

First experiments with HISPEC/DESPEC

Alison Bruce University of Brighton

International Conference on Science and Technology for FAIR in Europe 2014

Worms, Germany, October 17, 2014

NUclear STructure Astrophysics and Reactions

What are the limits for existence of nuclei? Where are the proton and neutron drip lines situated? Where does the nuclear chart end? How does the nuclear force depend on varying proton-to-neutron ratios? What is the isospin dependence of the spin-orbit force? How does shell structure change far away from stability? How to explain collective phenomena from individual motion? What are the phases, relevant degrees of freedom, and symmetries of the nuclear many-body system? How are complex nuclei built from their basic constituents? What is the effective nucleon-nucleon interaction? How does QCD constrain its parameters? Which are the nuclei relevant for astrophysical processes and what are their properties? What is the origin of the heavy elements?

NUSTAR the project

Super-FRS	RIB production, identification and high-		
	resolution opectroscopy	The Approach	
DESPEC/ HISPEC	γ -, β -, α -, p-, n-decay spectroscopy in-beam γ -spectroscopy at low and intermediate energy	Complementary measurements	
ILIMA	masses and lifetimes of nuclei in ground and isomeric states	answers	
LASPEC	laser spectroscopy	The Collaboration	
MATS	in-trap mass measurements and decay studies	> 800 scientists	
R ³ B	kinematically complete reactions at high beam energy	> 180 institutes	
SHE	Synthesis and investigation of SHE	38 countries	
ELISE	elastic, inelastic, and quasi-free e-A scattering	The Investment	
EXL	light-ion scattering reactions in inverse	82 M€ Super-FRS	
	KINEMATICS	73 M€ Experiments	

-

NUSTAR experimental areas

Day 1: Start simple

Get first information on lifetimes, decay modes, Q-values and scheme of excited levels

Day 1: Start simple

Day 1 experiments, n-rich Pb

The Benchmark: RISING Stopped Beam set-up

Previous work (part of the RISING campaign)

S. Steer et al., Phys. Rev. C 84 (2011) 044313

Active stopper..AIDA

Advanced Implantation Detector Array

• Uses 12 x 8cm x 8cm DSSSD

- Measures position of implant
- Fast overload recovery (~μs}
 - Time stamping

http://www2.ph.ed.ac.uk/~td/DSSD/

First experiments with HISPEC/DESPEC

Active stopper..AIDA

Advanced Implantation Detector Array

THE UNIVERSITY

of LIVERPOOL

First experiments with HISPEC/DESPEC

Science & Technology

Facilities Council

Active stopper..AIDA

Advanced Implantation Detector Array

First experiments with HISPEC/DESPEC

DEGAS: Next generation detector array

Phase	1
Phase	2

GEOMETRY	ε _ρ (%)	ε _{ρη} (%)	ε _{p-eff} (%)
RISING (benchmark)	16.2	2.2	13.9
26 Triple EB clusters (box)	21.2	4.1	≈ 15
20 Triple EB clusters (box) + 5 ATC	21.4	4.2	≈ 19

DEGAS: Next generation detector array

Second stage:

Use BELEN to measure beta-delayed neutron emission

Use FATIMA to measure level lifetimes in the nanosecond regime

Use MONSTER to carry out neutron spectroscopy

Use DTAS to measure beta decay strengths

Second stage:

Design of the array, mechanical support structure and integration

HISPEC: High-resolution in-flight spectroscopy

First experiments with HISPEC/DESPEC

HISPEC: High-resolution in-flight spectroscopy

HISPEC: High-resolution In-flight SPECtroscopy

LYCCA: Lund York Cologne CAlorimeter

LUND UNIVERSITY THE UNIVERSITY of York

I R University of Cologne

P. Golubev *et al.*, Nucl. Instr. Meth. A723, 55 (2013)

LYCCA: Lund York Cologne CAlorimeter

LUND UNIVERSITY THE UNIVERSITY of York

Cologne

P. Golubev *et al.*, Nucl. Instr. Meth. A723, 55 (2013)

LYCCA performance

Fe fragments selected after secondary reactions on Fe beam

PreSPEC-AGATA 2012-2014: Early Implementation of HISPEC

Advanced Gamma-ray Tracking Array (AGATA) up to 5 x 2+10 x 3 = 40 segmented HP Ge-crystals d ~ 20 cm

ε_{Ph} ≈ 17% ΔE ≈ 0.4%

Lund-York-Cologne CAlorimeter (LYCCA) A and Z particle-ID after secondary target by means of

- x,y tracking
- ∆E-E (Si-CsI)
- Time-of-flight (plastic)

TDR approved 2008

Commissioned, upgraded and used in PreSPEC physics experiments **since 2011**!

S429: B(E2;0⁺ \rightarrow 2⁺) transition strengths in the vicinity of ²⁰⁸Pb

D.Rudolph, Z. Podolyak, J. Gerl et al.

Summary

 We will start by looking in the n-rich Pb region (which cannot be done at RIKEN nor FRIB). Evolutionary process as FAIR/Super-FRS beam intensity increases

The lead region is only one of many....

Home Page				Decay Physics Workshop		
Presentations Programme (PDF)				12th - 13th January 2011 University of Brighton		
Registration	Talks fron	n the W	orkshop			
Registered Participants	- This version	of the pro	gramme contains lin	aks to the presentations from the meeting in PDF format		
Accommodation Information	There are als	so links to	the original PowerP	Point files where they exist.		
First Announcement (PDF)	(PPTX).	re enner i	IT FOWEIFOIN: 97-20	os format (PPT) of Open XML format from PowerPoint 2007 of newer		
Contact Alison Bruce	The original p	programm	ne can be downloade	ed here (PDF).		
Paddy Regan	Č.	Wednesd	lay 12th January			
	10:00	Alison	Bruce	Introduction, welcome and housekeeping		
K	10:10	Jim	Al-Khalili	A model of one-proton emission from deformed nuclei (PPT)		
Iniversity of Brighton	10:25	Bertram	Blank	Decay of 73Sr to study unbound 73Rb in the framework of the rp process		
Sinversity of Brighton	10:40	Robert	Page	Proton emission from deformed rare earth nuclei (PPT)		
	10:55	Paul	Sapple	Proton emission from deformed rare earth nuclei: A possible AIDA physics campaign (PPT)		
SUKKEY	11:10	Andrey	Blazhev	Isomeric states in 98Cd and 98Ag (PPTX)		
	11:35	Dirk	Rudolph	Isomers and isospin symmetry aspects in the f7/2 shell		
	11:50	David	O'Donnell	High-spin states feeding seniority isomers in heaviest N=82 isotones (PPTX)		
Science & Technology	12:05	Adam	Gamsworthy	Present and Future Decay Spectroscopy at TRIUMF-ISAC		
	12:25	Lunch				
	13:30	Zhong	Liu	Search for proton radioactivity in the trans-lead and sub-tin regions (PPT)		
ATC XHTML NTC are	13:45	Rayner	Rodriguez-Guzman	Signatures of nuclear shape transitions with a microscopic perspective		
NJ_ 1.0 VYJ_ CSS	14:00	Phil	Walker	Isomers and shape transitions in the n-rich A~190 region (PPT)		
	14:15	Andrea	Gottardo	New isomers in neutron-rich lead region (PPT)		
tp://npg.dl.ac.uk/PF	RESPEC-1	1/Tal	ks.html	Discovery of highly excited long-lived isomers in neutron-rich hafnium and tantalum isotopes through direct mass measurements (PPT)		

• Our equipment.....

AIDA built and commisioned at RIKEN DEGAS builds on RISING and AGATA imaging FATIMA_0 built and commisioned at RIKEN BELEN built and commissioned at GSI,Jyvaskyla,RIKEN DTAS built and commissioned at Jyvaskyla LYCCA built and commissioned at GSI AGATA demonstrator already tested at GSI

Summary continued

• Our equipment.....

le are ready-alread AIDA built and commisioned DEGAS builds on RISIN' FATIMA_0 built april **BELEN** built DTAS b

"Jyvaskyla, RIKEN

The latest HISPEC/DESPEC collaboration meeting

Valencia, September 2014

The latest HISPEC/DESPEC collaboration meeting

sture and Reactions within NUSTAR

First experiments with HISPEC/DESPEC

TECHNISCHE UNIVERSITÄT DARMSTADT

First experiments with HISPEC/DESPEC

HISPEC/DESPEC - foreseen instrumentation

HISPEC

- LYCCA heavy-ion calorimeter with ToF capability
- AGATA gamma spectrometer
- HYDE light particle array
- NEDA Neutron Detector Array
- Plunger nuclear level lifetime measurements

DESPEC

- AIDA active implantation device
- DEGAS Ge Array gamma spectrometer
- FATIMA Fast TIMing Array
- BELEN neutron detection array
- DTAS Decay Total Absorption Spectrometer
- MONSTER neutron ToF array

Complementarity of NUSTAR experiments

	Super- FRS	R3B	ILIMA	EXL	ELISE	AIC	HISPEC/ DESPEC	exo+ pbar	MATS	LASPEC
	ANT ROAD	100 Parts of	- Warn by	- 		A-1				Control Internet in the system
	Super-FRS	R3B	ILIMA	EXL	ELISE	AIC	HISPEC/	exo+pbar	MATS	LASPEC
							DESPEC			
Masses			bare ions,				Q-values,		dressed	
			mapping study				isomers		ions, highest precision	
Half-lives	psns- range		bare ions, sh				dressed ions, μss			
Matter radii	interaction x- sect	matter radii		matter densitiy distributions		matter raci from absorptio	i	r uclear r eriphery		
Charge radii					charge density distribution					mean square radii
Single-	high	complete		low			high-			
particle	resolution,	kinematics,		momentum			resolution			
structure	angular	neutron		transfers			spectroscopy			
	momentum	detection						1		

HISPEC/DESPEC - foreseen instrumentation

HISPEC

- LYCCA heavy-ion calorimeter with ToF capability
- 🛨 AGATA gamma spectrometer
 - HYDE light particle array
 - NEDA Neutron Detector Array
 - Plunger nuclear level lifetime measurements

DESPEC

- AIDA active implantation device
 - DEGAS Ge Array gamma spectrometer
- FATIMA Fast TIMing Array
 - BELEN neutron detection array
- DTAS Decay Total Absorption Spectrometer
- MONSTER neutron ToF array

Fast-timing array

Status of NUSTAR experiment funding

Quadrantic Evolution of Collectivity Around 208 Pb

S429

 $B(E2;0^+ \rightarrow 2^+)$ transition strengths in the udolph, Z. Podolyak, J. Gerl

NUSTAR@FAIR

World-wide unique synchrotron-based RIB production for:

- High-energy Radioactive Beams (≤1.5 GeV/u)
 - Efficient production, separation, transmission and detection aided by Lorentz boost
 - Access to the heaviest nuclei without charge-state ambiguities
 - Large range of attainable reaction mechanisms
- Storage rings
 - Mass measurements and beam preparation/manipulation
 - Isomeric beams
 - Novel experimental tools (beyond MSV/with CRYRING, ESR and HESR)

Combined with:

- Wide range of state-of-the-art instrumentation not monolithic!
 - Strong evolution from existing programs
 - Dynamic progress in terms of TDRs/construction/operation
 - Some NUSTAR FAIR experiments could already start in 2017/2018

Day-1 experiments (at FAIR-start)

Physics goals with exotic nuclei

- Limits of stability
- Evolution of shell structure far off stability
- Nuclear structure and new effects
- New modes of radioactivity, new modes of excitations

Approach

- Intense primary beams, fragmentation and fission of very heavy projectiles, reactions with relativistic radioactive beams
- NUSTAR sub-systems placed at Super-FRS focal planes, (incl. HEB, LEB, RB)

NUSTAR "day-1 experiment"

- New isotope search, neutron drip-line up to Ni
- Exotic atoms, exotic hypernuclei
- Gross properties (mass, T_{1/2},...), spectroscopy of very heavy very n-rich isotopes from Sn to U, high-energy reactions (matter and charge radii) and quasi-free scattering (spectroscopic factors)

(From: S.Milne, University of York)

NUSTAR experiment-funding overview (MSV)

Experiment	Cost 2014	Secured* 2014	Eol 2014	To be assigned 2014
	[k€]	[k€]	[k€]	[k€]
LEB Super-FRS	3853	1118	0	2734
HISPEC/DESPEC	21337	13204	6204	1929
MATS	3654	1381	1780	493
LASPEC	809	181	627	0
R3B	32791	26351	4298	2142
ILIMA	2403	935	268	1200
Total NUSTAR MSV	64846	43170	13177	8498

(*partially expected from FAIR budget)

Status: June 4, 2014

Nuclear Structure and Reactions within NUSTAR

Status Technical Design Reports (35 TDRs)

- Approved TDRs (10):
 - HISPEC/DESPEC (6) (LYCCA, Plunger, AIDA, BELEN, MONSTER, DTAS)
 - MATS + LaSpec (1) (all subsystems except LD-RIS: no action)
 - R³B (3) (Multiplet, NeuLAND, CALIFA-barrel)
- Submitted (4):
 - HISPEC/DESPEC (AGATA, DEGAS, NEDA)
 - R³B (GLAD)

TDRs expected (21) (submission profile – October 2014)

2014	2015	2016	2017	2018
6	12	3	0	0

NUSTAR work packages (62 with TDR)

For the case of lead, the investigated isotope chain (182-214Pb) could be extended into the neutron-rich region up to ²²⁰Pb (production rates of ~1500/s, hence still 15 ions/sec at the LaSpec station at 1% efficiency of the catcher and cooler). In the lead region mostly neutron-deficient isotopes were studied so far, most recently using in-source resonance ionization spectroscopy at ISOLDEand it was in this mid-shell region of the nuclear chart where shape coexistence was first discovered. Extending these investigations further to neutron rich isotopes will be possible at FAIR. It is expected that measurements in the chains of TI, Hg, Au, Pt and Ir can be extended typically 7 isotopes further from stability. In the case of gold the figure rises even to 10 new isotopes.

The future FAIR facility is the ideal place for such studies, as its high beam energies of 1 GeV/nucleon allows to work with fully stripped heavy beams. Currently, similar experiments are difficult to perform at any other RIB facility, as such heavy beams can not be produced with sufficient intensity and purity (of charge states). Thus, already for day-0 experiments, new and exciting physics can be extracted. A possible first experiment is e.g. ²¹⁵Bi(p,2p)²¹⁴Pb. This would give first insight into the evolution of fission barriers "east" of ²⁰⁸Pb, and will be a critical benchmark for modern mean field theory and the shell corrections, involved in such calculations.

R3B spectroscopy of 2+ states (Day 0)

The energies of the first excited 2⁺ states in even-even nuclei are known to be a very sensitive indicator of changes in the structure of nuclei. At the same time, 2⁺ energies can be measured rather easily once sufficient beam intensities of a few ions/s are available using inelastic excitation on light targets or nucleon removal reactions such as knockout or (p,pN).

Due to the high beam energies required to identify the nuclei before and after the target, first experiments will focus on semi-magic nuclei, where rather large 2⁺ energies are expected, that can be well separated from possible backgrounds. The heaviest Pb isotope with known 2⁺₁ energy is ²¹⁴Pb. For the Day-0 program in cave C at GSI the intensities are sufficient to study the proton removal reaction, either (p,2p) or knockout on Be or C targets, from ²¹⁷Bi and ²¹⁹Bi.

For Day-1 experiments these studies can be continued with ²²¹Bi and ²²³Bi beams and for Day-2 with ²²⁵Bi and ²²⁷Bi beams. For the Day-0, Day-1, Day-2 program, nuclei with similar beam intensity can be studied along the N=126 isotonic chain. For the Sn region similar experiments can be carried out, if not already performed elsewhere.

III-1) Dipole response of heavy neutron-rich beams

Day-1: ²⁰⁸⁻²¹⁸Pb Day-2: ²²⁰⁻²²⁴Pb (when design intensity is reached: 100/spill ²²²Pb, 5/spill ²²⁴Pb)

The dipole response of neutron-proton asymmetric nuclei is of great scientific interest for several reasons: 1) The dipole response of neutron-rich nuclei becomes softer and a partial decoupling of strength related to Giant Dipole vibrations and a soft mode related to less bound valence neutrons appears. The nature and characteristics of this soft dipole mode is debated and experimental data is scarce. A systematic appearance of this often called Pygmy resonance, i.e., its strength and resonance energy for different mass regions and as a function of neutron excess is highly mandatory. 2) The redistribution of strength, i.e., the softness of the dipole response depends on the density dependence of the symmetry energy. A robust observable quantifying this is the dipole polarizability, which will be extracted from the same measurement. Since the effect is large for heavy neutron-rich nuclei, the neutron-rich lead isotopes will provide key data to constrain the density dependence of the symmetry energy, in a density region complementary

In a first step, we propose to measure the neutron-rich Pb isotopes up to mass 218, which should be possible already shortly after start-up of the facility with assumed intensities of about two orders of magnitude below design value. Later, when the design intensities will be reached, the dipole strength function, dipole polarizability and properties of giant and Pygmy resonances can be determined up to mass 224.

Time line for phase I & II

Phase I

cryostat development cryostat prototype construction cryostat production triple detector assembly active/passive shield development active/passive shield construction holding structure development holding structure construction EDAQ component procurement installation and commissioning experiments with sub-arrays experiments with full system Phase II

AGATA detector procurement AGATA cryostat procurement holding structure development holding structure construction EDAQ component procurement installation and commissioning experiments with full system

Time between the beta (measured in the plastic) and the gamma-ray

Measured t_{1/2} = 2.0 (2) and 2.0 (3) ns, in agreement with literature

NUSTAR - The Facility

Nuclear Structure and Reactions within NUSTAR

Precision tests of wavefunctions by measuring level lifetimes.

HISPEC: High-resolution in-flight spectroscopy

HISPEC: High-resolution in-flight spectroscopy

First experiments with HISPEC/DESPEC

Core excited states in ²⁰⁸Pb

FAST TIMING measurements @ Riken

12 **RISING** clusters

18 LaBr₃(Ce) detectors

Summary of Simulation of DEGAS

GEOMETRY	ε _ρ (%)	ε _{ργγ} (%)	ε _{p-eff} (%)
RISING (benchmark)	16.2	2.2	13.9
26 Triple EB clusters (box)	21.2	4.1	≈15
20 Triple EB (box) + 5 ATC	21.4	4.2	≈19

Ref: M Doncel