langle\phi \mid \phi\rangle=\int d \zeta \phi^{2}(z)^{2}=1$

$$
\phi_{n, L}(\zeta)=\kappa^{1+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{1 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L}\left(\kappa^{2} \zeta^{2}\right)
$$

- Eigenvalues

$$
\mathcal{M}_{n, J, L}^{2}=4 \kappa^{2}\left(n+\frac{J+L}{2}\right)
$$

G. de Teramond, H. G. Dosch, sjb

## AdS/QCD

Soft-Wall Model
Single schemeindependent fundamental
mass scale $\kappa$


Light-Front Holography

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

$$
\kappa \simeq 0.6 \mathrm{GeV}
$$

## Confinement scale:

$1 / \kappa \simeq 1 / 3 \mathrm{fm}$
Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

## Dúlaton-Modified AdS/QCD

$$
d s^{2}=e^{\varphi(z)} \frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} x^{\mu} x^{\nu}-d z^{2}\right)
$$

- Soft-wall dilaton profile breaks conformal invariance $\quad e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}$
- Color Confinement
- Introduces confinement scale $\kappa$
- Uses AdS $_{5}$ as template for conformal theory

$$
\begin{aligned}
& G\left|\psi(\tau)>=i \frac{\partial}{\partial \tau}\right| \psi(\tau)> \\
& G=u H+v D+w K
\end{aligned}
$$

$$
G=H_{\tau}=\frac{1}{2}\left(-\frac{d^{2}}{d x^{2}}+\frac{g}{x^{2}}+\frac{4 u w-v^{2}}{4} x^{2}\right)
$$

Retains conformal invariance of action despite mass scale!

$$
4 u w-v^{2}=\kappa^{4}=[M]^{4}
$$

Identical to LF Hamiltonian with unique potential and dilaton!

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)} \\
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

Pion Form Factor from AdS/QCD and Light-Front Holography


DressedAdS/QCD Current

Prediction from AdS/QCD: Meson LFWF

Note coupling
$k_{\perp}^{2}, x$
de Teramond, Cao, sjb

## "Soft Wall" mode

massless quarks

$$
\begin{aligned}
& \psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k^{2}}{22^{2} x(1-x)}} \phi_{\pi}(x)=\frac{4}{\sqrt{3} \pi} f_{\pi} \sqrt{x(1-x)} \\
& b_{\perp}^{2} \propto \frac{1}{(1-x)} \text { at } x \sim 1 \quad f_{\pi}=\sqrt{P_{q 9}} \frac{\sqrt{3}}{8} \kappa=92.4 \mathrm{MeV}
\end{aligned}
$$

Connection of Confinement to Hadron structure

- We write the Dirac equation
de Teramond,sjb
See also Leutwyler, Stern

$$
(\alpha \Pi(\zeta)-\mathcal{M}) \psi(\zeta)=0
$$

in terms of the matrix-valued operator $\Pi$

$$
\Pi_{\nu}(\zeta)=-i\left(\frac{d}{d \zeta}-\frac{\nu+\frac{1}{2}}{\zeta} \gamma_{5}-\kappa^{2} \zeta \gamma_{5}\right)
$$

and its adjoint $\Pi^{\dagger}$, with commutation relations

$$
\left[\Pi_{\nu}(\zeta), \Pi_{\nu}^{\dagger}(\zeta)\right]=\left(\frac{2 \nu+1}{\zeta^{2}}-2 \kappa^{2}\right) \gamma_{5}
$$

- Solutions to the Dirac equation

$$
\begin{array}{ll}
\psi_{+}(\zeta) \sim z^{\frac{1}{2}+\nu} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{\nu}\left(\kappa^{2} \zeta^{2}\right), & \nu=L+1 \\
\psi_{-}(\zeta) \sim z^{\frac{3}{2}+\nu} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{\nu+1}\left(\kappa^{2} \zeta^{2}\right) .
\end{array}
$$

- Eigenvalues

$$
\mathcal{M}^{2}=4 \kappa^{2}(n+\nu+1)
$$






Table 1: $S U(6)$ classification of confirmed baryons listed by the PDG. The labels $S, L$ and $n$ refer to the internal spin, orbital angular momentum and radial quantum number respectively. The $\Delta \frac{5}{2}^{-}(1930)$ does not fit the $S U(6)$ classification since its mass is too low compared to other members 70-multiplet for $n=0, L=3$.


## Fermionic Modes and Baryon Spectrum

[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]
[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

- Nucleon LF modes

$$
\begin{aligned}
\psi_{+}(\zeta)_{n, L} & =\kappa^{2+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{3 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L+1}\left(\kappa^{2} \zeta^{2}\right) \\
\psi_{-}(\zeta)_{n, L} & =\kappa^{3+L} \frac{1}{\sqrt{n+L+2}} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{5 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L+2}\left(\kappa^{2} \zeta^{2}\right)
\end{aligned}
$$

- Normalization

$$
\int d \zeta \psi_{+}^{2}(\zeta)=\int d \zeta \psi_{-}^{2}(\zeta)=1
$$

Chiral Symmetry of
Eigenstate!

- Eigenvalues

$$
\mathcal{M}_{n, L, S=1 / 2}^{2}=4 \kappa^{2}(n+L+1)
$$

- "Chiral partners"

$$
\frac{\mathcal{M}_{N(1535)}}{\mathcal{M}_{N(940)}}=\sqrt{2}
$$

## Chiral Features of Soft-Wall AdS/QCD Model

- Boost Invariant
- Trivial LF vacuum! No condensate, but consistent with GMOR
- Massless Pion
- Hadron Eigenstates (even the pion) have LF Fock components of different $\mathbf{L}^{\mathbf{z}}$
- Proton: equal probability $S^{z}=+1 / 2, L^{z}=0 ; S^{z}=-1 / 2, L^{z}=+1$

$$
J^{z}=+1 / 2:<L^{z}>=1 / 2,<S_{q}^{z}>=0
$$

- Self-Dual Massive Eigenstates: Proton is its own chiral partner.
- Label State by minimum $L$ as in Atomic Physics
- Minimum $L$ dominates at short distances
- AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=o.

No mass -degenerate parity partners!

AdS/QCD and Light-Front Holography

$$
\mathcal{M}_{n, J, L}^{2}=4 \kappa^{2}\left(n+\frac{J+L}{2}\right)
$$

- Zero mass pion for $\mathbf{m}_{q}=\mathbf{O} \quad(\mathbf{n}=\mathbf{J}=\mathbf{L}=\mathbf{0})$
- Regge trajectories: equal slope in $\mathbf{n}$ and $L$
- Form Factors at high $Q^{2}$ : Dimensional counting

$$
\left[Q^{2}\right]^{n-1} F\left(Q^{2}\right) \rightarrow \text { const }
$$

- Space-like and Time-like Meson and Baryon Form Factors
- Running Coupling for NPQCD

$$
\alpha_{s}\left(Q^{2}\right) \propto e^{-\frac{Q^{2}}{4 \kappa^{2}}}
$$

- Meson Distribution Amplitude

$$
\phi_{\pi}(x) \propto f_{\pi} \sqrt{x(1-x)}
$$

## Connection to the Linear Instant-Form Potential

- Compare invariant mass in the instant-form in the hadron center-of-mass system $\mathbf{P}=0$,

$$
M_{q \bar{q}}^{2}=4 m_{q}^{2}+4 \mathbf{p}^{2}
$$

with the invariant mass in the front-form in the constituent rest frame, $\mathbf{k}_{q}+\mathbf{k}_{\bar{q}}=0$

$$
M_{q \bar{q}}^{2}=\frac{\mathbf{k}_{\perp}^{2}+m_{q}^{2}}{x(1-x)}
$$

obtain

$$
U=V^{2}+2 \sqrt{\mathbf{p}^{2}+m_{q}^{2}} V+2 V \sqrt{\mathbf{p}^{2}+m_{q}^{2}}
$$

where $\mathbf{p}_{\perp}^{2}=\frac{\mathbf{k}_{\perp}^{2}}{4 x(1-x)}, \quad p_{3}=\frac{m_{q}(x-1 / 2)}{\sqrt{x(1-x)}}$, and $V$ is the effective potential in the instant-form

- For small quark masses a linear instant-form potential $V$ implies a harmonic front-form potential $U$ and thus linear Regge trajectories
A.P. Trawinski, S.D. Glazek, H. D. Dosch, G. de Teramond, sjb


## Connection to the Linear Instant-Form Potential

Linear instant nonrelativistic form $V(r)=C r$ for heavy quarks

## Bjorken sum rule defines effective charge $\alpha_{g 1}\left(Q^{2}\right)$

$$
\int_{0}^{1} d x\left[g_{1}^{e p}\left(x, Q^{2}\right)-g_{1}^{e n}\left(x, Q^{2}\right)\right] \equiv \frac{g_{a}}{6}\left[1-\frac{\alpha_{g 1}\left(Q^{2}\right)}{\pi}\right]
$$

- Can be used as standard QCD coupling
- Well measured
- Asymptotic freedom at large $\mathbf{Q}^{\mathbf{2}}$
- Computable at large $\mathbf{Q}^{\mathbf{2}}$ in any pQCD scheme
- Universal $\boldsymbol{\beta}_{0}, \boldsymbol{\beta}_{\text {I }}$
- Consider five-dim gauge fields propagating in $\mathrm{AdS}_{5}$ space in dilaton background $\varphi(z)=\kappa^{2} z^{2}$

$$
S=-\frac{1}{4} \int d^{4} x d z \sqrt{g} e^{\varphi(z)} \frac{1}{g_{5}^{2}} G^{2}
$$

- Flow equation

$$
\frac{1}{g_{5}^{2}(z)}=e^{\varphi(z)} \frac{1}{g_{5}^{2}(0)} \quad \text { or } \quad g_{5}^{2}(z)=e^{-\kappa^{2} z^{2}} g_{5}^{2}(0)
$$

where the coupling $g_{5}(z)$ incorporates the non-conformal dynamics of confinement

- YM coupling $\alpha_{s}(\zeta)=g_{Y M}^{2}(\zeta) / 4 \pi$ is the five dim coupling up to a factor: $g_{5}(z) \rightarrow g_{Y M}(\zeta)$
- Coupling measured at momentum scale $Q$

$$
\alpha_{s}^{A d S}(Q) \sim \int_{0}^{\infty} \zeta d \zeta J_{0}(\zeta Q) \alpha_{s}^{A d S}(\zeta)
$$

- Solution

$$
\alpha_{s}^{A d S}\left(Q^{2}\right)=\alpha_{s}^{A d S}(0) e^{-Q^{2} / 4 \kappa^{2}}
$$

where the coupling $\alpha_{s}^{A d S}$ incorporates the non-conformal dynamics of confinement Analytic, defined at all scales, IR Fixed Point


AdS/QCD dilaton captures the higher twist corrections to effective charges for $\mathbf{Q}<\mathbf{I} \mathbf{G e V}$

$$
e^{\varphi}=e^{+\kappa^{2} z^{2}}
$$

Deur, de Teramond, sjb

$$
\Lambda_{\overline{M S}}=0.5983 \kappa=0.5983 \frac{m_{\rho}}{\sqrt{2}}=0.4231 m_{\rho}=0.328 \mathrm{GeV}
$$



$$
\Lambda_{\overline{M S}}=0.5983 \kappa=0.5983 \frac{m_{\rho}}{\sqrt{2}}=0.4231 m_{\rho}=0.328 \mathrm{GeV}
$$



Deur, de Teramond, sjb

$$
\begin{aligned}
& \Lambda_{\overline{M S}}=0.5983 \kappa=0.5983 \frac{m_{\rho}}{\sqrt{2}}=0.4231 m_{\rho}=0.328 \mathrm{GeV} \\
& \text { Connect } \Lambda_{\overline{M S}} \text { to hadron masses! }
\end{aligned}
$$

Soft-Wall Model


Light-Front Holography

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation $U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)$

$$
\kappa \simeq 0.6 \mathrm{GeV}
$$

Confinement scale:

$$
1 / \kappa \simeq 1 / 3 \mathrm{fm}
$$

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

Wavefunction at fixed LF time: Arbitrarily Off-Shell in Invariant Mass Eigenstate of LF Hamiltonian: all Fock states contribute

$$
\left|p, J_{z}>=\sum_{n=3} \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}>
$$



Higher Fock States ofthe Proton


Fixed LF time

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states with $n=3,4, \ldots$ constituents
The Light Front Fock State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$


are boost invariant; they are independent of the hadron's energy and momentum $P^{\mu}$.

The light-cone momentum fraction

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp}
$$

Intrinsic heavy quarks $s(x), c(x), b(x)$ at high $x$ !

$$
\begin{aligned}
& \bar{s}(x) \neq s(x) \\
& \bar{u}(x) \neq \bar{d}(x)
\end{aligned}
$$

## Fixed LF time

Proton Self Energy Intrinsic Heavy Quarks


Probability $(\mathrm{QED}) \propto \frac{1}{M_{\ell}^{4}}$
Probability $(\mathrm{QCD}) \propto \frac{1}{M_{Q}^{2}}$
Collins, Ellis, Gunion, Mueller, sib M. Polyakov, et al.

## Fixed LF time

Proton 5 -quark Fock State:
Intrinsic Heavy Quarks

$$
x_{Q} \propto\left(m_{Q}^{2}+k_{\perp}^{2}\right)^{1 / 2}
$$

Rigorousprediction of QCD
Intrinsic Heary Quarks at high x!

## Minimal off-shellness

Probability $(\mathrm{QED}) \propto \frac{1}{M_{\ell}^{4}} \quad$ Probability $(\mathrm{QCD}) \propto \frac{1}{M_{Q}^{2}}$
Collins, Ellis, Gunion, Mueller, sjb
Polyakov, et al.

Properties of Non-Perturbative Five-Quark Fock-State

- Dominant configuration: same rapidity
- Heavy quarks have most momentum
- Correlated with proton quantum numbers
- Duality with meson-baryon channels
- strangeness asymmetry at $\boldsymbol{x}>\boldsymbol{0} . \mathrm{I}$ Fixed $\tau=t+z / c$
- Maximally energy efficient

Intrinsic Heavy Quarks at highx


DGLAP / Photon-Gluon Fusion: factor of 30 too small
Two Components (separate evolution):
$c\left(x, Q^{2}\right)=c\left(x, Q^{2}\right)_{\text {extrinsic }}+c\left(x, Q^{2}\right)_{\text {intrinsic }}$

Measurement of $\gamma+\boldsymbol{b}+\boldsymbol{X}$ and $\gamma+\boldsymbol{c}+X$ Production Cross Sections in $p \bar{p}$ Collisions at $\sqrt{s}=1.96 \mathrm{TeV}$


$$
p \bar{p} \rightarrow \gamma+Q+X
$$

$$
\frac{\Delta \sigma(\bar{p} p \rightarrow \gamma c X)}{\Delta \sigma(\bar{p} p \rightarrow \gamma b X)}
$$

Ratio is insensitive to gluon PDF, scales

10 Measurement of $\gamma+b+X$ and $\gamma+c+X$ Production Cross Sections


## Intrinsic Heavy-Quark Fock

- Rigorous prediction of QCD, OPE
- Color-Octet Color-Octet Fock State

- Probability $\quad P_{Q \bar{Q}} \propto \frac{1}{M_{Q}^{2}} \quad P_{Q \bar{Q} Q \bar{Q}} \sim \alpha_{S}^{2} P_{Q \bar{Q}} \quad P_{c \bar{c} / p} \simeq 1 \%$
- Large Effect at high $x$

Greatly increases kinematics of colliders such as Higgs production (Kopeliovich, Schmidt, Soffer, sjb)

- Underestimated in conventional parameterizations of heavy quark distributions (Pumplin, Tung)


Spectator counting rules


$$
\frac{d N}{d x_{F}} \propto\left(1-x_{F}\right)^{2 n_{\text {spect }}-1}
$$

Coalescence of Comoving Charm and Valence Quarks Produce $J / \psi, \Lambda_{c}$ and other Charm Hadrons at High $x_{F}$

- EMC data: $c\left(x, Q^{2}\right)>30 \times$ DGLAP $Q^{2}=75 \mathrm{GeV}^{2}, x=0.42$
- High $x_{F} \quad p p \rightarrow J / \psi X$
- High $x_{F} p p \rightarrow J / \psi J / \psi X$
- High $x_{F} p p \rightarrow \Lambda_{c} X$
- High $x_{F} p p \rightarrow \wedge_{b} X$
- High $x_{F} p p \rightarrow$ 三( $c c d$ ) $X$ (SELEX)

Explain Tevatron anomalies: $p \bar{p} \rightarrow \gamma c X, Z c X$
Interesting spin, charge asymmetry, threshold, spectator effects
Important corrections to $\mathcal{B}$ decays; Quarkonium decays Gardner, Karliner, sjb


Fig. 3. The $\psi \psi$ pair distributions are shown in (a) and (c) for the pion and proton projectiles. Similarly, the distributions of $J / \psi$ 's from the pairs are shown in (b) and (d). Our calculations are compared with the $\pi^{-} N$ data at 150 and $280 \mathrm{GeV} / c$ [1]. The $x_{\psi \psi}$ distributions are normalized to the number of pairs from both pion beams (a) and the number of pairs from the 400 GeV proton measurement (c). The number of single $J / \psi$ 's is twice the number of pairs.

## NA3 Data

# Excludes PYTHIA 'color drag' model! 

$\pi A \rightarrow J / \psi J / \psi X$<br>R. Vogt, sjb

The probability distribution for a general $n$-particle intrinsic $c \bar{c}$ Fock state as a function of $x$ and $k_{T}$ is written as

$$
\begin{aligned}
& \frac{d P_{\mathrm{ic}}}{\prod_{i=1}^{n} d x_{i} d^{2} k_{T, i}} \\
& \quad=N_{n} \alpha_{s}^{4}\left(M_{c \bar{c}}\right) \frac{\delta\left(\sum_{i=1}^{n} k_{T, i}\right) \delta\left(1-\sum_{i=1}^{n} x_{i}\right)}{\left(m_{h}^{2}-\sum_{i=1}^{n}\left(m_{T, i}^{2} / x_{i}\right)\right)^{2}},
\end{aligned}
$$



800 GeV p-A (FNAL) $\sigma_{\mathrm{A}}=\sigma_{\mathrm{p}}{ }^{*} \mathrm{~A}^{\alpha}$
PRL 84, 3256 (2000); PRL 72, 2542 (1994)


Violation of factorization in charm hadroproduction.
P. Hoyer, M. Vanttinen (Helsinki U.) , U. Sukhatme (Illinois U., Chicago) . HU-TFT-90-14, May 1990. 7pp.

Published in Phys.Lett.B246:217-220,1990
IC Explains large excess of quarkonia at large $\mathrm{x}_{\mathrm{F}}$, A-dependence

## High $x_{F}$

 interacts on nuclear front surfaceScattering on front-face nucleon produces color-singlet cīpair


## Intrinsic Heavy Quark Contribution

 to Inclusive Figgs Production

Also: intrinsic strangeness, bottom, top
Higgs can have $>\mathbf{8 0 \%}$ of Proton Momentum!
New production mechanism for Higgs at the LHC AFTER: Higgs production at threshold!

Intrinsic Heary Quark Contribution to High $x_{F}$ Inclusive Higgs Production


Need High XF Acceptance
Most practical: Higgs to 4 mwons

Goldhaber, Kopeliovich, Schmidt, Soffer, sjb

## Charm at Threshold

- Intrinsic charm Fock state puts $80 \%$ of the proton momentum into the electroproduction process
- I/velocity enhancement from FSI
- CLEO datafor quarkonium production at threshold
- Krisch effect shows $B=2$ resonance
- all particles produced at small relative rapidity-resonance production
- Many exotic bidden and open charm resonances will be produced at PANDA (i5 GeV) and YLab (in-12 GeV)

Diffractive Dissociation of Pion into QuarkJets

## E79I Ashery et al.



Measure Light-Front Wavefunction of Pion
Minimal momentum transfer to nucleus Nucleus left Intact!

## E791 FNAL Díffractive DúJet



Gunion, Frankfurt, Mueller, Strikman, sjb Frankfurt, Miller, Strikman
Two-ghon exchange measures the second derivative of the pion light-front wavefunction


## E791 Diffractive Di-Jet transverse momentum distribution



## Two Components

High Transverse momentum dependence consistent with $P Q C D$, ERBL Evolution

Gaussian component similar to AdS/CFT HO LFWF

- Fully coherent interactions between pion and nucleons.
- Emerging Di-Jets do not interact with nucleus.



## Key Ingredients in E791 Experiment



Brodsky Mueller Frankfurt Miller Strikman

Small color-dipole moment pion not absorbed; interacts with each nucleon coherently QCD COLOR Transparency


## Measure pion LFWF in diffractive dijet production Confirmation of color transparency

| A-Dependence results: | $\sigma \propto A^{\alpha}$ |  |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{k}_{t}$ range ( $\mathrm{GeV} / \mathrm{c}$ ) | $\underline{\alpha}$ | $\alpha(\mathrm{CT})$ |  |
| $1.25<k_{t}<1.5$ | $1.64+0.06-0.12$ | 1.25 | Ashery E791 |
| $1.5<k_{t}<2.0$ | $1.52 \pm 0.12$ | 1.45 |  |
| $2.0<k_{t}<2.5$ | $1.55 \pm 0.16$ | 1.60 |  |
| $\alpha($ Incoh. $)=0.70 \pm 0.1$ |  |  |  |

Conventional Glauber Theory Ruled Out!
Factor of 7
Stan Brodsky

Diffractive Dissociation of Pion into Quark Jets

## E79I Ashery et al.



Measure Light-Front Wavefunction of Pion
Minimal momentum transfer to nucleus Nucleus left Intact!

FAIR: Diffractive Dissociation of Antiproton into Quark Jets

## F. Wilczek (XXIV Quark Matter 2014)

Quarks (and Glue) at
Frontiers of Knowledge

## Emergent Phenomena

## Schizophrenic Protons?

We have two very different pictures of protons, in the lab frame (quark model) and in the infinite momentum frame (parton model). Each is very successful.

How does one proton manage to become the other? Are there intermediate pictures?

## F. Wilczek (XXIV Quark Matter 2014)

We have two very different pictures of protons, in the lab frame (quark model) and in the infinite momentum frame (parton model). Each is very successful.

How does one proton manage to become the other? Are there intermediate pictures?

Answer: Light-Front Wavefunctions are independent of the observer's Lorentz frame

## QCD Myths

- Anti-Shadowing is Universal
- ISI and FSI are higher twist effects and universal
- High transverse momentum hadrons arise only from jet fragmentation -- baryon anomaly!
- Heavy quarks only from gluon splitting
- Renormalization scale cannot be fixed
- QCD condensates are vacuum effects
- QCD gives ro $^{42}$ to the cosmological constant
- Dynamics always from gluon exchange; Zweig Rule
- Higher Twist always nonleading
- Factorization Theorems Rigorous


## Novel Tests of QCD at GSI-FAIR

- Drell-Yan: Breakdown of pQCD Factorization
- Violation of Lam-Tung Relation
- Double Drell-Yan Reactions

$$
\bar{p} p \rightarrow \mu^{+} \mu^{-} \mu^{+} \mu^{-} X
$$

- Higher Twist Effects at High XF
- Non-Universal Anti-Shadowing
- Diffractive Drell-Yan Reactions

$$
\bar{p} p \rightarrow \mu^{+} \mu^{-} p
$$

- Exclusive Processes $\quad \bar{p} p \rightarrow H_{A}+H_{B}$
- Crucial tests of fundamental issues in hadron physics


## Novel Tests of QCD at FAIR



## International Conference on Science and Technology

 for FAIR in Europe October I3-17, 2014Stan Brodsky



