
c

  Novel Tests of QCD at FAIR

c

c̄

Stan Brodsky  

                              Jim Ritman     
                                                

    10 

Facility for Antiproton and Ion Research 

p-Linac 

HESR 

SIS18 
SIS100 

CR/RESR 

Antiprotons 
Production  
Target 

International Conference 	

on Science and Technology 	


for FAIR in Europe October 13-17, 2014

P	

A	

N	

D	

A



 Stan Brodsky
!

  October 16, 2014 Novel  Tests of QCD at FAIR 
!

 Stan Brodsky
!

  October 16, 2014



 Stan Brodsky
!

  October 16, 2014 Novel  Tests of QCD at FAIR 
!

 Stan Brodsky
!

  October 16, 2014

PANDA



Novel  Tests of QCD at FAIR 
!

 Stan Brodsky
!

  October 16, 2014

!

Proton–ANtiproton in DArmstadt (PANDA)!

• Anti-Protons from HESR	


• Emax = 15 GeV	


• Pellet or Gas Jet Targets	


• Resolution 10-4 to 10-5	


• Lmax = 2 X 1032 cm-2 s-1



FAIR  
Experimental highlights

Compressed 
Baryonic 
Matter 
! QCD chiral symmetry 

breaking/restoration 

! EOS at high baryon density 

! Origin of hadron masses 

! Quark confinement  

! Physics of neutron stars

PANDA 
Antiproton Annihilation 
at Darmstadt) 
! Glueballs and Hybrids 

! Charm in Nuclei 

! Charmonium 

! Hyper nuclei 

! D- meson Physics 

!

NUclear  
STructure, 
Astrophysics and 
Reactions 
! Super FRS  
! DESPEC/HISPEC     ELISe  
! EXL                           ILIMA 
! LaSpec                    MATS  
! R3B 
!

Impressive array of diverse, fundamental physics

HIDETO EN’YO
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Novel Tests of QCD at GSI-FAIR

• Drell-Yan:  Breakdown of pQCD Factorization	


• Violation of Lam-Tung Relation	


• Double Drell-Yan Reactions	


• Higher Twist Effects at High xF	


• Non-Universal Anti-Shadowing	


• Diffractive Drell-Yan Reactions	


• Exclusive Processes

p̄p! µ+µ�µ+µ�X

p̄p! µ+µ�p
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QED Lagrangian

Yang Mills Gauge Principle: 
Phase Invariance at Every 

Point of Space and Time 

Scale-Invariant Coupling 
Renormalizable  

Nearly-Conformal 
Landau Pole 

iDµ = i@µ � eAµ

LQED = �1
4
Tr(Fµ⌫Fµ⌫) +

nX̀

`=1

i ̄`Dµ�µ ` +
nX̀

`=1

m` ̄` `

Fµ⌫ = @µAµ � @⌫Aµ
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Yang Mills Gauge Principle: 
Color Rotation and Phase 

Invariance at Every Point of 
Space and Time 

Scale-Invariant Coupling 
Renormalizable  

Nearly-Conformal 
Asymptotic Freedom 

Color Confinement

LQCD = �1
4
Tr(Gµ⌫Gµ⌫) +

nfX

f=1

i ̄fDµ�µ f +
nfX

f=1

mf  ̄f f

iDµ = i@µ � gAµ Gµ⌫ = @µAµ � @⌫Aµ � g[Aµ, A⌫ ]

QCD Lagrangian



LQCD = �1
4
Tr(Gµ⌫Gµ⌫) +

nfX

f=1

i ̄fDµ�µ f +
nfX

f=1

mf  ̄f f

iDµ = i@µ � gAµ [Dµ, D⌫ ] = igGµ⌫

limNC ⇥ 0 at fixed � = CF�s, n⌥ = nF/CF

e+e� ⇥ p⇤ p

P. Huet, sjb

Analytic limit of QCD: Abelian Gauge Theory

QCD          QEDCF =
N2

C � 1
2NC

QCD Lagrangian
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QED:   Underlies Atomic Physics, Molecular Physics, 
Chemistry, Electromagnetic Interactions  ...

QCD:   Underlies Hadron Physics, Nuclear Physics,  
Strong Interactions,  Jets

• Feynman diagrams and perturbation theory 

• Bethe Salpeter Equation, Dyson-Schwinger 
Equations  

• Lattice Gauge Theory 

• Frame-Independent Light-Front Dynamics 

• Light-Front Holography & AdS/QCD !

Theoretical Tools



P+, ↵P+

xiP
+, xi

↵P⇤+ ↵k⇤i

ẑ

↵L = ↵R⇥ ↵P

↵Li = (xi
↵R⇤+↵b⇤i)⇥ ↵P

↵⇧i = ↵b⇤i ⇥ ↵k⇤i

↵⇧i = ↵Li � xi
↵R⇤ ⇥ ↵P = ↵b⇤i ⇥ ↵P

A(⇤,�⇤) = 1
2⇥

�
d�e

i
2⇤�M(�,�⇤)

P+, P⇤

xiP
+, xi

P⇤+ k⇤i

� = Q2

2p·q

ẑ

L = R⇥ P

Li = (xi
R⇤+b⇤i)⇥ P

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

x =
k+

P+
=

k0 + k3

P 0 + P 3

Measurements of hadron LF 
wavefunction are at fixed LF time!

!
Like a flash photograph xbj = x =

k

+

P

+

 n(xi,
~

k?i ,�i)

e

e’



Each element of  
flash photograph   

illuminated   
along the light front  

at a fixed 

� = t + z/c
!

Evolve in LF time

P� = i
d

d�

HQCD
LF |�h >= M2

h|�h >

P� =
M2 + ~P 2

?
P+

Eigenvalue



PDFs FFs

TMDs

Charges

GTMDs

GPDs

TMSDs

TMFFs

Transverse density in 
momentum space

Transverse density in position 
space

Longitudinal 

Transverse

Momentum space Position space

Lorce, 
Pasquini

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

• Light Front Wavefunctions:                                   

+ Factorization-Breaking Lensing Corrections: Sivers, T-odd 



QCD and the LF Hadron Wavefunctions

DVCS, GPDs. TMDs

Baryon Decay

Distribution amplitude	

ERBL Evolution

Heavy Quark Fock States	

Intrinsic Charm

Gluonic properties	

DGLAP

Quark & Flavor Struct

Coordinate space 
representation	


Quark & Flavor Structure

Baryon Excitations	


General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

Initial and Final State 
Rescattering	


DDIS, DDIS, T-Odd	
!
Non-Universal Antishadowing

Nuclear Modifications	

Baryon Anomaly	


Color Transparency

Hard Exclusive Amplitudes	

Form Factors	


Counting Rules

�p(x1, x2, Q
2)

AdS/QCD	

Light-Front Holography	


LF Schrodinger Eqn	
.

LF Overlap, incl ERBL 

J=0 Fixed Pole

Orbital Angular Momentum	

Spin, Chiral Properties	


Crewther Relation

Hadronization at Amplitude 
Level
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•LF wavefunctions play the role of Schrödinger wavefunctions 
in Atomic Physics 

•LFWFs=Hadron Eigensolutions: Direct Connection to QCD 
Lagrangian 

•Relativistic, frame-independent: no boosts, no disc 
contraction, Melosh built into LF spinors  

•Hadronic observables computed from LFWFs: Form factors, 
Structure Functions, Distribution  Amplitudes, GPDs, TMDs, 
Weak Decays, .... modulo `lensing’ from ISIs, FSIs 

•Cannot compute current matrix elements using instant form 
from eigensolutions alone -- need to include vacuum currents! 

•Hadron Physics without LFWFs is like Biology without DNA!

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

15
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•Hadron Physics without LFWFs is like Biology without DNA!

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1
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• Measurements are made at fixed τ 

• Causality is automatic 

• Structure Functions are squares of LFWFs 

• Form Factors are overlap of LFWFs 

• LFWFs are frame-independent -- no boosts! 

• No dependence on observer’s frame 

• LF Holography: Dual to AdS space 

• LF Vacuum trivial -- no condensates! 

• Profound implications for Cosmological 
Constant

Advantages of the Dirac’s Front Form for Hadron Physics
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moment vanishes [22]. The light-cone formalism also properly incorporatesWigner boosts.

Thus this model of composite systems can serve as a useful theoretical laboratory to

interrelate hadronic properties and check the consistency of formulae proposed for the

study of hadron substructure.

7. Spin and orbital angular momentum composition of light-cone wavefunctions

In general the light-cone wavefunctions satisfy conservation of the z projection of

angular momentum:

J z =
n∑

i=1
sz
i +

n−1∑

j=1
lzj . (62)

The sum over sz
i represents the contribution of the intrinsic spins of the n Fock state

constituents. The sum over orbital angular momenta lzj = −i
(
k1j

∂
∂k2j

− k2j
∂

∂k1j

)
derives from

the n−1 relative momenta. This excludes the contribution to the orbital angularmomentum
due to the motion of the center of mass, which is not an intrinsic property of the hadron.

We can see how the angular momentum sum rule Eq. (62) is satisfied for the

wavefunctions Eqs. (20) and (23) of the QED model system of two-particle Fock states.

In Table 1 we list the fermion constituent’s light-cone spin projection sz
f = 1

2
λf, the boson

constituent spin projection sz
b = λb, and the relative orbital angular momentum lz for each

contributing configuration of the QED model system wavefunction.

Table 1 is derived by calculating the matrix elements of the light-cone helicity operator

γ +γ 5 [29] and the relative orbital angular momentum operator−i
(
k1 ∂

∂k2
− k2 ∂

∂k1

)
[16,30,

31] in the light-cone representation. Each configuration satisfies the spin sum rule: J z =
sz
f + sz

b + lz.

For a better understanding of Table 1, we look at the non-relativistic and ultra-relativistic

limits. At the non-relativistic limit, the transversal motions of the constituent can be

neglected and we have only the | + 1
2
⟩ → | − 1

2
+ 1⟩ configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the

Table 1

Spin decomposition of the J z = + 1
2
electron

Configuration Fermion spin sz
f

Boson spin sz
b

Orbital ang. mom. lz

∣∣+ 1
2

〉
→

∣∣+ 1
2

+ 1
〉

+ 1
2

+1 −1
∣∣+ 1

2

〉
→

∣∣− 1
2

+ 1
〉

− 1
2

+1 0
∣∣+ 1

2

〉
→

∣∣+ 1
2

− 1
〉

+ 1
2

−1 +1

Conserved !
LF Fock state by Fock State!

n-1 orbital angular momenta

Angular Momentum on the Light-Front

Nonzero Anomalous Moment -->Nonzero orbital angular momentum

LF Spin Sum Rule

Orbital angular momentum is a property of Light-Front Wavefunctions
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Light-Front Schrödinger Equation
�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic LF single-variable radial 
equation for QCD & QED

G. de Teramond, sjb 

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

Frame Independent!

AdS/QCD:

U(�) = ⇥4�2 + 2⇥2(L + S � 1)
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M2!GeV2"#b$ n! 3 n! 2 n! 1 n! 0

Ρ#1700$

Ρ#1450$
Ρ#770$

a2#1320$
Ρ3#1690$

a4#2040$

f2#1270$

f4#2050$
f2#2300$
f2#1950$

Ω#782$

Ω#1650$
Ω#1420$

Ω3#1670$

L

0 1 2 3 4

0

1

2

3

4

5

6
M2!GeV2"#a$ n! 0n! 1n! 2

LΠ#140$
b1#1235$

Π2#1670$
Π#1300$

Π#1800$
Π2#1880$

0 1 2 3

0

1

2

3

4

5

M2
n,L,S = 42(n + L + S/2)

Massless pion in Chiral Limit! Same slope in n and L!



Q2 FΠ!Q2"

Q2  GeV2

0 1 2 3 4 5 6 7
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pion Form Factor from AdS/QCD and Light-Front Holography



!10 !5 0 5 10

!4

!3

!2

!1

0

1

2

log!FΠ!q2""

q2(GeV2)

Frascati

!
BaBar ISR

spacelike timelike

JLab

log |F⇡(s)|
Pion Form Factor from AdS/QCD and Light-Front Holography

Dressed AdS/QCD Current



Prediction from AdS/QCD: Meson LFWF

�(x, k�)
0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

       “Soft Wall” model

�(x, k�)(GeV)

de Teramond, 
Cao, sjb⇥M(x, Q0) ⇥

�
x(1� x)

⇤M(x, k2
⇤)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ�

massless quarks

Note coupling  

k2
�, x

Provides Connection of Confinement to Hadron Structure

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)

x

1� x

�⇡(x) =
4p
3⇡

f⇡

p
x(1� x)

f⇡ =
p

Pqq̄

p
3

8
 = 92.4 MeV



J. R. Forshaw,  
R. Sandapen

�⇤p! ⇢0p0

�L

�T

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)

Prediction from  
Light-Front Holography
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Figure 2: Orbital and radial baryon excitation spectrum. Positive-parity spin-12 nucleons (a) and

spectrum gap between the negative-parity spin-32 and the positive-parity spin-12 nucleons families

(b). Minus parity N (c) and plus and minus parity ∆ families (d), for
√
λ = 0.49 GeV (nucleons)

and 0.51 GeV (Deltas).

cluster. The predictions for the daughter trajectories for n = 1, n = 2, · · · are also shown in

this figure. Only confirmed PDG [23] states are shown. The Roper state N(1440) and the

N(1710) are well accounted for as the first and second radial excited states of the proton.

The newly identified state, the N(1900) [23] is depicted here as the first radial excitation of

the N(1720). The model is successful in explaining the parity degeneracy observed in the

light baryon spectrum, such as the L = 2, N(1680)−N(1720) pair in Fig. 2 (a). In Fig. 2

(b) we compare the positive parity spin-12 parent nucleon trajectory with the negative parity

7

42
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• Compute Dirac proton form factor using SU(6) flavor symmetry

F p
1 (Q2) = R4

⇧
dz

z4
V (Q, z)�2

+(z)

• Nucleon AdS wave function

�+(z) =
�2+L

R2

⌃
2n!

(n + L)!
z7/2+LLL+1

n

�
�2z2

⇥
e��2z2/2

• Normalization (F1
p(0) = 1, V (Q = 0, z) = 1)

R4

⇧
dz

z4
�2

+(z) = 1

• Bulk-to-boundary propagator [Grigoryan and Radyushkin (2007)]

V (Q, z) = �2z2

⇧ 1

0

dx

(1� x)2
x

Q2

42 e��2z2x/(1�x)

• Find

F p
1 (Q2) =

1⇤
1 + Q2

M2
⇢

⌅⇤
1 + Q2

M2
⇢0

⌅

withM⇥
2
n ⇤ 4�2(n + 1/2)

LC 2011 2011, Dallas, May 23, 2011 Page 20
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Using SU(6) flavor symmetry and normalization to static quantities
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Niccolò Cabeo 2012, Ferrara, May 25, 2011
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Spacelike Pauli Form Factor

F2(Q2)
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JADE determination of �s(MZ)

M =
⇥

TH ⇥�⌅i

M ⇤ f(⇥CM)
QNtot�4

�
initial ⇤

H
i =

�
final ⇤

H
j

Harmonic Oscillator Confinement 
Normalized to anomalous 

moment

F p
2 (Q2)

� = 0.49 GeV

G. de Teramond, sjb 

From overlap of L = 1 and L = 0 LFWFs



Nucleon Transition Form Factors

F p

1

N!N

⇤(Q
2

) =

p
2

3

Q

2

M2

⇢⇣
1 +

Q

2

M2

⇢

⌘⇣
1 +

Q

2

M2

⇢0

⌘⇣
1 +

Q

2

M2

⇢
00

⌘ .

0.1

0
2 40

Q2  (GeV2)

F
p 1

N
  
 N

* 
 (
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Proton transition form factor to the first radial excited state. Data from JLab

Niccolò Cabeo 2012, Ferrara, May 25, 2011
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AdS\QCD 
Light-Front 
Holography

G. de Teramond, sjb



QCD Lagrangian

LQCD = �1
4
Tr(Gµ⌫Gµ⌫) +

nfX

f=1

i ̄fDµ�µ f +
nfX

f=1

mf  ̄f f

iDµ = i@µ � gAµ Gµ⌫ = @µAµ � @⌫Aµ � g[Aµ, A⌫ ]

Classical Chiral Lagrangian is Conformally Invariant  

Where does the QCD Mass Scale ΛQCD come from?  

How does color confinement arise?

• de Alfaro, Fubini, Furlan: 
Scale can appear in Hamiltonian and EQM 	


without affecting conformal invariance of action!

Unique confinement potential!





Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

!
Conformal Symmetry 

of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Unique "
Confinement Potential!

!
de Tèramond, Dosch, sjb

 ' 0.6 GeV

1/ ' 1/3 fm

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 	

without affecting conformal invariance of action!

(mq=0)

Single scheme-
independent fundamental 

mass scale 
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Light-Front Holography  
AdS/QCD 

Soft-Wall  Model 

!
Conformal Symmetry 

of the action  

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Light-Front Schrödinger Equation

de Teramond, Dosch, sjb

Semi-Classical Approximation to QCD 
Relativistic, frame-independent 
Unique color-confining potential 

Zero mass pion for massless quarks 
Regge trajectories with equal slopes in n and L 

Light-Front Wavefunctions
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Hadron Physics with PANDA 

• QCD well understood at high Q2 
Emergence of eff. DoF at low Q2 

• Phenomena appear that are hard  
to predict from QCD:   
e.g. confinement, nature of 
hadrons,  hadronic  masses… 
 

• To gain further insight  
precision experiments needed: 
� Statistics 
� Resolution 
� Exclusiveness 

J. Pumplin et al., JHEP 0207 (2002) 012 
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Hadron Physics with PANDA 

• QCD well understood at high Q2 
Emergence of eff. DoF at low Q2 

• Phenomena appear that are hard  
to predict from QCD:   
e.g. confinement, nature of 
hadrons,  hadronic  masses… 
 

• To gain further insight  
precision experiments needed: 
� Statistics 
� Resolution 
� Exclusiveness 

J. Pumplin et al., JHEP 0207 (2002) 012 

J. Ritman



Deur,   
de Teramond, sjb

↵AdS
s (Q2) = ↵AdS

s (0)e�Q2/42

AdS/QCD + pQCDO(�3)

⇤MS = 0.5983 = 0.5983m⇢p
2

= 0.4231m⇢ = 0.328 GeV

↵g1(Q
2) at O[↵5

MS
]
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Predict ⇤MS from mp or m⇢!
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Exclusive Processes: 	

New Level of Testing QCD at GSI-FAIR

• Sensitivity to fundamental features of hadron 
dynamics, light-front wavefunctions, 
confinement mechanism, nonpertubative QCD	


• Scattering and production mechanisms	


• Gluon exchange (Zweig Rule) vs Quark 
Exchange	


• QCD and Hadronization at the Amplitude 
Level	


• Origin of Fundamental Mass Scale of QCD 



Novel  Tests of QCD at FAIR 
!

 Stan Brodsky
!

  October 16, 2014

PANDA: Remarkable Laboratory for  
Exclusive Hadronic Processes

•Test Fundamental Theorems of QCD	


•High pT: Rigorous Factorization Theorems: Convolution of 
Hadron Distribution Amplitudes and Hard Scattering 
Amplitudes	


•Counting Rules; 	


•Hadron Helicity Conservation	


•Color Transparency	


•Hadronization at the Amplitude Level	


•Color Confinement, Hadron Structure, Production 
Mechanisms 	


•Creation of Heavy Flavors, Open and Hidden Charm,     
Exotic States, Gluonium

p̄p! `¯̀, ��, �⇡0, pp,K+K�, J/ , ⌘c⌘c, Z+
c ⇡

�, · · ·
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• Invariant mass reconstruction depends 
• on  the  detector  resolution  ≈  10  MeV 

High Mass/Width Resolution, e.g.:  ¸ c1,2 

e�e� o\ 'oJF1,2 oJ J J /\� �oJJ e�e�

Formation: 

ppoF1,2 oJ J /\ oJ e�e�

Resonance scan: resolution depends 
on the beam resolution 

E760@Fermilab  ≈  240  keV 
PANDA  ≈  50  keV 

Panda: 50 KeV Resolution
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FIG. 2: (Color online) Comparison with experimental ratios
R = F A

2 /F D
2 . The ordinate indicates the fractional differences

between experimental data and theoretical values: (Rexp −

Rtheo)/Rtheo.
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FIG. 3: (Color online) Comparison with experimental data of
R = F A

2 /F C,Li
2

. The ratios (Rexp − Rtheo)/Rtheo are shown.

ters cannot be determined easily by the present data.
The χ2 analysis results are shown in comparison with

the data. First, χ2 values are listed for each nuclear
data set in Table III. The total χ2 divided by the degree
of freedom is 1.58. Comparison with the actual data is
shown in Figs. 2, 3, and 4 for the FA

2 /FD
2 , FA

2 /FC,Li
2 ,

and Drell-Yan (σpA
DY /σpA′

DY ) data, respectively. These ra-
tios are denoted Rexp for the experimental data and Rtheo

for the parametrization calculations. The deviation ra-
tios (Rexp−Rtheo)/Rtheo are shown in these figures. The
NPDFs are evolved to the experimental Q2 points, then
the ratios (Rexp − Rtheo)/Rtheo are calculated.
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FIG. 5: (Color online) Parametrization results are compared
with the data of F2 ratios F Ca

2 /F D
2 and Drell-Yan ratios

σpCa
DY /σpD

DY . The theoretical curves and uncertainties are cal-
culated at Q2=5 GeV2 for the F2 ratios and at Q2=50 GeV2

for the Drell-Yan ratios.

As examples, actual data are compared with the
parametrization results in Fig. 5 for the ratios FCa

2 /FD
2

and σpCa
DY /σpD

DY . The shaded areas indicate the ranges of
NPDF uncertainties, which are calculated at Q2=5 GeV2

for the F2 ratios and at Q2=50 GeV2 for the Drell-Yan
ratios. The experimental data are well reproduced by the
parametrization, and the the data errors agree roughly
with the uncertainty bands. We should note that the
parametrization curves and the uncertainties are calcu-
lated at at Q2=5 and 50 GeV2, whereas the data are
taken at various Q2 points. In Fig. 5, the smallest-
x data at x=0.0062 for FCa

2 /FD
2 seems to deviate from

the parametrization curve. However, the deviation comes
simply from a Q2 difference. In fact, if the theoretical ra-
tio is estimated at the experimental Q2 point, the data
point agrees with the parametrization as shown in Fig.
2.

5

Anti-Shadowing

Shadowing
M. Hirai, S. Kumano and T. H. Nagai,
“Nuclear parton distribution functions
and their uncertainties,”
Phys. Rev. C 70, 044905 (2004)
[arXiv:hep-ph/0404093].
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Figure 1: Nuclear correction factor R according to Eq. 1
for the differential cross section d2σ/dx dQ2 in charged
current neutrino-Fe scattering at Q2 = 5 GeV2. Results
are shown for the charged current neutrino (solid lines)
and anti-neutrino (dashed lines) scattering from iron.
The upper (lower) pair of curves shows the result of our
analysis with the Base-2 (Base-1) free-proton PDFs.

Figure 2: Predictions (solid and dashed line) for the
structure function ratio F F e

2 /F D
2 using the iron PDFs

extracted from fits to NuTeV neutrino and anti-neutrino
data. The SLAC/NMC parameterization is shown with
the dot-dashed line. The structure function F D

2 in the
denominator has been computed using either the Base-2
(solid line) or the Base-1 (dashed line) PDFs.

(significant) dependence on the energy scale Q, the atomic number A, or the specific observable.
The increasing precision of both the experimental data and the extracted PDFs demand that the
applied nuclear correction factors be equally precise as these contributions play a crucial role in
determining the PDFs. In this study we reexamine the source and size of the nuclear corrections
that enter the PDF global analysis, and quantify the associated uncertainty. Additionally, we
provide the foundation for including the nuclear correction factors as a dynamic component of
the global analysis so that the full correlations between the heavy and light target data can be
exploited.

A recent study 1 analyzed the impact of new data sets from the NuTeV 3, Chorus, and E-
866 Collaborations on the PDFs. This study found that the NuTeV data set (together with the
model used for the nuclear corrections) pulled against several of the other data sets, notably the
E-866, BCDMS and NMC sets. Reducing the nuclear corrections at large values of x reduced
the severity of this pull and resulted in improved χ2 values. These results suggest on a purely
phenomenological level that the appropriate nuclear corrections for ν-DIS may well be smaller
than assumed.

To investigate this question further, we use the high-statistics ν-DIS experiments to perform
a dedicated PDF fit to neutrino–iron data.2 Our methodology for this fit is parallel to that of
the previous global analysis,1 but with the difference we use only Fe data and that no nuclear
corrections are applied to the analyzed data; hence, the resulting PDFs are for a bound proton
in an iron nucleus. Specifically, we determine iron PDFs using the recent NuTeV differential
neutrino (1371 data points) and anti-neutrino (1146 data points) DIS cross section data,3 and
we include NuTeV/CCFR dimuon data (174 points) which are sensitive to the strange quark
content of the nucleon. We impose kinematic cuts of Q2 > 2 GeV and W > 3.5 GeV, and obtain
a good fit with a χ2 of 1.35 per data point.2

2 Nuclear Correction Factors

We now compare our iron PDFs with the free-proton PDFs (appropriately scaled) to infer the
proper heavy target correction which should be applied to relate these quantities. Within the

Extrapolations from  NuTeV

SLAC/NMC data

Q2 = 5 GeV2

Scheinbein, Yu, Keppel, Morfin, Olness, Owens

No anti-shadowing in deep inelastic neutrino scattering !

Non-Universal -- Quark Specific?
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Nuclear Shadowing in QCD 

Nuclear  Shadowing not included in nuclear LFWF !  
!

 Dynamical effect due to virtual photon interacting in nucleus

Stodolsky 
Pumplin, sjb 

Gribov

Shadowing depends on understanding leading twist-diffraction in DIS

Diffraction via Reggeon gives constructive interference!

Anti-shadowing not universal
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The one-step and two-step processes in DIS
on a nucleus.

Coherence at small Bjorken xB :
1/MxB = 2�/Q2 � LA.

If the scattering on nucleon N1 is via pomeron
exchange, the one-step and two-step ampli-
tudes are opposite in phase, thus diminishing
the q flux reaching N2.

� Shadowing of the DIS nuclear structure
functions.

Diffraction via Pomeron gives destructive interference!

Shadowing
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Origin of Regge Behavior of        
Deep Inelastic Structure Functions

Antiquark interacts with target nucleus at
energy ŝ ⇤ 1

xbj

Regge contribution: ⇥q̄N ⇥ ŝ�R�1

Shadowing of ⇥q̄M produces shadowing of
nuclear structure function.

c

c̄

g

Antiquark interacts with target nucleus at
energy ŝ ⇤ 1

xbj

Regge contribution: ⇥q̄N ⇥ ŝ�R�1

Shadowing of ⇥q̄M produces shadowing of
nuclear structure function.

c

c̄

g

Antiquark interacts with target nucleus at
energy ŝ ⇤ 1

xbj

Regge contribution: ⇥q̄N ⇥ ŝ�R�1

Shadowing of ⇥q̄M produces shadowing of
nuclear structure function.

c

c̄

g

Antiquark interacts with target nucleus at
energy ŝ ⇤ 1

xbj

Regge contribution: ⇥q̄N ⇥ ŝ�R�1 gives F2N ⇥
x1��R

Nonsinglet Kuti-Weissko� F2p � F2n ⇤
⌅

xbj
at small xbj.

Shadowing of ⇥q̄M produces shadowing of
nuclear structure function.

c

Landshoff, 
Polkinghorne, Short 

Close, Gunion, sjb 

Schmidt, Yang,  Lu, 
sjb 

F2p(x)� F2n(x) / x

1/2
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Non-singlet 
Reggeon 
Exchange

x0.5

Kuti-Weisskopf 
behavior
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The one-step and two-step processes in DIS
on a nucleus.

Coherence at small Bjorken xB :
1/MxB = 2�/Q2 � LA.

If the scattering on nucleon N1 is via pomeron
exchange, the one-step and two-step ampli-
tudes are opposite in phase, thus diminishing
the q flux reaching N2.

� Shadowing of the DIS nuclear structure
functions.

Regge

        constructive in phase!
thus increasing the flux reaching N2

 Reggeon DDIS produces nuclear flavor-dependent anti-shadowing
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Phase of two-step amplitude relative to one
step:

1⇧
2
(1� i)⇥ i = 1⇧

2
(i + 1)

Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Di�erent for couplings of �⇤, Z0, W±

Reggeon 
Exchange

Critical test: Tagged Drell-Yan at PANDA

p̄A! µ+µ�X
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Nuclear Antishadowing not universal !

Schmidt, Yang; sjb

Modifies 
NuTeV extraction of 

sin2 �W

Test in flavor-tagged  
DIS at the EIC 
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Shadowing and Antishadowing  of DIS 
Structure Functions

S. J. Brodsky, I. Schmidt and J. J. Yang, “Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,” Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].

S. J. Brodsky, I. Schmidt and J. J. Yang,
“Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,”
Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].

Modifies 
NuTeV extraction of 

sin2 �W

Test in flavor-tagged  
lepton-nucleus collisions
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p̄

A

N

`

¯̀

�⇤

Tag forward fragments 	

compare nuclear targets

ū or

¯d

Test flavor-dependence of antishadowing



T-OddPseudo-

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark

Single-spin 
asymmetries

Leading-Twist 
Sivers Effect

~Sp ·~q⇥~pq

 Hwang,  Schmidt, 
sjb

Light-Front Wavefunction   
S and P- Waves

QCD S- and P- 
Coulomb Phases 

--Wilson Line

i

Collins, Burkardt!
Ji, Yuan

Analog of QED  
FSIs

Breakdown of pQCD Factorization Theorems



Final-State Interactions Produce Pseudo T-Odd  (Sivers Effect)

• Leading-Twist Bjorken Scaling! 

• Requires nonzero orbital angular momentum of quark 

• Arises from the interference of Final-State QCD Coulomb phases in S- and P- waves;  

• Wilson line effect  --  lc gauge prescription 

• Relate to the quark contribution to the target proton anomalous                                        
magnetic moment and final-state QCD phases 

• QCD phase at soft scale! 

• New window to QCD coupling and running gluon mass in the IR 

• QED S and P Coulomb phases infinite -- difference of phases finite! 

• Alternate: Retarded and Advanced Gauge: Augmented LFWFs 

• Sign Change for SSA for Drell-Yan lepton-pair production

~S ·~p jet⇥~q

~S ·~p jet⇥~qi

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark

 Hwang, Schmidt, sjb 
Collins

 Pasquini, Xiao, Yuan, sjb

Mulders, Boer Qiu, Sterman
!
 	


Dae Sung Hwang, Yuri V. Kovchegov,	

Ivan Schmidt, Matthew D. Sievert, sjb
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Abhay Deshpande	


Color interactions in QCD:  
• Non-universality of Sivers Function (DIS vs. DY) 
• Critical test of TMD Factorization 

Tuesday, October 14, 2014 FAIR14  32 

Carl Gagliardi – DNP2014 – RHIC Spin in the Next Decade 20 

DIS:  
attractive FSI 

Drell-Yan:  
repulsive ISI 

QCD!"

SiversDIS = � SiversDY or SiversW or SiversZ0 
 

AN for direct photon also has sign change in twist-3 

Critical test for our understanding of TMD’s and TMD factorization 

Color interactions in QCD 
Non-universality of the Sivers function 

Can explore all of these observables 
in 500 GeV pp collisions at RHIC 

Both PHENIX and STAR are installing upgrades for 2015 
to enable direct photon detection at forward rapidity 

  Attractive FSI                    Repulsive FSI 
           DIS                                Drell-Yan 

SiversDIS = - SiversDY/W/Z0/γ'
 

Will explore in future 500 GeV Runs 
STAR also plans TMD evolution studies  

using W’s 

Both PHENIX and 
STAR installing 
upgrades for 
2015 for direct 
photon DY 
measurement 
at forward rapidity 

Opportunities at PANDA: 
Drell Yan sector for future 
precision studies 

Hwang, Schmidt, sjb

Collins
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• Square of Target LFWFs                 Modified by Rescattering: ISI & FSI

• No Wilson Line                             Contains Wilson Line, Phases

• Probability Distributions                 No Probabilistic Interpretation

• Process-Independent                      Process-Dependent - From Collision

• T-even Observables                        T-Odd (Sivers, Boer-Mulders, etc.)

• No Shadowing,  Anti-Shadowing      Shadowing,  Anti-Shadowing, Saturation

• Sum Rules: Momentum and Jz               Sum Rules Not Proven

• DGLAP Evolution; mod. at large x   DGLAP Evolution

• No Diffractive DIS                         Hard Pomeron and Odderon Diffractive DIS

Static                           Dynamic

General remarks about orbital angular mo-
mentum

�n(xi,⇥k�i, �i)

�n
i=1(xi

⇥R�+⇥b�i) = ⇥R�

xi
⇥R�+⇥b�i

�n
i
⇥b�i = ⇥0�

�n
i xi = 1

2

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark

Mulders, Boer

Qiu, Sterman

 Pasquini, Xiao,  
Yuan, sjb

Collins, Qiu

Hwang, 
Schmidt, sjb,
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 DY               correlation at leading twist from double ISI

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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We show that initial-state interactions contribute to the cos 2# distribution in unpolarized Drell-Yan lepton

pair production pp and pp̄→!!!"X , without suppression. The asymmetry is expressed as a product of

chiral-odd distributions h1
!(x1 ,p!

2 )# h̄1
!(x2 ,k!

2 ), where the quark-transversity function h1
!(x ,p!

2 ) is the trans-

verse momentum dependent, light-cone momentum distribution of transversely polarized quarks in an unpo-

larized proton. We compute this !naive" T-odd and chiral-odd distribution function and the resulting cos 2#
asymmetry explicitly in a quark-scalar diquark model for the proton with initial-state gluon interaction. In this

model the function h1
!(x ,p!

2 ) equals the T-odd !chiral-even" Sivers effect function f 1T
! (x ,p!

2 ). This suggests

that the single-spin asymmetries in the semi-inclusive deep inelastic scattering and the Drell-Yan process are

closely related to the cos 2# asymmetry of the unpolarized Drell-Yan process, since all can arise from the same
underlying mechanism. This provides new insight regarding the role of the quark and gluon orbital angular

momentum as well as that of initial- and final-state gluon exchange interactions in hard QCD processes.

DOI: 10.1103/PhysRevD.67.054003 PACS number!s": 12.38.Bx, 13.85.Qk, 13.88.!e

I. INTRODUCTION

Single-spin asymmetries in hadronic reactions have been

among the most challenging phenomena to understand from

basic principles in QCD. Several such asymmetries have

been observed experimentally, and a number of theoretical

mechanisms have been suggested $1–6%. Recently, a new
way of producing single-spin asymmetries in semi-inclusive

deep inelastic scattering !SIDIS" and the Drell-Yan process
has been put forward $7,8%. It was shown that the exchange
of a gluon, viewed as initial- or final-state interactions, could

produce the necessary phase leading to a single transverse

spin asymmetry. The main new feature is that, despite the

presence of an additional gluon, this asymmetry occurs with-

out suppression by a large energy scale appearing in the pro-

cess under consideration. It has been recognized since then

$9% that this mechanism can be viewed as the so-called Sivers
effect $1,10%, which was thought to be forbidden by time-
reversal invariance $4%. Apart from generating Sivers effect

asymmetries, the mechanism offers new insight regarding the
role of orbital angular momentum of quarks in a hadron and

their spin-orbit couplings; in fact, the same S•! L! matrix ele-
ments enter the anomalous magnetic moment of the proton
$7%. The new mechanism for single target-spin asymmetries
in SIDIS necessarily requires noncollinear quarks and glu-
ons, and in the Sivers asymmetry the quarks carry no polar-
ization on average. As such it is very different from mecha-

nisms involving transversity !often denoted by h1 or &q),
which correlates the spin of the transversely polarized hadron
with the transverse polarization of its quarks.
In further contrast, the exchange of a gluon can also lead

to transversity of quarks inside an unpolarized hadron. This
chiral-odd partner of the Sivers effect has been discussed in
Refs. $6,11%, and in this paper we will show explicitly how
initial-state interactions generate this effect. Goldstein and

Gamberg reported recently that h1
!(x ,p!

2 ) is proportional to

f 1T
! (x ,p!

2 ) in the quark-scalar diquark model $12%. We con-
firm this and find that these two distribution functions are in
fact equal in this model. Although this property is not ex-
pected to be satisfied in general, nevertheless, one may ex-
pect these functions to be comparable in magnitude, since
both functions can be generated by the same mechanism. We
investigate the consequences of the present model result for
the unpolarized Drell-Yan process. We obtain an expression
for the cos 2# asymmetry in the lepton pair angular distribu-
tion. Here # is the angle between the lepton plane and the
plane of the incident hadrons in the lepton pair center of
mass. This asymmetry was measured a long time ago $13,14%
and was found to be large. Several theoretical explanations
!some of which will be briefly discussed below" have been
put forward, but we will show that a natural explanation can
come from initial-state interactions which are unsuppressed
by the invariant mass of the lepton pair.

II. THE UNPOLARIZED DRELL-YAN PROCESS

The unpolarized Drell-Yan process cross section has been
measured in pion-nucleon scattering: '"N→(!("X , with
N deuterium or tungsten and a '" beam with energy of 140,
194, 286 GeV $13% and 252 GeV $14%. Conventionally

*Email address: dboer@nat.vu.nl
†Email address: sjbth@slac.stanford.edu
‡Email address: dshwang@sejong.ac.kr
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ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗

DANIËL BOER

Dept. of Physics and Astronomy,
Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam,

The Netherlands
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The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ ̸= 0, ν ̸= 0 and
λ ̸= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV

∗Talk presented at the International Workshop on Transverse Polarization Phenomena
in Hard Processes (Transversity 2005), Villa Olmo, Como, Italy, September 7-10, 2005

1

4

Nachtmann & Mirkes3 demonstrated that the diagonal elements H11 and
H22 can give rise to a deviation from the Lam-Tung relation:

κ ≡ −
1

4
(1 − λ − 2ν) ≈

〈

H22 − H11

1 + H33

〉

. (5)

A simple assumption for the transverse momentum dependence of (H22 −
H11)/(1 + H33) produced a good fit to the data:

κ = κ0
Q4

T

Q4
T + m4

T

, with κ0 = 0.17 and mT = 1.5 GeV. (6)

Note that for this Ansatz κ approaches a constant value (κ0) for large QT .
In other words, the vacuum effect could persist out to large values of QT .
The Q2 dependence of the vacuum effect is not known, but there is also no
reason to assume that the spin correlation due to the QCD vacuum effect
has to decrease with increasing Q2.

3. Explanation as a hadronic effect

Usually if one assumes that factorization of soft and hard energy scales in
a hard scattering process occurs, one implicitly also assumes factorization
of the spin density matrix. In the present section this will indeed be as-
sumed, but another common assumption will be dropped, namely that of
collinear factorization. It will be investigated what happens if one allows for
transverse momentum dependent parton distributions (TMDs). The spin
density matrix of a noncollinear quark inside an unpolarized hadron can
be nontrivial. In other words, the transverse polarization of a noncollinear
quark inside an unpolarized hadron in principle can have a preferred direc-
tion and the TMD describing that situation is called h⊥

1
10. As pointed out

in Ref.1 nonzero h⊥
1 leads to a deviation from Lam-Tung relation. It offers

a parton model explanation of the DY data (i.e. with λ = 1 and µ = 0):
κ = ν

2 ∝ h⊥
1 (π)h⊥

1 (N) . In this way a good fit to data was obtained
by assuming Gaussian transverse momentum dependence. The reason for
this choice of transverse momentum dependence is that in order to be con-
sistent with the factorization of the cross section in terms of TMDs, the
transverse momentum of partons should not introduce another large scale.
Therefore, explaining the Lam-Tung relation within this framework neces-
sarily implies that κ = ν

2 → 0 for large QT . This offers a possible way to
distinguish between the hadronic effect and the QCD vacuum effect.

It may be good to mention that not only a fit of h⊥
1 to data has been

made (under certain assumptions), also several model calculations of h⊥
1

5

and some of its resulting asymmetries have been performed11,12,13, based
on the recent insight that T-odd TMDs like h⊥

1 arise from the gauge link.
In order to see the parton model expectation κ = ν

2 → 0 at large QT in
the data, one has to keep in mind that the pQCD contributions (that grow
as QT increases) will have to be subtracted. For κ perturbative corrections
arise at order α2

s, but for ν already at order αs. To be specific, at large QT

hard gluon radiation (to first order in αs) gives rise to14

ν(QT ) =
Q2

T

Q2 + 3
2Q2

T

. (7)

Due to this growing large-QT perturbative contribution the fall-off of the
h⊥

1 contribution will not be visible directly from the behavior of ν at large
QT . Therefore, in order to use ν as function of QT to differentiate between
effects, it is necessary to subtract the calculable pQCD contributions. In
Fig. 3 an illustration of this point is given. The dashed curve corresponds

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7 8
QT

Figure 3. Impression of possible contributions to ν as function of QT compared to DY
data of NA10 (for Q = 8 GeV). Dashed curve: contribution from perturbative one-gluon
radiation. Dotted curve: contribution from a nonzero h⊥

1 . Solid curve: their sum.

to the contribution of Eq. (7) at Q = 8 GeV. The dotted line is a pos-
sible, parton model level, contribution from h⊥

1 with Gaussian transverse
momentum dependence. Together these contributions yield the solid curve
(although strictly speaking it is not the case that one can simply add them,
since one is a noncollinear parton model contribution expected to be valid
for small QT and the other is an order-αs result within collinear factor-
ization expected to be valid at large QT ). The data are from the NA10
Collaboration for a pion beam energy of 194 GeV/c 5.

The Q2 dependence of the h⊥
1 contribution is not known to date. Only

the effect of resummation of soft gluon radiation on the h⊥
1 contribution to

function. Here we do not intend to give a full demonstration

of this in the Drell-Yan process; a generalized factorization

theorem which includes transverse momentum dependent

functions and initial- or final-state interactions remains to be

proven !27". Instead we present how to arrive at an effective
# from initial- and/or final-state interactions and use this

effective # in Fig. 2. Also, for simplicity we will perform

the explicit calculation in QED. Our analysis can be gener-

alized to the corresponding calculation in QCD. The final-

state interaction from gluon exchange has the strength

!e1e2!/4$→CF%s(&
2), where ei are the photon couplings to

the quark and diquark.

The diagram in Fig. 3 coincides with Fig. 6'a( of Ref. !28"
used for the evaluation of a twist-4 contribution ()1/Q2) to

the unpolarized Drell-Yan cross section. The differences

compared to Ref. !28" are that in the present case there is
nonzero transverse momentum of the partons, and the as-

sumption that the matrix elements are nonvanishing in case

the gluon has a vanishing light-cone momentum fraction 'but
nonzero transverse momentum(. This results in an unsup-
pressed asymmetry which is a function of the transverse mo-

mentum Q! of the lepton pair with respect to the initial

hadrons. If this transverse momentum is integrated over, then

the unsuppressed asymmetry will average to zero and the

diagrams will only contribute at order 1/Q2 as in Ref. !28".

First we will calculate the # matrix to lowest order

'called #L
%*) in the quark-scalar diquark model which was

used in Ref. !7". 'Although the model is based on a point-like
coupling of a scalar diquark to elementary fermions, it can be

softened to simulate a hadronic bound state by differentiating

the wave function formally with respect to a parameter such

as the proton mass.( As indicated earlier, no nonzero f 1T
! and

h1
! will arise from #L

%* . Next we will include an additional

gluon exchange to model the initial- and/or final-state inter-

actions 'relevant for timelike or spacelike processes( to cal-
culate # I/F

%* and do obtain nonzero values for f 1T
! and h1

! .

Our results agree with those recently obtained in the same

model by Goldstein and Gamberg !12". We can then obtain
an expression for the cos 2+ asymmetry from Eq. '16( and
perform a numerical estimation of the asymmetry.

A. ! matrix in the lowest order „!
L

"#…
As indicated in Fig. 4 the initial proton has its momentum

given by P&!(P",P#,P!)!(P
",M 2/P" ,0!), and the fi-

nal diquark P!&!(P!",P!#,P!! )!„P"(1#,),(-2

"r!
2 )/P"(1#,),r!…. We use the convention a$!a0$a3,

a•b!1/2 (a"b#"a#b")#a!•b! .
We will first calculate the # matrix to lowest order (#L

%*)

in the quark-scalar diquark model used in Ref. !7". By cal-
culation of Fig. 4 one readily obtains

#L
%*!ag2" ū'P ,S (

r”"m

r2#m2#*" r”"m

r2#m2
u'P ,S (#%

1

P"'1#,(

!ag2! ū'P ,S ('r”"m ("*!'r”"m (u'P ,S ("%
1

P"'1#,(

%$ 1

,$M 2#
m2"r!

2

,
#

-2"r!
2

1#, % % 2

, '17(

with a constant a!1/!2(2$)3" . The normalization is fixed
by the condition

& d,d2r! f 1', ,r!(!1. '18(

In Eq. '17( we used the relation

FIG. 2. The leading-order contribution to the Drell-Yan process.

FIG. 3. The initial-state interaction contribution to the Drell-Yan

process.

FIG. 4. Diagram which gives the lowest order # 'called #L
%*).
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Double Initial-State Interactions  
generate anomalous  

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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Drell-Yan planar correlations 

Double ISI

Hard gluon radiation
⇥(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)⇥ const

Conformal behavior: Q2F⇤(Q2)⇥ const

�s(Q2) ⇤ constant at small Q2.

Q4F1(Q2) ⇤ constant

If �s(Q�2) ⇤ constant

⇥(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)⇥ const

Conformal behavior: Q2F⇤(Q2)⇥ const

�s(Q2) ⇤ constant at small Q2.

Q4F1(Q2) ⇤ constant

If �s(Q�2) ⇤ constant

⇤(QT )

Q = 8GeV

⌅N ⇥ µ+µ�X NA10

Conformal behavior: Q4F1(Q2)⇥ const

Conformal behavior: Q2F⌅(Q2)⇥ const

�s(Q2) ⇤ constant at small Q2.

Q4F1(Q2) ⇤ constant
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The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ ̸= 0, ν ̸= 0 and
λ ̸= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV

∗Talk presented at the International Workshop on Transverse Polarization Phenomena
in Hard Processes (Transversity 2005), Villa Olmo, Como, Italy, September 7-10, 2005

1

PQCD Factorization (Lam Tung):
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We report a measurement of the angular distributions of Drell-Yan dimuons produced using an
800 GeV/c proton beam on a deuterium target. The muon angular distributions in polar angle
θ and azimuthal angle φ have been measured over the kinematic range 4.5 < mµµ < 15 GeV/c2,
0 < pT < 4 GeV/c, and 0 < xF < 0.8. No significant cos2φ dependence is found in these proton-
induced Drell-Yan data, in contrast to the situation for pion-induced Drell-Yan. The data are
compared with expectations from models which attribute the cos2φ distribution to a QCD vacuum
effect or to the presence of the transverse-momentum-dependent Boer-Mulders structure function
h⊥

1 . Constraints on the magnitude of the sea-quark h⊥
1 structure functions are obtained.

PACS numbers: 13.85.Qk, 14.20.Dh, 24.85.+p, 13.88.+e

The Drell-Yan process [1], in which a charged lepton
pair is produced in a high-energy hadron-hadron interac-
tion via the qq̄ → l+l− process, has been a testing ground
for perturbative QCD and a unique tool for probing par-
ton distributions of hadrons. The Drell-Yan production
cross sections can be well described by next-to-leading
order QCD calculations [2]. This provides a firm theo-
retical framework for using the Drell-Yan process to de-
termine the antiquark content of nucleons and nuclei [3],
as well as the quark distributions of pions, kaons, and
antiprotons [4].

Despite the success of perturbative QCD in describing
the Drell-Yan cross sections, it remains a challenge to un-
derstand the angular distributions of the Drell-Yan pro-
cess. Assuming dominance of the single-photon process,
a general expression for the Drell-Yan angular distribu-
tion is [5]

dσ

dΩ
∝ 1 + λ cos2 θ + µ sin 2θ cosφ +

ν

2
sin2 θ cos 2φ, (1)

where θ and φ denote the polar and azimuthal angle,
respectively, of the l+ in the dilepton rest frame. In
the “naive” Drell-Yan model, where the transverse mo-

mentum of the quark is ignored and no gluon emission
is considered, λ = 1 and µ = ν = 0 are obtained.
QCD effects [6] and non-zero intrinsic transverse mo-
mentum of the quarks [7] can both lead to λ ̸= 1 and
µ, ν ̸= 0. However, λ and ν should still satisfy the rela-
tion 1 − λ = 2ν [5]. This so-called Lam-Tung relation,
obtained as a consequence of the spin-1/2 nature of the
quarks, is analogous to the Callan-Gross relation [8] in
Deep-Inelastic Scattering. While QCD effects can signif-
icantly modify the Callan-Gross relation, the Lam-Tung
relation is predicted to be largely unaffected by QCD
corrections [9].

The first measurement of the Drell-Yan angular dis-
tribution was performed by the NA10 Collaboration for
π− + W at 140, 194, and 286 GeV/c, with the highest
statistics at 194 GeV/c [10]. The cos 2φ angular depen-
dences showed a sizable ν, increasing with dimuon trans-
verse momentum (pT ) and reaching a value of ≈ 0.3 at
pT = 2.5 GeV/c (see Fig. 1). The observed behavior of ν
could not be described by perturbative QCD calculations
which predict much smaller values of ν [6]. The Fermilab
E615 Collaboration subsequently performed a measure-
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for perturbative QCD and a unique tool for probing par-
ton distributions of hadrons. The Drell-Yan production
cross sections can be well described by next-to-leading
order QCD calculations [2]. This provides a firm theo-
retical framework for using the Drell-Yan process to de-
termine the antiquark content of nucleons and nuclei [3],
as well as the quark distributions of pions, kaons, and
antiprotons [4].

Despite the success of perturbative QCD in describing
the Drell-Yan cross sections, it remains a challenge to un-
derstand the angular distributions of the Drell-Yan pro-
cess. Assuming dominance of the single-photon process,
a general expression for the Drell-Yan angular distribu-
tion is [5]

dσ

dΩ
∝ 1 + λ cos2 θ + µ sin 2θ cosφ +

ν

2
sin2 θ cos 2φ, (1)

where θ and φ denote the polar and azimuthal angle,
respectively, of the l+ in the dilepton rest frame. In
the “naive” Drell-Yan model, where the transverse mo-

mentum of the quark is ignored and no gluon emission
is considered, λ = 1 and µ = ν = 0 are obtained.
QCD effects [6] and non-zero intrinsic transverse mo-
mentum of the quarks [7] can both lead to λ ̸= 1 and
µ, ν ̸= 0. However, λ and ν should still satisfy the rela-
tion 1 − λ = 2ν [5]. This so-called Lam-Tung relation,
obtained as a consequence of the spin-1/2 nature of the
quarks, is analogous to the Callan-Gross relation [8] in
Deep-Inelastic Scattering. While QCD effects can signif-
icantly modify the Callan-Gross relation, the Lam-Tung
relation is predicted to be largely unaffected by QCD
corrections [9].

The first measurement of the Drell-Yan angular dis-
tribution was performed by the NA10 Collaboration for
π− + W at 140, 194, and 286 GeV/c, with the highest
statistics at 194 GeV/c [10]. The cos 2φ angular depen-
dences showed a sizable ν, increasing with dimuon trans-
verse momentum (pT ) and reaching a value of ≈ 0.3 at
pT = 2.5 GeV/c (see Fig. 1). The observed behavior of ν
could not be described by perturbative QCD calculations
which predict much smaller values of ν [6]. The Fermilab
E615 Collaboration subsequently performed a measure-

3

TABLE I: Mean values of the λ, µ, ν parameters and the quan-
tity 2ν − (1 − λ) for three Drell-Yan measurements. The pT

dependence of these quantities is shown in Fig. 1.

p + d π− + W π− + W

800 GeV/c 194 GeV/c 252 GeV/c

(E866) (NA10) (E615)

⟨λ⟩ 1.07 ± 0.07 0.83 ± 0.04 1.17 ± 0.06

⟨µ⟩ 0.003 ± 0.013 0.008 ± 0.010 0.09 ± 0.02

⟨ν⟩ 0.027 ± 0.010 0.091 ± 0.009 0.169 ± 0.019

⟨2ν − (1 − λ)⟩ 0.12 ± 0.07 0.01 ± 0.04 0.51 ± 0.07

Several settings of the currents in the three dipole mag-
nets (SM0, SM12, SM3) were used in order to optimize
acceptance for different dimuon mass regions. Data col-
lected with the “low mass” and “high mass” settings [26]
on liquid deuterium and empty targets were used in this
analysis. The detector system consisted of four track-
ing stations and a momentum analyzing magnet (SM3).
Tracks reconstructed by the drift chambers were extrapo-
lated to the target using the momentum determined from
the bend angle in SM3. The target position was used to
refine the parameters of each muon track.

From the momenta of the µ+ and µ−, kinematic vari-
ables of the dimuons (xF , mµµ, pT ) were readily recon-
structed. The muon angles θ and φ in the Collins-Soper
frame [27] were also calculated. To remove the quarko-
nium background, only events with 4.5 < mµµ < 9
GeV/c2 or mµµ > 10.7 GeV/c2 were analyzed. A total
of 118,000 p + d Drell-Yan events covering the decay an-
gular range −0.5 < cos θ < 0.5 and −π < φ < π remain.
Detailed Monte-Carlo simulations for the experiment us-
ing the MRST98 parton distribution functions [28] for
NLO Drell-Yan cross sections have shown good agree-
ments with the data for a variety of measured quantities.

Figure 1 shows the angular distribution parameters
λ, µ, and ν vs. pT . To extract these parameters, the
Drell-Yan data were grouped into 5 bins in cos θ and 8
bins in φ for each pT bin. A least-squares fit to the data
using Eq. 1 to describe the angular distribution was per-
formed. Only statistical errors are shown in Fig. 1. The
primary contributions to the systematic errors are the
uncertainties of the incident beam angles on target. The
analysis has been performed allowing the beam angles to
vary within their ranges of uncertainty. From this study,
we found that the systematic errors are comparable to the
statistical errors for each individual pT bin. However, the
pT averaged values ⟨λ⟩, ⟨µ⟩, and ⟨ν⟩, are dominatd by the
statistical errors.

For comparison with the p + d Drell-Yan data, the
NA10 π− +W data at 194 GeV/c and the E615 π− +W
data at 252 GeV/c are also shown in Fig. 1. To test the
validity of the Lam-Tung relation, also shown in Fig. 1
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FIG. 2: Parameter ν vs. pT in the Collins-Soper frame for
three Drell-Yan measurements. Fits to the data using Eq. 3
and MC = 2.4 GeV/c2 are also shown.

is the quantity, 2ν − (1 − λ), for all three experiments.
For p + d at 800 GeV/c, Fig. 1 shows that λ is consis-
tent with 1, in agreement with previous studies [3, 25],
while µ and ν deviate only slightly from zero. This is in
contrast to the pion-induced Drell-Yan results, in which
much larger values of ν are found. Table I lists the mean
values of λ, µ, ν and 2ν − (1 − λ) for these three experi-
ments. Again, the qualitatively different behavior of the
azimuthal angular distributions for p + d versus π− + W
is evident. It is also interesting to note that while E615
clearly establishes the violation of the Lam-Tung rela-
tion, the NA10 and the p + d data are largely consistent
with the Lam-Tung relation.

In an attempt to extract information on the magnitude
of the h⊥

1 function from the NA10 data, Boer [17] as-
sumed that h⊥

1 is proportional to the spin-averaged par-
ton distribution function f1:

h⊥

1 (x, k2
T ) = CH

αT

π

MCMH

k2
T + M2

C

e−αT k2

T f1(x), (2)

where kT is the quark transverse momentum, MH is the
mass of the hadron H (pion or nucleon), and MC and
CH are constant fitting parameters. A Gaussian trans-
verse momentum dependence of e−αT k2

T with αT = 1
(GeV/c)−2 was assumed. The cos 2φ dependence then
results from the convolution of the pion h⊥

1 /f1 term with
the nucleon h⊥

1 /f1 term, and the parameter ν is given as

ν = 16κ1

p2
T M2

C

(p2
T + 4M2

C)2
, (3)

where κ1 = CH1
CH2

/2, and H1, H2 denote the two inter-
acting hadrons. As shown in Fig. 2, a good description
of the NA10 data is obtained with κ1 = 0.47 ± 0.14 and
MC = 2.4 ± 0.5 GeV/c2. A fit to the E615 ν data at
252 GeV/c using MC = 2.4 GeV/c2, also shown in Fig.

3
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tity 2ν − (1 − λ) for three Drell-Yan measurements. The pT

dependence of these quantities is shown in Fig. 1.
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much larger values of ν are found. Table I lists the mean
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with the Lam-Tung relation.
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verse momentum dependence of e−αT k2

T with αT = 1
(GeV/c)−2 was assumed. The cos 2φ dependence then
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C)2
, (3)
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Exclusive Processes at PANDA

• Detailed tests of QCD hadronization at the 
amplitude level	


• Fundamental production and dynamical mechanisms	


• Rigorous Scaling Laws at fixed t/s.	


• Regge Trajectories become flat at large momentum 
transfer	


• Exclusive Amplitudes: convolution of light front 
wavefunctions	


• Probe color confinement, fundamental QCD scale.	


• Color transparency measures color dipole size
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Time-Like& Space-Like EM Form Factors 

Dispersion relations: 
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!Time-like and Space-like EM Form Factors
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d�
dt (pp! pp) = F (t/s)

s9.7±0.5

QCD Prediction: d�

dt
(pp! pp) =

F (t/s)
s10

N = 4⇥ 3 = 12, n = N � 2 = 10
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d�

dt
(A + B ! C + D) =

F (t/s)
sN�2

N = NA + NB + NC + ND

d�

dt
(p̄p! ⇤̄⇤) =

F (t/s)
s10

d�

dt
(p̄p! K�K+) =

F (t/s)
s8

AdS/QCD: Polchinski and Strassler

Farrar, sjb	

Matveev, Muradyan, Tavkhelidze

Fixed CM angle scaling

s2 d�

dt
(pp! pp) =

F (t/s)
s8

s$ u

s2 d�

dt
(p̄p! p̄p) =

F (t/u)
u8
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Quark Counting Rules for Exclusive Processes

• Power-law fall-off of the scattering rate reflects 
degree of compositeness!

• The more composite -- the faster the fall-off!

• Power-law counts the number of quarks and gluon 
constituents!

• Form factors: probability amplitude to stay intact!

FH(Q) ⇤ 1
(Q2)n�1

Q momentum transfer

e+e� ⇥ pp̄

�s(Q) ⇤ 1
lnQ

⇥(e+e�⇥three jets)
⇥(e+e�⇥two jets)

proportional to �s(s)

n = # elementary constituents

Brodsky and Farrar, Phys. Rev. Lett. 31 (1973) 1153  
Matveev et al., Lett. Nuovo Cimento, 7 (1973) 719 

True for Hadrons and Atoms
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•pQCD Quark Counting Rules	


•Crossing Relations	


•Hadron-Helicity Conservation	


•Quark Interchange dominates Gluon 
Exchange	


•Color Transparency 	


•Interference Patterns; Charm Threshold	


M(p̄p! p̄p) =
X

i

M
Resonances

+ M
QCD Background

d�

dt
(A + B ! C + D) =

FA+B!C+D(t/s)
snA+nB+nC+nD�2

=
X

i

P

J
i (cos✓CM ,�)

s�M

2 + i

p
s�i

+
C

t

4
s

4



Unexpected  

spin-spin 

correlation in pp  

elastic scattering

pp� �c(cud)D0(cu)p

p

⇥(pp� cX)

Total open charm cross section at threshold

⇥(pp� cX) ⇥ 1µb

needed to explain Krisch ANN

Compare with strangeness channels

pp� �(sud)K+(su)p

pp� �c(cud)D0(cu)p

p

⇥(pp� cX)

Total open charm cross section at threshold

⇥(pp� cX) ⇥ 1µb

needed to explain Krisch ANN

Compare with strangeness channels

pp� �(sud)K+(su)p

pp� �c(cud)D0(cu)p

p

⇥(pp� cX)

Total open charm cross section at threshold

⇥(pp� cX) ⇥ 1µb

needed to explain Krisch ANN

Compare with strangeness channels

pp� �(sud)K+(su)p

pp� �c(cud)D0(cu)p

p

⇥(pp� cX)

Total open charm cross section at threshold

⇥(pp� cX) ⇥ 1µb

needed to explain Krisch ANN

Compare with strangeness channels

pp� �(sud)K+(su)p

polarizations normal to scattering plane

⌅ ⌅

• Measure Elastic Proton-Proton Scattering

d�
dt (pp ⇤ pp) at large pT .

Test PQCD AdS/CFT conformal scaling:
twist = dimension - spin = 12

M(s, t) ⇥ F (t/s)
s4

d�
dt (pp ⇤ pp) ⇥ |F (t/s)|2

s10

⌅ ⌅

• Measure Elastic Proton-Proton Scattering

d�
dt (pp ⇤ pp) at large pT .

Test PQCD AdS/CFT conformal scaling:
twist = dimension - spin = 12

M(s, t) ⇥ F (t/s)
s4

d�
dt (pp ⇤ pp) ⇥ |F (t/s)|2

s10

Krisch, Crabb, et al 

RNN



Large RNN in pp! pp explained by

B = 2, J = L = 1 |uuduudcc̄ > resonance

at

p
s ⇠ 5 GeV

de Teramond and sjb

Ratio reaches 4:1

|uud uud cc̄i

p2
?(GeV2)

�("")/�("#)

plab(GeV/c)

+ Breakdown of Color Transparency!



p

u

u

c

c– 

c

c– 

d

p

p

u

u

d

p

5-2005
8717A3

QCD  
Schwinger-Sommerfeld 

Enhancement at Heavy Quark 
Threshold

Hebecker, Kuhn, sjb

S. J. Brodsky and G. F. de Teramond, “Spin
Correlations, QCD Color Transparency And
Heavy Quark Thresholds In Proton Proton
Scattering,” Phys. Rev. Lett. 60, 1924 (1988).

Quark Interchange + 8-Quark Resonance

|uuduudcc̄ > Strange and Charm Octoquark!

M = 3 GeV, M = 5 GeV.

J = L = S = 1, B = 2

Production of   
uud c c uud  

octoquark resonance

J=L=S=1, C=-, P=- state

8 quarks in S-wave: odd parity

Ann = 1!

�(pp! cc̄X) ' 1 µb at threshold

�(�p! cc̄X) ' 1 nb at threshold

Large RNN in pp! pp explained by

B = 2, J = L = 1 |uuduudcc̄ > resonance

at

p
s ⇠ 5 GeV

Possible: Octoquark resonance uudūūd̄c̄c̄
in p̄p! p̄p at

p
s = 5 GeV
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Constituent Interchange 
Spin exchange in atom-

atom scattering

Two-Photon Exchange 
(Van der Waal )

d⇤
dt = |M(s,t)|2

sntot�2

M(t, u)interchange ⇥ 1
ut2

⇤

|b⇤|

⌅(⇤, b⇤)

A(⇤, b⇤) =
1

2⇥

�
d�ei⇤�Ã(b⇤, �)

M(t, u)interchange � 1
ut2

M(s, t)gluonexchange � sF (t)

⇤

|b⇥|

⌅(⇤, b⇥)

A(⇤, b⇥) =
1

2⇥

�
d�ei⇤�Ã(b⇥, �)

K+

p

g

u

s

d

d�
dt = |M(s,t)|2

s2

[e+e�] [e+e�]

[µ+e�] [µ+e�]µ+

e+

e� e�

[e+e�] [e+e�]

[µ+e�] [µ+e�]µ+

�⇤ �⇤
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Quark Interchange Blankenbecler, Gunion, sjb  

pp! pp

p p

p

d

u

M(pp! pp) / 1
u2

1
t2

d�

dt
(pp! pp) / 1

s2t4u4
=

F (t/s)
s10



u

u

d

K+

p0

p

K+0s̄

u

 Constituent Interchange 
Blankenbecler, Gunion, sjb  

Analog of 
(electron) 

spin exchange 
in atom atom 

scattering

K+p! K+p



 

Non-linear Regge behavior:"

�R(t)⇤ �1

z = ⇤

⌅4

⇥ = 0

B(0) = 0 Fock-state-by-Fock state

qR,L = qx ± iqy

⇧(x, b⌅)

d⇤
dt = |M(s,t)|2

sntot�2

M(t, u)interchange ⇥ 1
ut2

⇤

|b⇤|

⌅(⇤, b⇤)

A(⇤, b⇤) =
1

2⇥

�
d�ei⇤�Ã(b⇤, �)

Quark Interchange
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The (su) topology would contribute in the simplest quark model, but the core routing should make it a
small contribution. It will be neglected here. The asymptotic amplitude is then

1
B())'p)=s '[—,'(1-z)] ' dxN(x)x'(4o(1+z) '"[x'(1+z)+(1-x)'(1-z)] '"

0

+p[x'- (1-x) —.'(1 -z)]-"'] . (5.22)

—(z'p) =)~),[4n(1+ z) '+p]'do, o (1+z) (5.24)

and

Let us now approximate this simple result to get
even a simpler form. The p integral is almost in-
dependent of z for small z, and has a negligible
imaginary part. The n integral is real, and its
dependence on z is very close to (1 + z) '". Fur-
thermore, the coefficients of +4m and P are al-
most equal at z =0, as one can check by numerical
integration. Thus a convenient form is
B())'p)=N s 4[—(1 -z)] '[4n(1 + z) '+p], (5.22)

which results in the differential cross sections

where o, is a constant. A comparison of the en-
ergy dependence at 90' is made with the data of
Owen et al. " in Fig. 6. The angular dependence
of the m p-m p reaction is compared with the
same data for o) =2, p =1 in Fig. 7. (This corre-
sponds to simple quark counting —two 6' quarks
plus one X quark interchange. '4) The agreement
is quite good even quite far from 90', but clearly
better data throughout the high-energy region is
desired for a more crucial test. A search for the
best values of n and P has not been made.
The ratios of the differential cross sections at
90' for these three processes are yredicted in
this leading approximation at large s to be
do())'p-w'p): do()) p-z p): do()) p-))'n)

()) p) = I,[4p(1+ z) '+ o]',do ~o' (1+z)

—()) p - ))'n) = )) [-,' (o) +p)]'do 0
o' (1+z)

dt s' (1 -z)4
x[4(1 q z)-'+1]',

(5.25)

(5.26)

= (4o'+p)' ()r+ 4p)' ~ (~+p)'
(5.27)

A particularly striking feature of this prediction
is that once the ratio of I =0 and I =1 exchange is
fixed, then the angular dependence in the deep re-
gion of all three processes is precisely deter-
mined. "

O. I

I I I I I I II)I

SLOPE 8.0~~

l

l

I I I I I I II

~ Owen et al.

R(z} 2—

I )I I
I

I )

do
dt

~ ~

I
' I

7T P=R(z}dt 90

0.01
I

(I-z
I ) I ) I

0.001 I I I I I I I I

0.4 0.2 0 -0.2 -0.4
z=cos Hc m

10
s (Gev')

100

FIG. 6. The energy dependence of the 90' cross
section for 7) p scattering.

FIG. 7. The dependence of the x p differential cross
section on z (cos 8) in the center-of-mass system. The
lack of any strong energy dependence of the ratio should
be noted. The solid line is our prediction given in Eq.
(5.25) with n =2P.
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Quark interchange description of pion-proton scattering
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dependence
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ū



 Stan Brodsky
!

  October 16, 2014 Novel  Tests of QCD at FAIR 
!

 Stan Brodsky
!

  October 16, 2014

LARGE -ANGLE SCATTERING AND THE INTERCHANGE FORCE

obtain predictions for a variety of annihilation re-
actions. For example, the process pp-pp can be
crossed to the process pp- pp. Similarly the
meson-nucleon scattering amplitudes can be
crossed to yield predictions for pp- m'm, K'K-,
etc., in the deep scattering region where one again
only needs to know the wave functions in the asymp-
totic region.
We begin by discussing the process pp- w m'

which we obtainby s t crossing from m p m p.
Technically, one should begin with the exact de-
scription given by Eq. (5.22) for the invariant am-
ylitude. By direct calculation, we have found that
for lz l

~0.5, one may equally well use the approxi-
mate expression (5.23). The invariant amplitude
becomes

is in agreement with the ratio observed at 5 GeV/c
Since continuation of our approximate forms for

s'dc/dt should be quite reliable, we can obtain a
prediction for pp- pp from the approximate deep-
scattering formula for pp-pp [Eq. (5.40)]:

s'—(pp pp) =f(0)s'(4tu) i2d0'
dt

s'—"'(pp-pp)=f(o)lul'(4ltls) ',
where we expect that a- 0.4 and I - 5.2 in the
lower-energy ranges. Thus pp is symmetric
about 90' while pp should have only the forward
peak. The ratio of the cross sections is

N o. PB(pp-w v')=—— a —+—83 t2 g2 (5.41)

where t= (p~ —p, -)', etc. Using this, one obtains
the prediction

,dc, „c,(1 -s')
(PP ~F

&&[o'(I -s) '+P(1+ &) '] ~

,dc, o', o.' (1 + g)s'dt (pp-K K')= 2', (1 ),
and the ratio

—(rC-p- K-p — (pp-K-K. ') =2(1 -s)-'.do' d 0'
dt dt

(5.43)

(5.44)
The data" for pp-K K+ do indeed indicate a
sharp forward peaking and, a very small, probably
exotic, backward peak. The 90' ratio given above

Note that this can be obtained directly from
s t crossing of the approximate form of s~dc/dt
given in Eq. (5.25). Thus spin does not complicate
the crossing of these reactions, and the approxi-
mate expressions may be used reliably. Note
that Eq. (5.42) predicts a fixed-angle cross sec-
tion proportional to s ' which is a characteristic
of all the meson-baryon processes. Using o.'-2P
as found in 7 p F p scattering, one expects a
minimum in do/dt just beyond 90'. The data'0 at
5 GeV/c are in good qualitative agreement with
the interchange predictions, except, of course,
for the very forward and backward direction where
one expects baryon trajectory exchange to be im-
portant.
Proceeding in a similar manner, one can obtain

a prediction for pp K K' by s t crossing from
K p-K p. Using Eq. (5.31), we obtain

(5.45)

which at 90' is -2'~-49.
Experimentally, the 90' ratio at 5 GeV/c is

near 100,3' but of course the energy is too low to
1Ilake a quantitative comparison meaningful. It is
interesting, however, that such large ratios are
predicted by the interchange theory —in simple
Regge theories and Wu-Yang type theories, the
ratio is of order unity.

E. Resonance Production

Once one has a basic understanding of elastic
processes in the deep scattering region and thus
of the meson and nucleon wave functions at large
momentum transfer, useful information about the
wave function of excited states and resonances
may be obtained from their production cross sec-
tion. We also note that measurements of polariza-
tion in such processes as pp- ~"e can lead to a
check on the interchange prediction (for the sim-
ple valence quark model) that the amplitude is
purely real.
In the case of mesonic resonance production,
e.g., m+p p+ p, a comparison of the fixed-angle
energy dependence of the cross section in the deep
region with that for n'+p-m+ p, is a sensitive
probe of the asymptotic behavior of the p form
factor. Since the p is presumably not elementary,
m+ p- p+ p should fall faster with energy than
y+ p-w+ p. The u dependence of the (ut) contri-
bution to the w + p -p+ p amplitude also reflects
the asymptotic behavior of the wave function of the
p. A systematic comparison of the above three
processes and their analogs for other resonances
would be of particular interest.

LARGE -ANGLE SCATTERING AND THE INTERCHANGE FORCE

obtain predictions for a variety of annihilation re-
actions. For example, the process pp-pp can be
crossed to the process pp- pp. Similarly the
meson-nucleon scattering amplitudes can be
crossed to yield predictions for pp- m'm, K'K-,
etc., in the deep scattering region where one again
only needs to know the wave functions in the asymp-
totic region.
We begin by discussing the process pp- w m'

which we obtainby s t crossing from m p m p.
Technically, one should begin with the exact de-
scription given by Eq. (5.22) for the invariant am-
ylitude. By direct calculation, we have found that
for lz l

~0.5, one may equally well use the approxi-
mate expression (5.23). The invariant amplitude
becomes

is in agreement with the ratio observed at 5 GeV/c
Since continuation of our approximate forms for

s'dc/dt should be quite reliable, we can obtain a
prediction for pp- pp from the approximate deep-
scattering formula for pp-pp [Eq. (5.40)]:

s'—(pp pp) =f(0)s'(4tu) i2d0'
dt

s'—"'(pp-pp)=f(o)lul'(4ltls) ',
where we expect that a- 0.4 and I - 5.2 in the
lower-energy ranges. Thus pp is symmetric
about 90' while pp should have only the forward
peak. The ratio of the cross sections is

N o. PB(pp-w v')=—— a —+—83 t2 g2 (5.41)

where t= (p~ —p, -)', etc. Using this, one obtains
the prediction

,dc, „c,(1 -s')
(PP ~F

&&[o'(I -s) '+P(1+ &) '] ~

,dc, o', o.' (1 + g)s'dt (pp-K K')= 2', (1 ),
and the ratio

—(rC-p- K-p — (pp-K-K. ') =2(1 -s)-'.do' d 0'
dt dt

(5.43)

(5.44)
The data" for pp-K K+ do indeed indicate a
sharp forward peaking and, a very small, probably
exotic, backward peak. The 90' ratio given above

Note that this can be obtained directly from
s t crossing of the approximate form of s~dc/dt
given in Eq. (5.25). Thus spin does not complicate
the crossing of these reactions, and the approxi-
mate expressions may be used reliably. Note
that Eq. (5.42) predicts a fixed-angle cross sec-
tion proportional to s ' which is a characteristic
of all the meson-baryon processes. Using o.'-2P
as found in 7 p F p scattering, one expects a
minimum in do/dt just beyond 90'. The data'0 at
5 GeV/c are in good qualitative agreement with
the interchange predictions, except, of course,
for the very forward and backward direction where
one expects baryon trajectory exchange to be im-
portant.
Proceeding in a similar manner, one can obtain

a prediction for pp K K' by s t crossing from
K p-K p. Using Eq. (5.31), we obtain

(5.45)

which at 90' is -2'~-49.
Experimentally, the 90' ratio at 5 GeV/c is

near 100,3' but of course the energy is too low to
1Ilake a quantitative comparison meaningful. It is
interesting, however, that such large ratios are
predicted by the interchange theory —in simple
Regge theories and Wu-Yang type theories, the
ratio is of order unity.

E. Resonance Production

Once one has a basic understanding of elastic
processes in the deep scattering region and thus
of the meson and nucleon wave functions at large
momentum transfer, useful information about the
wave function of excited states and resonances
may be obtained from their production cross sec-
tion. We also note that measurements of polariza-
tion in such processes as pp- ~"e can lead to a
check on the interchange prediction (for the sim-
ple valence quark model) that the amplitude is
purely real.
In the case of mesonic resonance production,
e.g., m+p p+ p, a comparison of the fixed-angle
energy dependence of the cross section in the deep
region with that for n'+p-m+ p, is a sensitive
probe of the asymptotic behavior of the p form
factor. Since the p is presumably not elementary,
m+ p- p+ p should fall faster with energy than
y+ p-w+ p. The u dependence of the (ut) contri-
bution to the w + p -p+ p amplitude also reflects
the asymptotic behavior of the wave function of the
p. A systematic comparison of the above three
processes and their analogs for other resonances
would be of particular interest.



u

d
p u

Crossing of Constituent Interchange 

p̄

ū
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We consider the production of charmed baryons and mesons in the proton-
antiproton binary reactions at the energies of the future P̄ANDA experiment.
To describe these processes in terms of hadronic interaction models, one
needs strong couplings of the initial nucleons with the intermediate and final
charmed hadrons. Similar couplings enter the models of binary reactions
with strange hadrons. For both charmed and strange hadrons we employ
the strong couplings and their ratios calculated from QCD light-cone sum
rules. In this method finite masses of c and s quarks are taken into account.
Employing the Kaidalov’s quark-gluon string model with Regge poles and
adjusting the normalization of the amplitudes in this model to the calcu-
lated strong couplings, we estimate the production cross section of charmed
hadrons. For pp̄ → ΛcΛ̄c it can reach several tens of nb at plab = 15 GeV,
whereas the cross sections of Σc and D pair production are predicted to be
smaller.
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Figure 1: The planar diagram of charmed baryon (a) and meson (b) pair production in
pp̄ collisions.

strange baryons obtained from LCSR and collected in Table 1. We find that the values
of the dimensionless gV couplings are in the same ballpark, whereas there is a signif-
icant difference between gTΛNK∗ and gTΛcND∗ . The strange baryon couplings were also
calculated with the Nijmegen potential model [20] of low-energy scattering, assuming
SU(3)fl-symmetry. Expressed in terms of the dimensionless g-couplings defined in (1)
the results of [20] with their sign conventions are:

gΛNK = 13.4 ÷ 17.5 , gVΛNK∗ = −(4.3 ÷ 6.1) , g
T
ΛNK∗ = 12.4 ÷ 16.3,

gΣNK = −(4.1÷ 5.3) , gVΣNK∗ = −(2.4 ÷ 3.5) , g
T
ΣNK∗ = −(1.3 ÷ 4.6) . (3)

Comparing with our predictions for the strange-baryon couplings given in Table 1, we ob-
serve an agreement for vector-meson couplings within uncertainties. Also the convention-
independent relative signs of T and V couplings agree. Meanwhile, the LCSR predictions
for gΛNK and gΣNK are systematically lower than the intervals for these couplings ob-
tained in the potential model.

3 The QGS model for meson pair production

In the QGS model, the amplitudes of binary reactions, such as pp̄ → ΛcΛ̄c or pp̄ →
D̄D, are described by planar diagrams depicted in Fig. 1. These diagrams have a dual
interpretation. From the s-channel point of view, annihilation of the slow uū or dd̄

pair from the initial proton and antiproton is followed by a creation of the cc̄-pair.
The spectator quarks and antiquarks from the initial proton and antiproton coalesce
with the created quark and antiquark to form the final state charmed hadrons. The
intermediate state in s-channel represents a sort of a diquark-antidiquark (Fig.1 a) or
quark-antiquark (Fig.1 b) string. On the other hand, in the t-channel a virtual hadronic
state with the quantum numbers of a charmed meson or baryon is exchanged. In the
s ≫ |t| limit, this exchange is described by the dominant Regge pole. For instance, the
amplitude of pp̄ → ΛcΛ̄c is approximated by the (degenerate) D∗,D∗∗ Regge-trajectory

5

Regge exchange model
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Figure 5: Differential cross sections of pp̄ → ΛcΛ̄c, and pp̄ → DD̄ at plab = 15GeV
calculated in QGS model. The dashed lines indicate the uncertainties caused
by LCSR estimates of strong couplings.

to assess quantitatively, as it is the case for any phenomenological hadronic model not
directly related to QCD. The predictive power of the model concerns mostly the ratios of
cross sections, where the “intrinsic” uncertainties of the method to a large extent cancel.
One important prediction concerns the suppression of Σc- with respect to Λc-production
cross section.

This suppression is more significant than predicted in [2] where simple relations based
on the nonrelativistic quark-diquark model for these reactions are used

σ(pp̄ → ΛcΛ̄c)

σ(pp̄ → ΣcΛ̄c)
=
σ(pp̄ → ΣcΛ̄c)

σ(pp̄ → ΣcΣ̄c)
= 3 . (26)

Our predictions for these ratios at plab = 15 GeV are:

σ(pp̄ → ΛcΛ̄c)

σ(pp̄ → ΣcΛ̄c)
= 5.1+1.0

−2.0,
σ(pp̄ → ΣcΛ̄c)

σ(pp̄ → ΣcΣ̄c)
= 4.6+0.9

−1.8 . (27)

Due to the suppression of Σc couplings versus Λc couplings, also the D0D̄0 production
cross section is expected to be significantly larger than the D+D̄− one. It will be very
interesting to test all these predictions experimentally.

5 Conclusion

In this paper we bring together the strong couplings of charmed and strange baryons,
both predicted within one and the same QCD based method of LCSR. We have demon-
strated that it is possible to avoid SU(4)fl approximation. The relations between cou-
plings are nontrivial because they stem from the nonperturbative dynamics which is
quite different for heavy and light (also strange) quarks. The LCSR predictions for
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Exotics production in pp collisions 

• Production:   all JPC accessible 

G.Bali, EPJA 1 (2004) 1 (PS) 

_ 
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via OZI
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Non-qq Mesons:  Charged cc-like States 
_ _ 

• Planned studies with PANDA 

• production in pp: 
 pp Æ Z(4430)r π 
 Z(4430)r Æ ψ(2S) πr x 

• formation in pn: 
 pd Æ Z(4430)- pspectator      

    Æ ψ(2S) π- pspectator 
 must reconstruct the 

spectator proton  
reduced mass resolution 

r _ 

_ 

_ 

_ 

J. Ritman
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in addition to many more open charm states Ritman
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The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.
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amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
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For leptons, such as the electron or neutrino, it is convenient to employ the electron
mass for M , so that the magnetic moment is given in Bohr magnetons.

Now we turn to the evaluation of the helicity-conserving and helicity-flip vector-
current matrix elements in the light-front formalism. In the interaction picture, the
current Jµ(0) is represented as a bilinear product of free fields, so that it has an
elementary coupling to the constituent fields [13, 14, 15]. The Dirac form factor can
then be calculated from the expression
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.

The summations are over all contributing Fock states a and struck constituent charges
ej. Here, as earlier, we refrain from including the constituents’ color and flavor
dependence in the arguments of the light-front wave functions. The phase-space
integration is

⌥
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where n denotes the number of constituents in Fock state a and we sum over the
possible {⇥i}, {ci}, and {fi} in state a. The arguments of the final-state, light-front
wave function di�erentiate between the struck and spectator constituents; namely, we
have [13, 15]

k⌅
⇧j = k⇧j + (1� xj)q⇧ (14)

for the struck constituent j and

k⌅
⇧i = k⇧i � xiq⇧ (15)

for each spectator i, where i ⌅= j. Note that because of the frame choice q+ = 0, only
diagonal (n⌅ = n) overlaps of the light-front Fock states appear [14].
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then be calculated from the expression

F1(q
2) =

⇧

a

⌥
[dx][d2k⇧]

⇧

j

ej

�
⌅⇥�

a (xi,k
⌅
⇧i, ⇥i) ⌅⇥

a(xi,k⇧i, ⇥i)
 
, (10)

whereas the Pauli and electric dipole form factors are given by
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,

F3(q2)

2M
=

⇧

a

⌥
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⇧

j

ej
i

2
⇥ (12)

�
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⌅
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1

qR
⌅⇤�
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.

The summations are over all contributing Fock states a and struck constituent charges
ej. Here, as earlier, we refrain from including the constituents’ color and flavor
dependence in the arguments of the light-front wave functions. The phase-space
integration is

⌥
[dx] [d2k⇧] ⇤

⇧

�i,ci,fi

⇤
n⌃

i=1

�⌥ ⌥ dxi d2k⇧i

2(2⇤)3

⇥⌅

16⇤3�

�

1�
n⇧

i=1

xi

⇥

�(2)

�
n⇧

i=1

k⇧i

⇥

, (13)

where n denotes the number of constituents in Fock state a and we sum over the
possible {⇥i}, {ci}, and {fi} in state a. The arguments of the final-state, light-front
wave function di�erentiate between the struck and spectator constituents; namely, we
have [13, 15]

k⌅
⇧j = k⇧j + (1� xj)q⇧ (14)

for the struck constituent j and

k⌅
⇧i = k⇧i � xiq⇧ (15)

for each spectator i, where i ⌅= j. Note that because of the frame choice q+ = 0, only
diagonal (n⌅ = n) overlaps of the light-front Fock states appear [14].
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x
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Nonzero Proton Anomalous Moment --> 
Nonzero orbital  quark angular momentum

Exact LF Formula for Pauli Form Factor
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Calculation of proton form factor in Instant Form 

• Need to boost proton wavefunction: p to p+q.                   
Extremely complicated dynamical problem.                           
Particle number changes 

• Need to couple to all currents arising from vacuum!!         
Remain even after normal-ordering 

• Instant-form WFs insufficient to calculate form factors 

• Each time-ordered contribution is frame-dependent 

• Normal order; Divide by disconnected vacuum diagrams

< p + q|Jµ(0)|p >

p + qp p + qp



Novel  Tests of QCD at FAIR 
!

 Stan Brodsky
!

  October 16, 2014

Light-Front  QCD
• Light-Front  Wavefunctions are frame-independent 

• Measurements are at fixed LF time 

• No Boost of Colliding Hadrons 

• Boosting an instant-form wavefunctions dynamical  problem -- extremely 
complicated even in QED 

• Light-Front Vacuum same as vacuum of free Hamiltonian—(up to k+=0 
modes; e.g. Higgs VEV is zero mode) 

• Causal commutators using LF time; no normal-ordering needed 

• Cluster decomposition theorem 

• Zero anomalous gravitomagnetic moment 

• Few LF τ-ordered diagrams since all k+ > 0,  Jz conserved 

• Instant-Form Vacuum infinitely complex even in QED 

• n! time-ordered diagrams in Instant Form

Recursion relations and scattering amplitudes in the light-front formalism 
C.A. Cruz-Santiago,  A.M. Stasto

http://inspirehep.net/author/profile/Cruz-Santiago%2C%20C.A.?recid=1246383&ln=en
http://inspirehep.net/author/profile/Stasto%2C%20A.M.?recid=1246383&ln=en
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HQCD
LF |ψ >=M2|ψ >

Dirac’s Front Form: Fixed τ = t+ z/c

Bound States in Relativistic Quantum Field Theory: 
Light-Front Wavefunctions

xi =
k+
i

P+

0 < xi < 1

n�

i=1
xi = 1

Remarkable new insights from AdS/CFT,the duality 
between conformal field theory  and Anti-de Sitter Space 

Invariant under boosts.   Independent of Pμ

Direct connection to QCD Lagrangian
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Goal: an analytic first approximation to 
QCD

•As Simple as Schrödinger Theory in Atomic Physics 

• Relativistic, Frame-Independent, Color-Confining 

• Confinement in QCD -- What sets the QCD mass scale? 

• QCD Coupling at all scales 

• Hadron Spectroscopy 

• Light-Front Wavefunctions 

• Form Factors, Structure Functions,Hadronic Observables 

• Constituent Counting Rules 

• Hadronization at the Amplitude Level 

• Insights into QCD Condensates 
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Automation Example: Static-Quark Potential

V (Q2) =� (4⇡)2CF
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We compute the three-loop corrections to the potential of two heavy quarks. In particular we
consider in this Letter the purely gluonic contribution which provides in combination with the
fermion corrections of Ref. [1] the complete answer at three loops.

PACS numbers: 12.38.Bx, 14.65.Dw, 14.65.Fy, 14.65.Ha

The potential between two heavy quarks constitutes a
fundamental quantity in Quantum Chromodynamics. It
enters in a variety of physical processes like the thresh-
old production of top quark pairs and the description of
charm and bottom quark bound states. Furthermore, it
is crucial for the understanding of fundamental quantities
of QCD, such as confinement. (See Ref. [2] for a recent
review.)
The idea to describe a bound state of heavy coloured

objects in analogy to the well-established hydrogen atom,
goes back to the middle of the 1970s [3]. Shortly after-
wards, about 30 years ago, one-loop radiative corrections
have been evaluated in the works [4, 5]. It took almost 20
years until the next order became available [6–8] which,
at that time, was a heroic enterprize. The two-loop cor-
rections turned out to be numerically quite important
which triggered several investigations to go beyond. End
of last year the fermionic corrections to the three-loop
static potential have been completed [1, 9, 10]. In this
Letter we report about the pure gluonic part which com-
pletes the three-loop corrections to the static potential.
We present our results for the static potential in mo-

mentum space where it takes the form

V (|q⃗ |) =

−
4πCFαs(|q⃗ |)

q⃗ 2

[

1 +
αs(|q⃗ |)
4π

a1 +

(

αs(|q⃗ |)
4π

)2

a2

+

(

αs(|q⃗ |)
4π

)3 (

a3 + 8π2
C

3
A ln

µ2

q⃗ 2

)

+ · · ·

]

. (1)

Here, CA = Nc and CF = (N2
c − 1)/(2Nc) are the eigen-

values of the quadratic Casimir operators of the adjoint
and fundamental representations of the SU(Nc) colour
gauge group, respectively, and αs denotes the strong cou-
pling in the MS scheme. The one- and two-loop coeffi-
cients a1 [4, 5] and a2 [6–8, 11] are given in Eq. (4) of
Ref. [1] where also the higher order terms in ϵ, necessary
for the three-loop calculation, are presented. In Eq. (1)
we identify the renormalization scale µ2 and the momen-
tum transfer q⃗ 2. The complete dependence on µ can
easily be restored with the help of Eq. (2) of Ref. [1].
A new feature of the three-loop corrections to V (|q⃗ |)

is the appearance of infrared divergences [12] which is

FIG. 1: Sample diagrams contributing to the static potential
at tree-level, one-, two- and three-loop order. Solid and curly
lines represent quarks and gluons, respectively. In the case of
closed loops the quarks are massless; the external quarks are
heavy and treated in the static limit.

represented by the ln(µ2/q⃗ 2) term in Eq. (1). It has
been evaluated for the first time in Refs. [13, 14] (see also
Ref. [15]); in Eq. (1) we adopt the MS scheme which has
been used in Ref. [14]. Let us mention that the infrared
divergence cancels in physical quantities after including
the contribution where so-called ultrasoft gluons inter-
act with the heavy quark anti-quark bound state. An
explicit result can, e.g., be found in Ref. [14] where the
cancellation has been demonstrated in order to arrive at
the measurable energy levels of the heavy-quark system.
We note in passing that higher order logarithmic contri-
butions to the infrared behaviour of the static potential
have been computed in Refs. [16, 17].

Before presenting our results for a3 let us provide some
technical details. We generate the four-point quark anti-
quark amplitudes with the help of QGRAF [18]. Some sam-
ple diagrams up to three-loop order are shown in Fig. 1.
In a next step they are processed further with q2e and
exp [19, 20] where a mapping to the diagrams of Fig. 2 is
achieved. The mapping to two-point functions is possi-
ble since the only dimenionful quantity in our problem is
given by the momentum transfer between the quark and
the anti-quark. Although there is only one mass scale
in our problem technical complications arise from the
simultaneous presence of static lines (zigzag lines) and
relativistic propagators (solid lines) which significantly
increases the complexity of the reduction to master in-
tegrals. For this task we employ the program package
FIRE [21] in order to achieve a reduction to about 100 ba-
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We compute the three-loop corrections to the potential of two heavy quarks. In particular we
consider in this Letter the purely gluonic contribution which provides in combination with the
fermion corrections of Ref. [1] the complete answer at three loops.
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The potential between two heavy quarks constitutes a
fundamental quantity in Quantum Chromodynamics. It
enters in a variety of physical processes like the thresh-
old production of top quark pairs and the description of
charm and bottom quark bound states. Furthermore, it
is crucial for the understanding of fundamental quantities
of QCD, such as confinement. (See Ref. [2] for a recent
review.)
The idea to describe a bound state of heavy coloured

objects in analogy to the well-established hydrogen atom,
goes back to the middle of the 1970s [3]. Shortly after-
wards, about 30 years ago, one-loop radiative corrections
have been evaluated in the works [4, 5]. It took almost 20
years until the next order became available [6–8] which,
at that time, was a heroic enterprize. The two-loop cor-
rections turned out to be numerically quite important
which triggered several investigations to go beyond. End
of last year the fermionic corrections to the three-loop
static potential have been completed [1, 9, 10]. In this
Letter we report about the pure gluonic part which com-
pletes the three-loop corrections to the static potential.
We present our results for the static potential in mo-

mentum space where it takes the form

V (|q⃗ |) =

−
4πCFαs(|q⃗ |)

q⃗ 2

[

1 +
αs(|q⃗ |)
4π

a1 +

(

αs(|q⃗ |)
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+

(
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4π
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a3 + 8π2
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µ2
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)

+ · · ·

]

. (1)

Here, CA = Nc and CF = (N2
c − 1)/(2Nc) are the eigen-

values of the quadratic Casimir operators of the adjoint
and fundamental representations of the SU(Nc) colour
gauge group, respectively, and αs denotes the strong cou-
pling in the MS scheme. The one- and two-loop coeffi-
cients a1 [4, 5] and a2 [6–8, 11] are given in Eq. (4) of
Ref. [1] where also the higher order terms in ϵ, necessary
for the three-loop calculation, are presented. In Eq. (1)
we identify the renormalization scale µ2 and the momen-
tum transfer q⃗ 2. The complete dependence on µ can
easily be restored with the help of Eq. (2) of Ref. [1].
A new feature of the three-loop corrections to V (|q⃗ |)

is the appearance of infrared divergences [12] which is

FIG. 1: Sample diagrams contributing to the static potential
at tree-level, one-, two- and three-loop order. Solid and curly
lines represent quarks and gluons, respectively. In the case of
closed loops the quarks are massless; the external quarks are
heavy and treated in the static limit.

represented by the ln(µ2/q⃗ 2) term in Eq. (1). It has
been evaluated for the first time in Refs. [13, 14] (see also
Ref. [15]); in Eq. (1) we adopt the MS scheme which has
been used in Ref. [14]. Let us mention that the infrared
divergence cancels in physical quantities after including
the contribution where so-called ultrasoft gluons inter-
act with the heavy quark anti-quark bound state. An
explicit result can, e.g., be found in Ref. [14] where the
cancellation has been demonstrated in order to arrive at
the measurable energy levels of the heavy-quark system.
We note in passing that higher order logarithmic contri-
butions to the infrared behaviour of the static potential
have been computed in Refs. [16, 17].

Before presenting our results for a3 let us provide some
technical details. We generate the four-point quark anti-
quark amplitudes with the help of QGRAF [18]. Some sam-
ple diagrams up to three-loop order are shown in Fig. 1.
In a next step they are processed further with q2e and
exp [19, 20] where a mapping to the diagrams of Fig. 2 is
achieved. The mapping to two-point functions is possi-
ble since the only dimenionful quantity in our problem is
given by the momentum transfer between the quark and
the anti-quark. Although there is only one mass scale
in our problem technical complications arise from the
simultaneous presence of static lines (zigzag lines) and
relativistic propagators (solid lines) which significantly
increases the complexity of the reduction to master in-
tegrals. For this task we employ the program package
FIRE [21] in order to achieve a reduction to about 100 ba-
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enters in a variety of physical processes like the thresh-
old production of top quark pairs and the description of
charm and bottom quark bound states. Furthermore, it
is crucial for the understanding of fundamental quantities
of QCD, such as confinement. (See Ref. [2] for a recent
review.)
The idea to describe a bound state of heavy coloured

objects in analogy to the well-established hydrogen atom,
goes back to the middle of the 1970s [3]. Shortly after-
wards, about 30 years ago, one-loop radiative corrections
have been evaluated in the works [4, 5]. It took almost 20
years until the next order became available [6–8] which,
at that time, was a heroic enterprize. The two-loop cor-
rections turned out to be numerically quite important
which triggered several investigations to go beyond. End
of last year the fermionic corrections to the three-loop
static potential have been completed [1, 9, 10]. In this
Letter we report about the pure gluonic part which com-
pletes the three-loop corrections to the static potential.
We present our results for the static potential in mo-

mentum space where it takes the form

V (|q⃗ |) =

−
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Here, CA = Nc and CF = (N2
c − 1)/(2Nc) are the eigen-

values of the quadratic Casimir operators of the adjoint
and fundamental representations of the SU(Nc) colour
gauge group, respectively, and αs denotes the strong cou-
pling in the MS scheme. The one- and two-loop coeffi-
cients a1 [4, 5] and a2 [6–8, 11] are given in Eq. (4) of
Ref. [1] where also the higher order terms in ϵ, necessary
for the three-loop calculation, are presented. In Eq. (1)
we identify the renormalization scale µ2 and the momen-
tum transfer q⃗ 2. The complete dependence on µ can
easily be restored with the help of Eq. (2) of Ref. [1].
A new feature of the three-loop corrections to V (|q⃗ |)

is the appearance of infrared divergences [12] which is

FIG. 1: Sample diagrams contributing to the static potential
at tree-level, one-, two- and three-loop order. Solid and curly
lines represent quarks and gluons, respectively. In the case of
closed loops the quarks are massless; the external quarks are
heavy and treated in the static limit.

represented by the ln(µ2/q⃗ 2) term in Eq. (1). It has
been evaluated for the first time in Refs. [13, 14] (see also
Ref. [15]); in Eq. (1) we adopt the MS scheme which has
been used in Ref. [14]. Let us mention that the infrared
divergence cancels in physical quantities after including
the contribution where so-called ultrasoft gluons inter-
act with the heavy quark anti-quark bound state. An
explicit result can, e.g., be found in Ref. [14] where the
cancellation has been demonstrated in order to arrive at
the measurable energy levels of the heavy-quark system.
We note in passing that higher order logarithmic contri-
butions to the infrared behaviour of the static potential
have been computed in Refs. [16, 17].

Before presenting our results for a3 let us provide some
technical details. We generate the four-point quark anti-
quark amplitudes with the help of QGRAF [18]. Some sam-
ple diagrams up to three-loop order are shown in Fig. 1.
In a next step they are processed further with q2e and
exp [19, 20] where a mapping to the diagrams of Fig. 2 is
achieved. The mapping to two-point functions is possi-
ble since the only dimenionful quantity in our problem is
given by the momentum transfer between the quark and
the anti-quark. Although there is only one mass scale
in our problem technical complications arise from the
simultaneous presence of static lines (zigzag lines) and
relativistic propagators (solid lines) which significantly
increases the complexity of the reduction to master in-
tegrals. For this task we employ the program package
FIRE [21] in order to achieve a reduction to about 100 ba-
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fermion corrections of Ref. [1] the complete answer at three loops.

PACS numbers: 12.38.Bx, 14.65.Dw, 14.65.Fy, 14.65.Ha

The potential between two heavy quarks constitutes a
fundamental quantity in Quantum Chromodynamics. It
enters in a variety of physical processes like the thresh-
old production of top quark pairs and the description of
charm and bottom quark bound states. Furthermore, it
is crucial for the understanding of fundamental quantities
of QCD, such as confinement. (See Ref. [2] for a recent
review.)
The idea to describe a bound state of heavy coloured

objects in analogy to the well-established hydrogen atom,
goes back to the middle of the 1970s [3]. Shortly after-
wards, about 30 years ago, one-loop radiative corrections
have been evaluated in the works [4, 5]. It took almost 20
years until the next order became available [6–8] which,
at that time, was a heroic enterprize. The two-loop cor-
rections turned out to be numerically quite important
which triggered several investigations to go beyond. End
of last year the fermionic corrections to the three-loop
static potential have been completed [1, 9, 10]. In this
Letter we report about the pure gluonic part which com-
pletes the three-loop corrections to the static potential.
We present our results for the static potential in mo-

mentum space where it takes the form

V (|q⃗ |) =

−
4πCFαs(|q⃗ |)

q⃗ 2

[

1 +
αs(|q⃗ |)
4π

a1 +

(

αs(|q⃗ |)
4π

)2

a2

+

(

αs(|q⃗ |)
4π

)3 (

a3 + 8π2
C

3
A ln

µ2

q⃗ 2

)

+ · · ·

]

. (1)

Here, CA = Nc and CF = (N2
c − 1)/(2Nc) are the eigen-

values of the quadratic Casimir operators of the adjoint
and fundamental representations of the SU(Nc) colour
gauge group, respectively, and αs denotes the strong cou-
pling in the MS scheme. The one- and two-loop coeffi-
cients a1 [4, 5] and a2 [6–8, 11] are given in Eq. (4) of
Ref. [1] where also the higher order terms in ϵ, necessary
for the three-loop calculation, are presented. In Eq. (1)
we identify the renormalization scale µ2 and the momen-
tum transfer q⃗ 2. The complete dependence on µ can
easily be restored with the help of Eq. (2) of Ref. [1].
A new feature of the three-loop corrections to V (|q⃗ |)

is the appearance of infrared divergences [12] which is

FIG. 1: Sample diagrams contributing to the static potential
at tree-level, one-, two- and three-loop order. Solid and curly
lines represent quarks and gluons, respectively. In the case of
closed loops the quarks are massless; the external quarks are
heavy and treated in the static limit.

represented by the ln(µ2/q⃗ 2) term in Eq. (1). It has
been evaluated for the first time in Refs. [13, 14] (see also
Ref. [15]); in Eq. (1) we adopt the MS scheme which has
been used in Ref. [14]. Let us mention that the infrared
divergence cancels in physical quantities after including
the contribution where so-called ultrasoft gluons inter-
act with the heavy quark anti-quark bound state. An
explicit result can, e.g., be found in Ref. [14] where the
cancellation has been demonstrated in order to arrive at
the measurable energy levels of the heavy-quark system.
We note in passing that higher order logarithmic contri-
butions to the infrared behaviour of the static potential
have been computed in Refs. [16, 17].

Before presenting our results for a3 let us provide some
technical details. We generate the four-point quark anti-
quark amplitudes with the help of QGRAF [18]. Some sam-
ple diagrams up to three-loop order are shown in Fig. 1.
In a next step they are processed further with q2e and
exp [19, 20] where a mapping to the diagrams of Fig. 2 is
achieved. The mapping to two-point functions is possi-
ble since the only dimenionful quantity in our problem is
given by the momentum transfer between the quark and
the anti-quark. Although there is only one mass scale
in our problem technical complications arise from the
simultaneous presence of static lines (zigzag lines) and
relativistic propagators (solid lines) which significantly
increases the complexity of the reduction to master in-
tegrals. For this task we employ the program package
FIRE [21] in order to achieve a reduction to about 100 ba-

Smirnov, Smirnov, Steinhauser, 2010

Heavy Quark Potential is IR Divergent in QCD

Summation of H graphs: confining potential

log 2⇣2

Confinement eliminates IR divergences 
  Self-consistent mass scale κ



U is the confining QCD potential  
Conjecture: ‘H’-diagrams generate 
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Frame Independent!
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Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 
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+
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4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

!
Conformal Symmetry 

of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)
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Confinement scale:   

Light-Front Schrödinger Equation
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Unique "
Confinement Potential!
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de Tèramond, Dosch, sjb

 ' 0.6 GeV

1/ ' 1/3 fm

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 	

without affecting conformal invariance of action!

(mq=0)

Single scheme-
independent fundamental 

mass scale 



!
New Perspectives for Hadron Physics  Stan BrodskyCERN TH !

January 22, 2014
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Massless pion in Chiral Limit! Same slope in n and L!
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⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

(x(1� x)|b⇤|

z

z�

z0 = 1
⇥QCD

�d⇥ np

General remarks about orbital angular mo-
mentum
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• Light Front Wavefunctions:                                   

AdS5:  Conformal Template for QCD

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Duality of AdS5 with LF 
Hamiltonian Theory

•Light-Front Holography

Light-Front Schrödinger Equation
Spectroscopy and Dynamics

with Guy de Teramond and 	

Hans Guenter Dosch



Applications of AdS/CFT  to QCD  
!
!

in collaboration with Guy de Teramond

Changes in !
physical!

length scale !
mapped to !

evolution in the !
5th dimension z 



AdS/QCD G. F. de Téramond

Scale Transformations

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

SO(1, 5)

ds2 =
R2

z2
(�µ⇥dxµdx⇥ � dz2),

xµ ⇤ ⇥xµ, z ⇤ ⇥z, maps scale transformations into the holographic coordinate z.

• AdS mode in z is the extension of the hadron wf into the fifth dimension.

• Different values of z correspond to different scales at which the hadron is examined.

x2 ⇤ ⇥2x2, z ⇤ ⇥z.

x2 = xµxµ: invariant separation between quarks

• The AdS boundary at z ⇤ 0 correspond to theQ⇤⌅, UV zero separation limit.

Caltech High Energy Seminar, Feb 6, 2006 Page 11

invariant measure

AdS/CFT
Exploring QCD, Cambridge, August 20-24, 2007 Page 9



Novel  Tests of QCD at FAIR 
!

 Stan Brodsky
!

  October 16, 2014

•Soft-wall dilaton profile breaks 
conformal invariance	


•Color Confinement	


•Introduces confinement scale	


•Uses AdS5 as template for conformal 
theory

e'(z) = e+2z2

Dilaton-Modified AdS/QCD
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LF(3+1)                AdS5

Light-Front Holography: Unique mapping derived from equality of LF 
and AdS  formula for EM and gravitational current matrix elements 

and identical equations of motion
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de Tèramond, Dosch, sjb



AdS Soft-Wall Schrodinger Equation for  
bound state  of  two scalar constituents:

Derived from variation of Action for Dilaton-Modified AdS5 

Identical to Light-Front Bound State Equation! 

U(z) = �4z2 + 2�2(L + S � 1)

• Dosch, de Teramond, sjbPositive-sign dilaton
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G. de Teramond, H. G. Dosch, sjb 

U(⇣2) = 4⇣2 + 22(J � 1)

z ! ⇣

Pion: Negative term  for J=0 cancels 
positive terms from LFKE and potential





Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 
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Confinement scale:   
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Novel  Tests of QCD at FAIR 
!

 Stan Brodsky
!

  October 16, 2014

•Soft-wall dilaton profile breaks 
conformal invariance	


•Color Confinement	


•Introduces confinement scale	


•Uses AdS5 as template for conformal 
theory

e'(z) = e+2z2

Dilaton-Modified AdS/QCD



 Stan Brodsky
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  October 16, 2014 Novel  Tests of QCD at FAIR 
!

 Stan Brodsky
!

  October 16, 2014
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dx2
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4
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�

Retains conformal invariance of action despite mass scale! 

Identical to LF Hamiltonian with unique potential and dilaton! 

• de Alfaro, Fubini, Furlan
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• Dosch, de Teramond, sjb

New term
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Prediction from AdS/QCD: Meson LFWF
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 Stan Brodsky
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  October 16, 2014 Novel  Tests of QCD at FAIR 
!
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!

  October 16, 2014

Non-Conformal Extension of Algebraic Structure (Soft Wall Model)

• We write the Dirac equation

(��(⇤)�M)⌃(⇤) = 0,

in terms of the matrix-valued operator �
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• Solutions to the Dirac equation

⌃+(⇤) ⇤ z
1
2+⇤e�⇥2�2/2L⇤

n(⌅2⇤2),

⌃�(⇤) ⇤ z
3
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n (⌅2⇤2).

• Eigenvalues

M2 = 4⌅2(n + ⇧ + 1).
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⌫ = L + 1

Dirac Equation for Nucleons in Soft-Wall AdS/QCD

de Teramond,sjb!
See also Leutwyler, Stern
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Figure 2: Orbital and radial baryon excitation spectrum. Positive-parity spin-12 nucleons (a) and

spectrum gap between the negative-parity spin-32 and the positive-parity spin-12 nucleons families

(b). Minus parity N (c) and plus and minus parity ∆ families (d), for
√
λ = 0.49 GeV (nucleons)

and 0.51 GeV (Deltas).

cluster. The predictions for the daughter trajectories for n = 1, n = 2, · · · are also shown in

this figure. Only confirmed PDG [23] states are shown. The Roper state N(1440) and the

N(1710) are well accounted for as the first and second radial excited states of the proton.

The newly identified state, the N(1900) [23] is depicted here as the first radial excitation of

the N(1720). The model is successful in explaining the parity degeneracy observed in the

light baryon spectrum, such as the L = 2, N(1680)−N(1720) pair in Fig. 2 (a). In Fig. 2

(b) we compare the positive parity spin-12 parent nucleon trajectory with the negative parity

7
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Table 1: SU(6) classification of confirmed baryons listed by the PDG. The labels S, L
and n refer to the internal spin, orbital angular momentum and radial quantum number

respectively. The �

5
2
�
(1930) does not fit the SU(6) classification since its mass is too low

compared to other members 70-multiplet for n = 0, L = 3.
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Fermionic Modes and Baryon Spectrum
[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

From Nick Evans

• Nucleon LF modes

⇤+(�)n,L = ⇥2+L

⌅
2n!

(n + L)!
�3/2+Le�⇥2�2/2LL+1

n

�
⇥2�2

⇥

⇤�(�)n,L = ⇥3+L 1⇤
n + L + 2

⌅
2n!

(n + L)!
�5/2+Le�⇥2�2/2LL+2

n

�
⇥2�2

⇥

• Normalization ⇤
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+(�) =
⇤

d� ⇤2
�(�) = 1

• Eigenvalues

M2
n,L,S=1/2 = 4⇥2 (n + L + 1)

• “Chiral partners”
MN(1535)

MN(940)
=
⇤

2

LC 2011 2011, Dallas, May 23, 2011 Page 13

Chiral Symmetry of 
Eigenstate!



• Boost Invariant 

• Trivial LF vacuum! No condensate, but consistent with GMOR 

• Massless Pion 

• Hadron Eigenstates (even the pion) have LF Fock components of different Lz 

• Proton: equal probability 

!

• Self-Dual Massive Eigenstates: Proton is its own chiral partner. 

• Label State by minimum L as in Atomic Physics 

• Minimum L dominates at short distances                

• AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=0.

Chiral Features of Soft-Wall 
AdS/QCD Model

Sz = +1/2, Lz = 0;Sz = �1/2, Lz = +1

No mass -degenerate parity partners!

Jz = +1/2 :< Lz >= 1/2, < Sz
q >= 0
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• Zero mass pion for mq =0  (n=J=L=0) 

• Regge trajectories: equal slope in n and L 

• Form Factors at high Q2: Dimensional 
counting 

• Space-like and Time-like Meson and Baryon 
Form Factors 

• Running Coupling for NPQCD 

• Meson Distribution Amplitude  
!

!

AdS/QCD and Light-Front Holography

[Q2
]

n�1
F (Q2

)! const

�⇡(x) / f⇡

p
x(1� x)

↵s(Q2) / e�
Q2

42

M2
n,J,L = 42

�
n +

J + L

2
�
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Structure of the Vacuum in Light-Front Dynamics

• Compare invariant mass in the instant-form in the hadron center-of-mass system P = 0,

M2
qq

= 4m2
q

+ 4p

2

with the invariant mass in the front-form in the constituent rest frame, k
q

+ k

q

= 0

M2
qq

=

k

2
? + m2

q

x(1� x)

obtain

U = V 2
+ 2

q

p

2
+ m2

q

V + 2 V
q

p

2
+ m2

q

where p

2
? =

k2
?

4x(1�x) , p3 =

m

q

(x�1/2)p
x(1�x)

, and V is the effective potential in the instant-form

• For small quark masses a linear instant-form potential V implies a harmonic front-form potential U

and thus linear Regge trajectories

[A. P. Trawiński, S. D. Glazek, S. J. Brodsky, GdT, H. G. Dosch, arXiv: 1403.5651]

Niccolò Cabeo 2014, Ferrara, May 20, 2012
Page 19

Connection to the Linear Instant-Form Potential

A.P. Trawinski, S.D. Glazek, H. D. Dosch, G. de Teramond, sjb
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A.P. Trawinski, S.D. Glazek, H. D. Dosch, G. de Teramond, sjb

Connection to the Linear Instant-Form Potential

Linear instant nonrelativistic form V (r) = Cr for heavy quarks

Harmonic Oscillator U(⇣) = 4⇣2 LF Potential for relativistic light quarks
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•Can be used as standard QCD coupling	


•Well measured	


•Asymptotic freedom at large Q2	


•Computable at large Q2 in any pQCD 
scheme	


•Universal  β0,  β1

Bjorken sum rule defines effective charge ↵g1(Q2)
Z 1

0
dx[gep

1 (x,Q

2)� g

en
1 (x,Q

2)] ⌘ ga

6
[1� ↵g1(Q2)

⇡

]



5 Non-Perturbative QCD Coupling From LF Holography
With A. Deur and S. J. Brodsky

• Consider five-dim gauge fields propagating in AdS5 space in dilaton background ⇧(z) = ⇤2z2

S = �1
4

�
d4x dz

⇧
g e⇥(z) 1

g2
5

G2

• Flow equation
1

g2
5(z)

= e⇥(z) 1
g2
5(0)

or g2
5(z) = e��2z2

g2
5(0)

where the coupling g5(z) incorporates the non-conformal dynamics of confinement

• YM coupling �s(⇥) = g2
Y M (⇥)/4⌅ is the five dim coupling up to a factor: g5(z)⌅ gY M (⇥)

• Coupling measured at momentum scale Q

�AdS
s (Q) ⇤

� ⇥

0
⇥d⇥J0(⇥Q)�AdS

s (⇥)

• Solution

�AdS
s (Q2) = �AdS

s (0) e�Q2/4�2
.

where the coupling �AdS
s incorporates the non-conformal dynamics of confinement

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 27

Running Coupling from  Modified AdS/QCD
Deur,  de Teramond, sjb



Running Coupling from Light-Front Holography and AdS/QCD

�AdS
s (Q)/⇥ = e�Q2/4�2

�s(Q)
⇥

Deur,  de Teramond, sjb

 = 0.54 GeV

Analytic, defined at all scales, IR Fixed Point

Q (GeV)

�
s(Q

)/�

�g1/� (pQCD)
�g1/� world data

��/� OPAL

AdS
Modified AdS

Lattice QCD (2004) (2007)
�g1/� Hall A/CLAS
�g1/� JLab CLAS

�F3/�GDH limit

0

0.2

0.4

0.6

0.8

1

10 -1 1 10

Sublimated gluons below 1 GeVAdS/QCD dilaton captures the higher twist corrections to  effective charges for Q < 1 GeV

e' = e+2z2



Deur,   
de Teramond, sjb

↵AdS
s (Q2) = ↵AdS

s (0)e�Q2/42

AdS/QCD + pQCDO(�3)

⇤MS = 0.5983 = 0.5983m⇢p
2

= 0.4231m⇢ = 0.328 GeV

↵g1(Q
2) at O[↵5

MS
]



Match coupling strength  
and derivative

⇤MS = 0.5983 = 0.5983m⇢p
2

= 0.4231m⇢ = 0.328 GeV

Deur,  de Teramond, sjb
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Bjorken Sum Rule order

Λ
(3

)
Λ(3)   (AdS/QCD)MS

Λ(3)   (World data)MS

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 1 2 3 4 5 6

FIG. 3. (Color online) Dependence of ⇤(3)

MS
with the order to which Eq. (2) is truncated (square

symbols). The value ⇤(3)

MS
= 0.328± 0.024 GeV at order 5 corresponds to the locations circled on

Fig. 1. The blue band represents the world data, ⇤(3)

MS
= 0.339± 0.010 GeV.

shown in the figure by the blue band. Our result at highest order is ⇤(3)

MS
= 0.328 ± 0.024114

GeV at �3 and for nf = 3, where the uncertainty corresponds to the series truncation for115

↵g1 . This is to be compared with the world data ⇤(3)

MS
= 0.339 ± 0.010 GeV. In Fig. 4 we116

compare our prediction with the experimental and lattice results for ↵g1. There is excellent117

agreement.118

In principle the strong coupling constant ↵s is computable is Lattice QCD (LQCD) [28,119

29]. It is thus interesting to compare LQCD results with the method presented in this letter.120

To determine ↵s in LQCD, the perturbative expression of a short scale quantity (typically121

the Wilson Loop operator expectation value) is derived from the Lattice QCD Lagrangian.122

This analytical expression, which involves the renormalized coupling, is matched to the123

numerical value of the same quantity obtained from the lattice simulation. The lattice124

scale is assigned by tuning the bare strong coupling until a chosen LQCD result matches125

the corresponding quantity [4]. The value of the bare coupling then determines the lattice126

scale. The matching and determination of the scale provide the value of the renormalized127

coupling, typically in the V or MOM-schemes [4]. There is a parallel between the LQCD128

procedure and our matching procedure. Di↵erences are that LF holographic QCD has only129

one parameter, the confinement scale , while LQCD, in addition to the bare coupling130

has four others [29]. In addition, LQCD does not provide the QCD scale as a function of a131

physical quantity. On the other hand, the foundation of LQCD stems directly from the QCD132

7

Deur,  de Teramond, sjb

⇤MS = 0.5983 = 0.5983m⇢p
2

= 0.4231m⇢ = 0.328 GeV

Connect ⇤MS to hadron masses!



Light-Front Holography  
AdS/QCD 

Soft-Wall  Model 

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

!
Conformal Symmetry 

of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Unique "
Confinement Potential!

!
de Tèramond, Dosch, sjb

 ' 0.6 GeV

1/ ' 1/3 fm

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 	

without affecting conformal invariance of action!
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c

c̄

Fixed LF time
Higher Fock States of the Proton

Wavefunction at fixed LF time:  Arbitrarily Off-Shell in Invariant Mass

Eigenstate of LF Hamiltonian : all Fock states contribute

|p, Jz >=
X

n=3

 n(xi,
~

k?i,�i)|n;xi,
~

k?i,�i >



|p,Sz>= ∑
n=3

ψn(xi, ~k?i,λi)|n;k?i,λi>|p,Sz>= ∑
n=3

Ψn(xi,~k?i,λi)|n;~k?i,λi>

|p,Sz>= ∑
n=3

Ψn(xi,~k?i,λi)|n;~k?i,λi>

The Light Front Fock State Wavefunctions

Ψn(xi,~k?i,λi)

are boost invariant; they are independent of the hadron’s energy
and momentum Pµ.
The light-cone momentum fraction

xi =
k+
i
p+ =

k0i + kzi
P0+Pz

are boost invariant.
n

∑
i
k+
i = P+,

n

∑
i
xi = 1,

n

∑
i

~k?i =~0?.

sum over states with n=3, 4, ...constituents

Fixed LF time
Intrinsic heavy quarks    s̄(x) ⇤= s(x)

⇥M(x, Q0) ⇥
�

x(1� x)

⇤M(x, k2
⌅)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

ep⇥ e�+n

P�/p ⇤ 30%

Violation of Gottfried sum rule

ū(x) ⌅= d̄(x)

Does not produce (C = �) J/⇥,�

Produces (C = �) J/⇥,�

Same IC mechanism explains A2/3

s(x), c(x), b(x) at high x !
Hidden ColorMueller:  gluon Fock states     BFKL Pomeron



p p

Probability (QED) � 1
M4

�

Probability (QCD) � 1
M2

Q

Proton Self Energy  
Intrinsic Heavy Quarks

Collins, Ellis, Gunion, Mueller, sjb 
M. Polyakov, et al. 

• Collins, Ellis, Gunion, Mueller, sjb; 

Fixed LF time

xQ � (m2
Q + k2

�)1/2

Q

Q



p p

Probability (QED) � 1
M4

�

Probability (QCD) � 1
M2

Q

Proton 5-quark Fock State : 
Intrinsic Heavy Quarks

Collins, Ellis, Gunion, Mueller, sjb 
Polyakov, et al. 

 

Fixed LF time

xQ � (m2
Q + k2

�)1/2

Q

Q

Rigorous prediction 
of QCD 

Intrinsic Heavy 
Quarks at high x!

Minimal off-shellness



Properties of Non-Perturbative  
Five-Quark Fock-State

• Dominant configuration: same rapidity"

• Heavy quarks have most momentum  "

• Correlated with proton quantum numbers"

• Duality with meson-baryon channels"

• strangeness asymmetry at x > 0.1"

• Maximally energy efficient
u
d

u
Q̄
Q

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Intrinsic Heavy Quarks at high x 



J. J. Aubert et al. [European Muon Collaboration], “Pro-
duction Of Charmed Particles In 250-Gev Mu+ - Iron In-
teractions,” Nucl. Phys. B 213, 31 (1983).

First Evidence for Intrinsic Charm

Measurement of Charm Structure  
Function! 

DGLAP / Photon-Gluon Fusion: factor of 30 too small

factor of 30 !

Two Components (separate evolution):

c(x,Q

2) = c(x, Q

2)
extrinsic

+ c(x, Q

2)
intrinsic

gluon splitting 
(DGLAP)

Hoyer, Peterson, Sakai, sjb
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at x > 0.1 ? 
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Two Components (separate evolution):
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Intrinsic Heavy-Quark Fock 

• Rigorous prediction of QCD, OPE 

• Color-Octet Color-Octet Fock State  

• Probability 

• Large Effect at high x 

• Greatly increases kinematics of colliders  such as 
Higgs production (Kopeliovich, Schmidt, Soffer, 
sjb) 

• Underestimated in conventional 
parameterizations of heavy quark distributions 
(Pumplin, Tung) 
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Coalescence of Comoving Charm and Valence Quarks
Produce J/ψ, Λc and other Charm Hadrons at High xF

PX X

Spectator counting rules 
dN

dxF
/ (1� xF )2nspect�1



• EMC data: c(x, Q2) > 30�DGLAP
Q2 = 75 GeV2, x = 0.42

• High xF pp⇤ J/�X

• High xF pp⇤ J/�J/�X

• High xF pp⇤ �cX

• High xF pp⇤ �bX

• High xF pp⇤ ⇥(ccd)X (SELEX)

Interesting spin, charge asymmetry, threshold, spectator effects
Important corrections to B decays; Quarkonium decays

Gardner, Karliner, sjb

Explain Tevatron anomalies: pp̄! �cX,ZcX
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Fig. 3. The fi# pair distributions are shown in (a) and (c) for the 

pion and proton projectiles. Similarly, the distributions of J/$‘s 

from the pairs are shown in (b) and (d). Our calculations are 

compared with the n-N data at 150 and 280 GeV/c [ I]. The 

x++, distributions are normalized to the number of pairs from both 

pion beams (a) and the number of pairs from the 400 GeV proton 

measurement (c) The number of single J/e’s is twice the number 

of pairs. 

x+ = ~it,/pt,~a~ in Fig. 3. The +$ pair distributions 

are shown in Fig. 3(a) and 3(c) and the associated 

the single J/I) distributions in pair events are shown 

in Fig. 3(b) and 3(d) . Both are normalized to the 

data with the single J/r/ normalization twice that of 

the pair. 

4. Other tests of the intrinsic heavy quark 

mechanism 

The intrinsic charm model provides a natural expla- 

nation of double J/e hadroproduction and thus gives 

strong phenomenological support for the presence of 

intrinsic heavy quark states in hadrons. While the gen- 

eral agreement with the intrinsic charm model is quite 

good, the excess events at medium xlfi~l suggests that 

intrinsic charm may not be the only @$ QCD produc- 

tion mechanism present or that the model parameteri- 

zation with a constant vertex function is too oversim- 

plified. The x,++,+ distributions can also be affected by 

the A dependence. Additional mechanisms, including 

an update of previous models [ 3-71, will be presented 

in a separate paper [ 81. 

The intrinsic heavy quark model can also be used to 

predict the features of heavier quarkonium hadropro- 

duction, such as YY, Y$, and (6~) (Eb) pairs. Using 

fib = 4.6 GeV, we find that the single Y and YY pair 

x distributions are similar to the equivalent I,& distri- 

butions. The average mass, (MYY), is 21.4 GeV for 

pion projectiles and 21.7 GeV for a proton, a few GeV 

above threshold, 2my = 18.9 GeV. The xy@ pair distri- 

butions are also similar to the +@ distributions but we 

note that (xy) = 0.44 and (xe) = 0.30 from a l&fcCbb) 

configuration and (xy) = 0.39 and (x$) = 0.27 from 

a luudc&) configuration. Here (MY@) = 14.9 GeV 

with a pion projectile and 15.2 GeV with a proton, 

again a few GeV above threshold, my + rn+ = 12.6 

GeV. 

It is clearly important for the double J/+ measure- 

ments to be repeated with higher statistics and also at 

higher energies. The same intrinsic Fock states will 

also lead to the production of multi-charmed baryons 

in the proton fragmentation region. It is also interesting 

to study the correlations of the heavy quarkonium pairs 

to search for possible new four-quark bound states and 

final state interactions generated by multiple gluon ex- 

change [ 71. It has been suggested that such QCD Van 

der Waals interactions could be anomalously strong at 

low relative rapidity [ 22,231. 

There are many ways in which the intrinsic heavy 

quark content of light hadrons can be tested. More 

measurements of the charm and bottom structure func- 

tions at large XF are needed to confirm the EMC data 

[ 151. Charm production in the proton fragmentation 

region in deep inelastic lepton-proton scattering is sen- 

sitive to the hidden charm in the proton wavefunction. 

The presence of intrinsic heavy quarks in the hadron 

wavefunction also enhances heavy flavor production 

in hadronic interactions near threshold. More gener- 

ally, the intrinsic heavy quark model leads to enhanced 

open and hidden heavy quark production and leading 

particle correlations at high XF in hadron collisions 

with a distinctive strongly-shadowed nuclear depen- 

dence characteristic of soft hadronic collisions. 
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[ 121. For soft interactions at momentum scale CL, the 

intrinsic heavy quark cross section is suppressed by a 

resolving factor cc &2/m; [ 131. 

There is substantial circumstantial evidence for the 

existence of intrinsic CL! states in light hadrons. For ex- 

ample, the charm structure function of the proton mea- 

sured by EMC is significantly larger than predicted by 

photon-gluon fusion at large XBj [ 151. Leading charm 

production in TN and hyperon-N collisions also re- 

quires a charm source beyond leading twist [ 13,161. 

The NA3 experiment has also shown that the single 

J/$ cross section at large XF is greater than expected 

from gg and q?j production [ 171. Additionally, intrin- 

sic charm may account for the anomalous longitudi- 

nal polarization of the J/+4 at large XF [ 181 seen in 

?rN -+ J/+X interactions. 

Over a sufficiently short time, the pion can contain 

Fock states of arbitrary complexity. For example, two 

intrinsic CC pairs may appear simultaneously in the 

quantum fluctuations of the projectile wavefunction 

and then, freed in an energetic interaction, coalesce 

to form a pair of I,!J’s. We shall estimate the creation 
-- 

probability of ~~vcccc) Fock states, where nv = &I for 

7~- and nv = uud for proton projectiles, assuming that 

all of the double J/I,~ events arise from these configu- 

rations. We then examine the x+$ and invariant mass 

distributions of the $$ pairs and the x,,+ distribution 

for the single $‘s arising from these Fock states. 

2. Intrinsic charm Fock states 

The probability distribution for a general n-particle 

intrinsic CC Fock state as a function of x and kr is 

written as 

(1) 

where N,, normalizes the Fock state probability. In 

the model, the vertex function in the intrinsic charm 

wavefunction is assumed to be relatively slowly vary- 

ing; the particle distributions are then controlled by the 

light-cone energy denominator and phase space. This 

form for the higher Fock wavefunctions generalizes 

for an arbitrary number of light and heavy quark com- 

ponents. The Fock states containing charmed quarks 

can be materialized by a soft collision in the target 

which brings the state on shell. The distribution of 

produced open and hidden charm states will reflect the 

underlying shape of the Fock state wavefunction. 

The invariant mass of a c.? pair, M,, from such a 

Fock state is 

(2) 

where n = 4 and 5 is the number of partons in the 

lowest lying meson and baryon intrinsic CC Fock states. 

The probability to produce a J/(/I from an intrinsic 

CT state is proportional to the fraction of intrinsic ci? 

production below the Or, threshold. The fraction of 

CC pairs with 2m, < MC? < 2rno is 

The ratio fc~jr is approximately 15% larger than fc~iP 

for 1.2 < m, < 1.8 GeV. However, not all c?‘s pro- 

duced below the DB threshold will produce a final- 

state J/S. We include two suppression factors to es- 

timate J/q5 production, one reflecting the number of 

quarkonium channels available with McT < 2rno and 

one for the c and C to coalesce with each other rather 

than combine with valence quarks to produce open 

charm states. The “channel” suppression factor, s, z 

0.3, is estimated from direct and indirect J/$ produc- 

tion, including x1 and xz radiative and +’ hadronic 

decays. The combinatoric “flavor” suppression factor, 

of, is l/2 for a IEdcC) state and l/4 for a IuudcC) 

state. In Fig. 1 we show the predicted fraction of $‘s 

produced from intrinsic CC pairs, 

f@lh = s,sf.fE/h ) (4) 

as a function of m,. We take m, = I .5 GeV, suggesting 

f ur  M 0.03 and f e j p M 0.014. 

NA3 Data

πA! J/ψJ/ψX

µ2
R = CQ2

⌅(Q2) = C0 + C1�s(µR) + C2�2
s(µR) + · · ·

⇧ = 1
2x�P+

⇥p⌅ µ+µ�p

Oberwölz

All events have xF
⌃⌃ > 0.4 !

⇧(pp⌅ cX) ⇤ 1µb

Excludes PYTHIA 
‘color drag’ model!

R. Vogt, sjb 
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minimum power p
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Nuclear modification of parton level structure & dynamics

Modification of parton momentum 
distributions of nucleons embedded in nuclei
• shadowing – depletion of low-momentum 
partons (gluons)
• coherence & dynamical shadowing 
• gluon saturation – e.g. color glass condensate, 
a specific/fundamental model of gluon 
saturation which gives shadowing in nuclei

800 GeV p-A (FNAL)   !A = !p*A"

PRL 84, 3256 (2000); PRL 72, 2542 (1994)

open charm: no A-dep

at mid-rapidity

= x
1
-x

2

Q = 2 GeV
5 GeV

10 GeV

Gluon shadowing

Gerland, Frankfurt, Strikman,

Stocker & Greiner (hep-ph/9812322)

Nuclear effects on parton “dynamics”
• energy loss of partons as they propagate 
through nuclei
• and (associated?) multiple scattering 
effects (Cronin effect)
• absorption of J/! on nucleons or co-
movers; compared to no-absorption for 
open charm production

Remarkably Strong Nuclear 
Dependence for Fast Charmonium

M. Leitch

 Violation of factorization in charm hadroproduction. 
P. Hoyer, M. Vanttinen (Helsinki U.) ,  U. Sukhatme (Illinois U., Chicago) . HU-TFT-90-14, May 1990. 7pp.  

 Published in Phys.Lett.B246:217-220,1990

Violation of PQCD Factorization!

d⇥
dxF

(pA� J/⇤X)

d⇥
dxF

(�A� J/⇤X)

xF

A2/3 component

A1 component

Fits conventional PQCD subprocesses

IC Explains large excess of quarkonia at large xF,  A-dependence
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Scattering on front-face nucleon produces color-singlet     paircc̄

u

Octet-Octet IC Fock State

!
Color-Opaque IC Fock state 

interacts on nuclear front surface  

d⇤
dxF

(pA ⇤ J/⌅X) = A2/3 � d⇤
dxF

(pN ⇤ J/⌅X)

fb

⇥q ⇤ �⇥q

�⇥

⇥

p

↵

J/�

p

c

c̄

No absorption of  
small color-singlet

g

Kopeliovich, 
Schmidt, Soffer, sjb

A

High xF



Goldhaber, Kopeliovich, Schmidt, Soffer, sjb

H

Higgs can have > 80% of Proton Momentum!

Also: intrinsic strangeness, bottom, top

pp� HXp

p

c
c̄

g

New production mechanism for Higgs at the LHC

AFTER: Higgs production at threshold!

Intrinsic Heavy Quark Contribution  
to Inclusive Higgs Production



Figure 3: The cross section of inclusive Higgs production in fb, coming

from the nonperturbative intrinsic bottom distribution, at both LHC

(
√

s = 14 TeV, solid curve) and Tevatron (
√

s = 2 TeV, dashed curve)

energies.

that the cross section for inclusive Higgs production from intrinsic bottom is much

higher than the one coming from intrinsic charm. Although it is true that the Higgs-

quark coupling, proportional to mQ, cancels in the cross section with PIQ ∝ 1/m2
Q,

the matrix element between IQ and Higgs wave functions has an additional mQ factor.

This is because the Higgs wave function is very narrow and the overlap of the two

wave functions results in ΨQQ(0) ∝ mQ. Thus, the cross section rises as m2
Q, as we

see in the results.

We can compare our predictions for inclusive Higgs production coming from

IB with our previous ansatz for the Higgs production gluon-gluon fusion process

xdN/dx = 6(1 − x)5. At the maximum (xF = 0.9) of the IB curve we get a value of

roughly 50 fb, while there gluon-gluon gives 0.067 fb. Thus this high-xF region is the

ideal place to look for Higgs production coming from intrinsic heavy quarks.

We obtain essentially the same curves for Tevatron energies (
√

s = 2 TeV) , al-

though the rates are reduced by a factor of approximately 3.

We also show in Fig.4 the results for Higgs production coming from the perturba-

tive charm distribution. The magnitude of the production cross section is considerably

12

Intrinsic Heavy Quark Contribution  to 
High xF Inclusive Higgs Production

⌅ = t + z/c

d⇤
dxF

(pp ⇥ HX)[fb]

fb

⇥q ⇥ ��q

��

⇥

p
Goldhaber, Kopeliovich, 

Schmidt, Soffer, sjb

LHC :
�

s = 14TeV

Tevatron :
�

s = 2TeV

Need High xF Acceptance
Most practical: Higgs to 4 muons 



Charm at Threshold

• Intrinsic charm Fock state puts 80% of the proton 
momentum into the electroproduction process"

• 1/velocity enhancement from FSI"

• CLEO data for quarkonium production at threshold"

• Krisch effect shows  B=2 resonance"

• all particles produced at small relative rapidity--
resonance production"

• Many exotic hidden and open charm resonances will be 
produced at  PANDA (15 GeV) and JLab (11-12 GeV)



Diffractive Dissociation of Pion  into 
Quark Jets

Measure Light-Front Wavefunction of Pion 
!

Minimal momentum transfer to nucleus 

Nucleus left Intact! 

E791 Ashery et al.
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E791 FNAL Diffractive DiJet 

Two-gluon exchange measures the second derivative of the pion 
light-front wavefunction
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 Gunion, Frankfurt, Mueller, Strikman, sjb	

Frankfurt, Miller, Strikman



D. Ashery, Tel Aviv University

THE kt DEPENDENCE OF DI-JETS YIELD

dσ

dk2
t
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Gaussian: ψ ∼ e−βk2
t (Jakob and Kroll)
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High Transverse momentum  
dependence consistent with PQCD, 

ERBL Evolution
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Table 1

The exponent in σ ∝ Aα , experimental results for coherent dissociation and the color-transparency (CT) predictions [69]

kt bin (GeV/c) α #αstat #αsys #α α(CT)

1.25–1.5 1.64 ±0.05 +0.04–0.11 +0.06–0.12 1.25

1.5–2.0 1.52 ±0.09 ±0.08 ±0.12 1.45

2.0–2.5 1.55 ±0.11 ±0.12 ±0.16 1.60

Fig. 14. q2t distributions of dijets with 1.5 ≤ kt ≤ 2.0 GeV/c for the platinum and carbon targets. The lines are fits of the

MC simulations to the data: coherent nuclear dissociation (dotted line), coherent nucleon/incoherent nuclear dissociation

(dashed line), background (dashed–dotted line) and total fit (solid line).

note also that in their more recent work [70] the authors carried out more detailed calculations

and predicted a value α = 1.54.

This process was calculated also by Nikolaev et al. [74] who include higher twist corrections.

They calculate the α dependence and their results are very similar to those shown in Table 1 as
derived from [69].

In summary of this section we may conclude that color transparency was well demonstrated

in vector meson electroproduction and in diffractive dissociation of the pion to dijets. It was not

unambiguously verified for the proton. It is important to understand the experimental results for

the proton: why (e, e′ p) experiments show no sign of CT and why (p, 2p) experiments show a

rise and fall of transparency, strongly deviating from Glauber calculations and at the same time

not reproducing the expected CT signature. It can be expected that if the effect exists in the qq̄

system it should also exist for the qqq system. One could argue that the probability to find a qq̄ at

short distances is higher than that to find a qqq in short distances. If we interpret these systems as

the valence components of their respective LCWFs, this may indicate that the contribution of the

valence component to the total LCWF may be different for mesons and baryons. The difficulties

encountered in understanding the anomalous spin effects in pp scattering [25,26] leave this as an

open question. For observation of CT with protons there might also be the problem of choosing

the sensitive process: reaction, momentum transfer etc. that would select a proton in a PLC

state and the observable that would identify it as such. It may be that diffractive dissociation

of protons or perhaps baryon photoproduction would show this effect. Following the example
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Nuclear coherence

F2
A(q2⇤) ⇥ e�

1
3R2

Aq2⇤

�Pz =
M2

final�M2
initial

2ELab

LIo⇥e = 1
�Pz

⇥ 2Elab
M2

qq̄

For E�
Lab = 500GeV,

M2
qq̄ < 50GeV2

LIo⇥e > 4fm ⇥ RA



Key Ingredients in  E791 Experiment

Small color-dipole moment pion not absorbed;  
interacts with each nucleon coherently  
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E791 Collaboration, E. Aitala et al., Phys. Rev. Lett. 86, 4773 (2001)

A-Dependence results: σ ∝ Aα

kt range (GeV/c) α α (CT)

1.25 < kt < 1.5 1.64 +0.06 -0.12 1.25

1.5 < kt < 2.0 1.52 ± 0.12 1.45

2.0 < kt < 2.5 1.55 ± 0.16 1.60

α (Incoh.) = 0.70 ± 0.1

!
Measure pion LFWF in diffractive dijet production  

Confirmation of color transparency  

Mueller, sjb; Bertsch et al; #
Frankfurt, Miller, Strikman

Conventional Glauber Theory Ruled Out ! Factor of 7

Ashery E791 



Diffractive Dissociation of Pion  into 
Quark Jets

Measure Light-Front Wavefunction of Pion 
!

Minimal momentum transfer to nucleus 

Nucleus left Intact! 

E791 Ashery et al.
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• Anti-Shadowing is Universal 

• ISI and FSI are higher twist effects and universal 

• High transverse momentum hadrons arise only from 
jet fragmentation  -- baryon anomaly! 

• Heavy quarks only from gluon splitting 

• Renormalization scale cannot be fixed 

• QCD condensates are vacuum effects 

• QCD gives 1042 to the cosmological constant 

• Dynamics always from gluon exchange; Zweig Rule 

• Higher Twist always nonleading 

• Factorization Theorems Rigorous

QCD Myths
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Novel Tests of QCD at GSI-FAIR
• Drell-Yan:  Breakdown of pQCD Factorization	


• Violation of Lam-Tung Relation	


• Double Drell-Yan Reactions	


• Higher Twist Effects at High xF	


• Non-Universal Anti-Shadowing	


• Diffractive Drell-Yan Reactions	


• Exclusive Processes	


• Crucial tests of fundamental issues in hadron 
physics 

p̄p! µ+µ�µ+µ�X

p̄p! µ+µ�p

p̄p! HA + HB
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