University of Warsaw
Faculty of Physics

Illya Yurchanka
Record book number: 450832

Identification of A hyperons from
simulated Au-+Au collisions at 10
GeV /nucleon in CBM spectrometer
using TMVA Machine Learning
package

Bachelor’s thesis
in the field of Physics

The thesis was written under the supervision of
Dr hab. Krzysztof Piasecki

Institute of Experimental Physics

Nuclear Physics Division

Warsaw, July 2025

Summary

This thesis presents a study on the identification of neutral A hyperons from simulated Au+Au
collisions at the beam energy of 10 GeV /nucleon using the CBM spectrometer at the FAIR
facility. The UrQMD transport model and Geant-based detector simulation package were
used. The candidates for A decays were reconstructed from pr~ pairs, and their classification
as signal or background was performed using the supervised machine learning methods avail-
able in the TMVA toolkit, including k-Nearest Neighbours (k-NN), Multilayer Perceptron
(MLP), and Boosted Decision Trees (BDT). For the model comparison, signal significance
and S/B (signal to background ratio) were used as main quality measures, while training
and evaluation CPU time and mass reconstruction were also considered. The k-NN method
demonstrated the highest performance in terms of signal detection and statistical confidence,
while BDT showed a high signal-to-background ratio with fast inference time. MLP had the
worst performance. However, it has considerable improvement potential for hyperparameter
calibration to achieve better results.

Keywords

Hyperons, Heavy-Ion Collisions, Simulation, CBM, TMVA, Machine Learning, Classification,
MLP, BDT, kNN

Title of the thesis in Polish language

Identyfikacja hiperonéw A z symulowanych zderzen Au+Au przy energii 10 GeV /nukleon w
spektrometrze CBM za pomocg pakietu uczenia maszynowego TMVA

Contents

IGoal of the Thesisl. 3
[I. Theoretical Introduction|. 4
[1.1. Physical Basics| 4
(1.1.1. Elementary Particles| 4

[1.1.2. Basics of Special Relativityl 6

[1.1.3. Selected physics principles of particle detection in CBEM| 7

(1.1.4. Reconstruction Methodsl 8

[1.2. Machine Learning Methods| 10
(1.2.1. Introduction|. 10

[1.2.2. Supervised learning and Classification| 10

[1.2.3. k-Nearest Neighbours Algorithm| 10

[1.2.4. Neural Networks: Multilayer Perceptron| 11

[L2.5. Boosted Decision Treel oL 13

2. CBM - description of setup and data generation| 16
[2.1. Overview of the CBM Experiment| 16
[2.2. Experimental setup|. 17
[2.3. Simulation Steps|o 22
[2.4. Structure of trees of pairs| 22

. ROOT/TMVA| 24
I3.1. Description of the Tools| L 24
[3.2. Configuration of chosen TMVA methods| 24

4. Data Analysis and Comparison of MLL Methods| 26
4.1. Data Preparation and Training of Models| 26
4.2, The ROC Curvel 27
4.3. Application and optimisation of classifiers| 28
4.4, A mass reconstruction cross checkl.o 36
. _Conclusion and Outlookl 37
Bibliography| 39
|A. Classifying events with the BDT method.| 40

IB. Comparing quality measures of the BTD method for different thresholds.| 43

C. Tables| 46

Goal of the Thesis

The goal of the bachelor’s thesis is to consider different statistical learning methods for the
identification of A hyperons from Au+Au collision at 10 GeV /nucleon in the CBM spectrom-
eter. While the Compressed Baryonic Matter Experiment is still under construction, it is
already possible to compare different methods with simulated data, thereby improving recon-
struction accuracy and statistical significance in high-multiplicity environments.

The choice of A hyperons for this task was made due to their lack of electric charge and its .
This baryon is detected only through reconstruction from its charged decay products. Their
narrow natural width makes them suitable for benchmarking the performance of calibration
and reconstruction methods, such as the machine learning [1].

Chapter 1

Theoretical Introduction

1.1. Physical Basics

1.1.1. Elementary Particles
The Standard Model

According to our knowledge, four fundamental interactions exist in our Universe: strong,
weak, electromagnetism, and gravitation. While gravitation can only be observed in the
macro-world, strong/weak interactions and electromagnetism are observed in the quantum
world and described by The Standard Model. The interaction of particles occurs through
these forces. All the particles can be divided into two groups: bosons and fermions. Bosons
are particles whose spin quantum number (intrinsic angular momentum) is an integer value,
and fermions are those with spin number equal to a half-integer value: 1/2, 3/2. Each of the
three fundamental forces (strong, weak, electromagnetism) is described by the corresponding
gauge boson. A gauge boson is a spin-1 particle. There is also a 0-spin (scalar) boson:
The Higgs boson, which is responsible for the non-zero mass of the quarks in the Standard
Model [2]. You can see all the gauge bosons in the table

Table 1.1: Gauge-bosons and corresponding interactions.

Interactions Boson Spin
Strong Gluon (g) 1
Electromagnetism Photon (v) 1
Weak W boson (W*) | 1
7 boson (Z°) 1

This table should be complemented with fermions (see Table . Each quark has its unique
quantum number (flavour), for example strange quark has strangeness S = —1. For each quark
(or lepton), there exists an antiparticle with the same mass and spin, but an opposite charge
and flavour (or lepton number) |2]. In this work, we will be focused on strong interactions,
which are linked to the existence of quarks and gluons. Quarks constitute the basic bricks of
matter. Objects such as protons and neutrons consist of combinations of up-quarks (u) and
down-quarks (d) [3].

Table 1.2: List of fundamental particles.

Bosons
Strong Interactions Electromagnetic Interactions | Weak Interactions
Gluon (g) Photon (v) W (W*), Z (2°)
Fermions
I Generation IT Generation IIT Generation
Leptons electron (e™) muon (u™) taon (77)
electrons neutrino (v) muons neutrino (v,) taons neutrino (v,)
Quarks up-quark (u) charm-quark (c) top-quark (t)
down-quark (d) strange-quark (s) bottom-quark (b)
Hadrons

Only quarks can "feel" the strong force, and by the nature of QCD (Quantum Chromody-
namics, the fundamental theory of strong interactions), quarks are never observed as free
particles. In Nature, we can observe them only in combinations, which we call hadrons. The
most common hadrons are protons and neutrons [2|. Two basic types of hadrons are mesons
and baryons. A meson consists of quark and antiquark (qg), whereas a baryon consists of
three quarks (gqq) (or ggqq for antibaryons). There are many possible hadronic states, which
are defined by a combination of their quark flavours and different internal angular momen-
tum states. The total angular momentum (spin) of a hadron depends on the orbital angular
momenta between quarks and the combination of their spins. Hadronic states can be distin-
guished by their flavours, their total angular momentum (J) and their parity (P). Each state
has its particular mass, which is not just a combination of the masses of its quarks but also
results from interactions with the QCD vacuum. The only stable free hadron is the proton
12].

A, 7~ and p hadrons

For this paper, we will only consider three hadron particles: neutral A baryon, 7~ meson and
proton. You can see the properties of those particles in tables and

Table 1.3: Properties of hadrons considered in this work, values are approximate. See |3| for
reference.

Hadron Name | Composition | Charge (e) | Mass (MeV/c?)
A% baryon uds 0 1115.68
T~ meson du -1 139.57
P uud +1 938.27
Hadron Name | Lifetime (s) | Dominant decay channel(BR)
A% baryon | 2.62-1071° p+71 (64.1%)
7T~ meson 2.60 - 1078 © + vy, (99.99%)

The lifetime of the AY baryon, about 1070 s, is many orders of magnitude longer compared
to the typical lifetime of hadrons decaying via strong interaction (~ 10723 s). The reason is,
the latter case, which requires strangeness conservation, is forbidden due to the additional
requirement of baryon number conservation and the mass balance between particles.

1.1.2. Basics of Special Relativity

In 1905, in his fundamental work, "On the Electrodynamics of Moving Bodies", Albert Ein-
stein, inspired by theoretical hints in electrodynamics and empirical evidence, such as the
Michelson-Morley experiment, presented his two postulates [4]:

1. The principle of relativity. The laws of physics apply in all inertial reference systems.

2. The universal speed of light. The speed of light in a vacuum is the same for all
inertial observers, regardless of the motion of the source of light.

Based on those two postulates, the Special Theory of Relativity was derived. This theory
solved the incompatible Maxwell’s equations of electromagnetism with Newtonian mechanics
[4]. One of the most important conclusions of this theory is time dilation. Let’s consider the
problem from Introduction to Electrodynamics [4]: the bulb inside the moving car. A light
ray leaves the bulb and hits the floor of the car. The time between the two of those events,
from the point of view of the car, will take only:

At = (1.1)

ol

where h - height of car and ¢ - speed of light. But for an observer standing on the street
without moving, the time should take:

2 2
At = w (1.2)
c
where v is - velocity of the car. Solving this equation yields:
h 1

The time between the two events - (a) the light leaving the bulb and (b) the light hitting the
centre of the floor - is measured differently by the two observers. The time interval observed
on the cars’ clock is shorter by a factor of:

NE — (1.4)

Time dilation is a natural property that tells us that for the non-moving observer, the clock
in the car ticks slower than inside the car [4]. This property is important in the field of
elementary particles because, while unstable particles have a short life span at rest, when
they are moving at a speed close to the speed of light, we can observe them for much longer
than their nominal lifetime. Now, there are several questions in relativistic mechanics that
must be addressed in this paper to ensure a proper understanding of future concepts.

In relative mechanic, coordinates (¢,z,y, z) can be translated into coordinates (¢, Z, %, z) by
using the Lorentz transformation:

W QLRI ow
|

[RN RS W)
™

o= OO

— o O O

N e8] o+

where 3 = 7.

Within Special Relativity one can define the space-time interval, as follows:
§* = —(cAt)? + 2% + y* + 2* (1.6)

It turns out that the value of this interval is independent from the frame of reference, in
which it is calculated. How do energy and momentum look in relativistic mechanics? While
in classical physics the momentum is defined as p = m, in relativistic mechanics we define it
as:
7= ~ymt = ymfe (1.7)
Energy in the system’s rest frame is:
E = mc? (1.8)

And energy in a moving frame is given by:

E = +/(mec?)? + (pc)? (1.9)

Using these terms, one can define the "available energy" as follows:

5= (ZE)Z— (;pic>2 (1.10)

or, for a system consisting of a single body:

Vs =\/E? — (pc)2 = mc? (1.11)

This term also turns out to have the same value regardless from frame of reference in which
it is calculated.

1.1.3. Selected physics principles of particle detection in CBM

The general aim of particle detection consists of their measurement of their momentum,
velocity, emission angles and energy loss when traversing through detectors.

Momentum measurement

A typical way of measuring the momentum of a charged particle consists of putting it in a
deflective magnetic field and mounting several positional sensors along its path. A particle in
the magnetic field B will curve its track in the plane perpendicular to B , due to the Lorentz
force:

F, = qix B (1.12)
where ¢ - is particle charge, v - velocity. Assuming for simplicity the constant B field, the
magnetic force provides the centripetal force that keeps the particle in circular motion (in
that perpendicular plane):

mv2

R
Where R is the radius of curvature of the track. This leads to:

y = quB (1.13)

p=ymv = q¢BR (1.14)

A notable feature of equation [[.14]is the fact that it works regardless of whether the particle
is relativistic or not. The reasoning above is only conceptual, as the CBM magnetic fields
vary in different parts of the detector.

Velocity measurement

To detect particle velocity, we need to measure time. To do this, we use the Start and the
Time of Flight detectors. We can place the Start detector in front of the target. When the
beam hits Start, we measure the time of this hit - tgt.rt. Knowing the kinetic energy of the
beam from the collider setup (from which we can extract its velocity - vpeam), we can calculate
the moment when the beam hits the target - tmu get:

dStart- Target

7fTarget = tStart + (115)

Ubeam

where dstart-Target 1s the distance between the Start detector and the target.

For example, in the CBM setup, the Time of Flight detector was placed after the tracking
detectors - MVD-STS-TRD station, which allows for measuring the positions of the particle
and reconstructing the track of a particle. The ToF detector measures t,p with high precision.
Having both fraget and tror, it is possible to find the time difference for which particle
traverses the target-ToF distance. Having reconstructed the track from particle hits in the
MVD-STS-TRD station allows us to integrate the particle trajectory to obtain the path (L)
between the target and the ToF detector. Both the path and the time of the particle give us
the velocity of the particle: .

V= """
lToF — tTarget

(1.16)

Mass determination

Having both velocity and momentum over charge, it is possible to find the mass of the particle.
After putting equations and [[.14] together, we can extract the mass. Usually, the relevant
formula is kept in the squared form:

2 2 2
()= (O ()) w1
q c L
Such a form originates from the finding that due to experimental uncertainties, some rare
fraction of particles can appear to have § > 1. For completeness, their tracks are also stored,
but with masses effectively negative.

% variable derived from equation can be used to classify particles. The drawback of
this method is that it is not possible to separate particles with the same mass/charge ratio.
However, for the needs of the paper, it is not significant, due to its focus on hadrons with no
similar mass/charge ratio. Both proton and pion have |g| = 1.

1.1.4. Reconstruction Methods

The method provided above works for charged particles. But it’s useless if applied directly to
neutral particles such as A?. The solution to this problem can be found in the case of a particle
that has a decay channel where all the products can be detected (for A? it is p + 7). The
mere detection of such particles does not provide sufficient evidence to classify them as decay
products, as their origin may also stem from other background processes, not just neutral
particle decay. Rigorous background suppression is often required to isolate the true signal
and ensure unambiguous identification. One of the most basic techniques is to construct the
invariant mass distribution Mj,,, for all the possible combinations of decay products and check
whether there is a peak around the mass of the conjectured mother-particle (in our example:

angle between &5

proton track

Primary Vertex

Figure 1.1: Reconstruction of A — pr~ decay. [5|

My), which would indicate the presence of the mother-particle. Additionally, a rejection can
be more precise by reconstructing the primary vertex and the particle decay vertex.
One can see an example of reconstruction in Fig. The primary vertex is the spatial point
where the collision of the beam and the target nuclei occurs. It can be assumed that a neutral
particle was produced in the primary vertex, and the spatial point of its decay is the particle
decay vertex.

The primary vertex can be reconstructed by using tracks of other, more stable, collision
products. For reconstructing the particle decay vertex, the trajectories of decay products are
extrapolated backwards toward the primary vertex, and the decay point is identified as the
position where the distance between these tracks reaches its minimum (distance of closest
approach - dca). In the Fig. the particle decay vertex is denoted as V. We can analyse
all of this data to classify our candidates as signal or background (all parameters that will be
used in filters can be seen in Fig. [1.1)):

e The vertex of the Vy decay should be sufficiently distant from the primary vertex —
filter applied: decay length > min

e In the fixed-target experiment, the velocity of the centre of mass reconstructed particle
SN
is directed forward — filter applied: Vo — PV| > 0, where PV - Primary Vertex.
z

e To minimise that decay product candidates are coming from different vertices — filter:
dca2 < max

e The tracks of the decay products should not converge at the primary vertex, because
that would indicate that those particles are products of the original collision — filter:
dca of daughter > min

e The reconstructed momentum of the Vj candidate should point back to the primary
vertex — filter applied, which should indicate that the reconstructed particle originates
from the initial reaction: dcaV0 < max

While for the true products of the particle decay dca2 and dcaVo0 are usually greater than zero,
due to the finite resolution of the detectors, it is important to find a proper minimum value
to cut off background. If the presence of the A particle was determined, all the properties of
this particle can be found and analysed.

1.2. Machine Learning Methods

1.2.1. Introduction

Statistical learning is a set of mathematical and computational tools for understanding
data. It is one of the most important tools in many areas of science. We can use statistical
learning to predict future events based on data and the outcome of previous events, to classify
objects based on their parameters or to find a correlation between inputs. One of the most
common use cases for statistical learning is [6]:

e predicting weather
e identifying objects on a digitised picture
e detecting spam and flagging it in our email box

Physics is no exception. Statistical learning is used in almost all fields of physics, but one of
the most basic cases of using statistical learning is experimental data analysis.

1.2.2. Supervised learning and Classification

All the statistical learning problems can be roughly categorised as either supervised or
unsupervised. One can use unsupervised learning to find the associations and patterns
among a set of input parameters. For this category, no outcome measure needs to be provided
for the learning process. Supervised learning is used to predict an outcome measure based on
input measures. There is a need for the presence of already known outcome measures for a set
of training input data to guide a learning process. For this work, we will focus on supervised
learning [6]. In that category, there are two types of output:

e regression - prediction of quantitative output (example: predicting the price of a house
based on its features)

e classification - prediction of qualitative output (example: iris flower classification
{Versicolor, Setosa or Virginica} based on its features)

An input can be a qualitative or quantitative variable, or a mix of them [6]. That is why
there is no universal prediction method for every problem. For each problem, there is a
need to find and tune the optimal prediction method. There are many such methods in
modern statistical learning, but for this paper, only three of them will be used: k-INearest
Neighbours Algorithm, Multilayer Perceptron and Boosted Decision Tree. The
descriptions of these methods are based on The Elements of Statistical Learning [6] and
TMVA - Toolkit for Multivariate Data Analysis [7].

1.2.3. k-Nearest Neighbours Algorithm

k-Nearest Neighbours Algorithm (The k-NN) is one of the most popular classification
algorithms. The k-NN principle of work is quite simple, but very powerful. It is used in the
classification of handwritten digits, satellite image scenes and many other cases.

10

Principle of work

This method employs supervised learning, so to analyse a real-data dataset, there is a necessity
for a training dataset. Both the training sample and the one with real data consist of data
points. Each data point is a vector of features (feature vector), where each vector component
corresponds to a specific particle parameter. The difference between those samples is that
each element in the training dataset is pre-classified. The class is quantified by some value
y;. For example, if we want to distinguish the signal from the background:

yi =1, signal
{yi =0, background (1.18)

To classify a real data point z¢ we shall find the k closest training points ;) (1 = 1,2,..., k).
For every xg, we find its distance to any other one by using Euclidean distance in feature
space:

dgy = ||z — wol| (1.19)

The point x(shall be assigned the class that represents the majority among its k nearest
neighbours. The vote Y for the point z(is defined as follows:

Y:% > (1.20)

2, €Ny (z)

where Ni(z) is the neighbourhood of xy defined by the k closest points x;, y; is class of x;
neighbour. All the data points with Y > Y} are assigned to the target class. By setting the
boundary value Y, = 0.5, the majority class among the neighbours (in the training dataset)
determines the predicted class of the real data point. However, in some cases, the boundary
value Yy may need to be set higher than 0.5.

The more sophisticated variant of the k-NN equation involves assigning weights (w;)
to each neighbour. An updated formula has the following form:

1 1
Y=o D (1.21)

Advantages and limitations

The best use case for the k-NN method is when the boundary that separates classes has an
irregular shape that can not be approximated by other learning methods. But this method is
not ideal: a considerable problem of the k-NN method is the curse of dimensionality [8]. For
example, for a 10-dimensional hypercube, with uniformly distributed inputs, to capture 1%
or 10% of the data volume to form a local average, we must cover 63% or 80% of the range
of each input variable (expected edge length, for a fraction of unit volume r: e,(r) = rl/p
[6], which is no longer local. There are other manifestations of the dimensional curse for the
k-NN method, but covering all of them would exceed the scope of the paper.

1.2.4. Neural Networks: Multilayer Perceptron

The term neural network describes a large class of models and learning methods [6]. A
neural network consists of neurons (nodes) that can send signals to one another through
their connections (edges). Depending on the architecture of a network, it can be applied to
regression or classification.

11

Input Layer Hidden Layer Output Layer

Figure 1.2: chematics of a single hidden layer perceptron (see text for details) [7].

In this paper, we will focus on perceptron neural networks. This class of neural networks
combine nodes into a set of layers, and nodes can only interact with ones from another layer.
The first layer of a perceptron neural network is always the input, while the last one is -
output. Layers between them are called the hidden ones. A perceptron is a feed-forward
neural network, which means that data flows unidirectionally (input — hidden — output),
with no cycles or feedback connections. Multilayer Perceptron neural networks (the MLP)
are a subclass with more than one hidden layer.

Principle of work

For clarity, the Perceptron will be described as a network with one hidden layer. The scheme
of work is shown in Fig. [[.2] It starts with the vector X, which contains all the input data.
The hidden layer, consists of M nodes, where the m-th node (m = 1,..., M) works the
following way:

e The linear combination L,, is computed from the input values, weighted by their re-
spective coefficients: a bias term «q,, and a weight vector auy,.

Ly = agm +al X (1.22)

These weights are found in the course of a training. It will be explained in the next
subsection.

e The activation function o is applied to L,,, which flattens R to [-1, 1].. A typical solution
here is the hyperbolic tangent [7].

Zm = 0(Ly,) = tanh(L,,) (1.23)

The output is modelled as the linear combination T' of the Z,, responses from the nodes of
the hidden layer in the MLP neural network:

T=p8+8"2 (1.24)

where [y is a bias term and f§ is a vector of weights, also found during training.

12

Training of the neural network

As it was previously shown, each node has its weights, and these parameters of the neural
network are unknown in the beginning. Adjusting the set of weights () is called the task of
training the neural network. For classification, either the sum-of-squared error Eq. or
cross-entropy Eq. is used as a measure of fit quality R(6).

N
R(0) = (v — f(x))? (1.25)
=1
N
R(0) = =) _log(f(x:)) (1.26)
=1

where N is the number of training examples in dataset, y is an output and « is an input. Back-
propagation is one of the most common ways of minimising R(6) and is based on gradient
descent.

Advantages and limitations

Neural networks are one of the best methods to model complex, non-linear relationships in
data |7]. They can analyse different types of data and learn automatically. But they require
big sets of training data and can easily suffer from biases of the data, over-fitting, etc. In
addition, neural networks suffer from a black-box nature. We can only control the number of
hidden layers and nodes, but we can’t control the decision processes inside them.

1.2.5. Boosted Decision Tree

Decision Tree is quite simple concept. By comparing input parameters against previously
calculated threshold values at each node, we can traverse the tree until reaching a terminal
node that provides the predicted output. This method is visually represented in Figure [1.3]
However, a drawback of this method is the fact that it is considered a "weak" method. Yet, if
we combine multiple "weak" methods, it is possible to achieve a reasonably good prediction.
Based on this idea, boosting methods were created. The simple boosting method combines
"weak" methods with their adjusted weights and yields a prediction. A Boosted Decision
Tree is a boosting classification method that uses a combination of decision trees to classify
an event.

Principle of work
Decision Tree

For simplicity, the binary decision tree will be considered. It can be mathematically described
as follows: the feature space is partitioned into a set of rectangles (nodes), in each of which
some simple model is fitted [6]. It begins with splitting space into two regions, then we split
each one of them into two more, and this process is continued until the stopping rule is applied.
Each time we are looking for the split-point, which helps us achieve the best fit. This process
is called tree growing.

For a classification problem with K input values, to grow the tree, we recursively partition
the feature space by selecting splits that minimise node impurity @Q,,. Node impurity is
a measure of how mixed the data at a particular node is concerning the target variable.
There are different measures of node impurity, but for all of them, there is a need to know

13

\\nodg/
S e ‘
xi>cl) xi<cl
y'/ \\ ,'/ \\\
|) [)
A 4 \\\ A §
xj > c2] [xj<c2, \xj >c3] |xj<c3]
P .
y YAIRN VY A\
{ B) (S) (\' S)
\\7‘/ : / L B // \ B 4 _
.
Xk >c4] xk < c4|
oM D
' B) \ S |

Figure 1.3: Example of decision tree |7].

the proportion of the class for each node. If R, is m-th region of feature space and N,,
observations have features falling into this region, then class k& (k = 0 for background and
k =1 for signal) has the proportion p,,; in node m:

Pk = NL > yi—k) (1.27)

m T;ERm

where y; is the class of the i-th data point and x; is feature vector of i-th data point. Then
node m gets class k(m) = arg maxy, pn,r. Having the proportion p,,x in node m for each class
and class of node m, we can find the node impurity. Common ways of finding node impurity
are [6]:

e Misclassification error: N%w Ywier,, (1 =0 — k) =1 = Pri(m)

e Gini index: Zk;ﬁk, Dok Dmk! = ZkK:lﬁmk(l — Dmk)

The Gini index is more suited to numerical optimisation (because it is differentiable) and is
more sensitive to changes in the node probabilities in comparison to the misclassification rate.
For this reason, the Gini index is usually used for tree growing [6].

Boosting

One of the most used boosting algorithms is Adaptive Boost (AdaBoost) [7]. In the training
process, data points that were misclassified in the previous tree are given a higher weight in
the following tree. The weights of misclassified data points are getting bigger by multiplication

by a common boost weight a:
1—
a=In (err> (1.28)

err

Where err = % Zi]\;l(l —0(y; —G(z;))) is the weighted error rate of the previous tree classifier
(G(x;)). After updating weights, they are renormalised so that the sum of weights remains
constant. This forces subsequent trees to focus on previously misclassified observations. The

14

boosted classification is then given by the sum of classifiers with their weights:

T
Z Oéth(ZL‘)
t=1

where T' is the number of trees, in the end, we are getting input between —0.5 and 0.5. Values
closer to 0.5 indicate high confidence for signal, while values closer to —0.5 indicate high
confidence for background.

G(z) = % (1.29)

Advantages and limitations

The main advantage of Boosted Decision Tree is working "out of the box"; it doesn’t require
a lot of tuning to get a good result, but its theoretically best performance will be inferior to
more complex methods such as Neural Networks. That’s why the best use case for Boosted
Decision Tree is to analyse new real-time data, for which we do not have enough training data
and time to fine-tune our method [7].

15

Chapter 2

CBM - description of setup and data
generation

2.1. Overview of the CBM Experiment

The currently built Facility of Antiproton and Ion Research is going to be one of the key
research facilities worldwide. The main component of FAIR is the SIS100 ring accelerator. It
has a circumference of 1,100 meters and can accelerate the ions of all the natural elements
in the periodic table to velocities as high as 99% of the speed of light. The Compressed
Baryonic Matter (CBM) will be part of the FAIR. It is a fixed-target experiment designed to
explore the QCD phase diagram in the region of high net-baryon densities ||§[] It is designed
for interaction rates up to 107 Hz to enable measurements of rare observables.

Linear accelerator Ring accelerator Ring accelerator
UNILAC SIS18 SIS100

Figure 2.1: FAIR scheme with CBM

The CBM experiment is a combination of fast and precise detectors, a powerful data read-out
and analysis software, and high-performance front-end electronics (FEE).

16

Figure 2.2: CBM experiment design.

2.2. Experimental setup
As can be seen on Fig. CBM consists of the following subsystems:
e Micro Vertex Detector (MVD);
e Silicon Tracking System (STS);
e superconducting dipole magnet
e Ring Imaging Cherenkov (RICH);
e Muon Chamber system (MuCH);
e Transition radiation detector (TRD);
e Time-of-Flight wall (ToF);

e Forward Spectator Detector (FSD).

Micro Vertex Detector

The Micro Vertex Detector (MVD) is the first detector that a particle traverses from the
target. It is used for detecting secondary vertices with high precision (mostly utilised for
D-meson reconstruction). As can be seen in Fig. MVD consists of four layers of ultra-
thin and highly granular Monolithic Active Silicon Pixel Sensors. They are located between
8 ¢cm and 20 cm from the target in the traditional tracker configuration . MVD works
in conjunction with STS, and they both have an angular acceptance within § € [2.5°,25°]
. For MVD, the required spatial resolution of extremely granular pixels, for observers
who are reaching the targeted secondary, is around 5 pm [10].

17

tracking configuration (tr) vertexing configuration (vx)

Figure 2.3: Scheme of the positional configuration of the 4 layers of the Micro-Vertex Detector

(MVD) [10].

STS

////ﬁ;;;;;:&h\\
detector

Ladder

FAVETAVET S VETAVETAVATAVET AVECATE

Support
structure

Front-end
electronics

Figure 2.4: Sketch of the STS detector of the CBM experiment [12][11].

Silicon Tracking System

The Silicon Tracking System (STS) is the most important part of the experimental setup.
STS consists of 8 low-mass silicon micro-strip detectors, which can be seen in Fig.
They are located between 30 cm and 100 cm from the target. The charged product of the
collision produces a lot of electron-hole pairs when it passes through the active volume of the
detector. The application of reverse bias voltage creates pair separation, with electrons and
holes drifting toward the n- and p-type regions, respectively. The resulting charge migration
induces a current pulse, detected at the read-out electrodes. This pulse gives a precise position
of the charged particle (in STS, the typical hit resolution is of the order of 25 um). Having
these positions at different moments of time, it is possible to reconstruct and extrapolate the
charged particle track. STS is a powerful detector that allows track reconstruction in a wide
momentum range from about 100 MeV up to more than 10 GeV with a momentum resolution
of about 1.5% [11].

The superconducting dipole magnet

For momentum detection, both MVD and STS were positioned within the superconducting
dipole magnet, which measures 144 cm in height and 300 cm in width. A schematic of this

18

Figure 2.5: Detailed view of the STS isolation box (green), MVD vacuum vessel (orange),
beam pipe (yellow) and target inside the dipole magnet .

Figure 2.6: View of STS and MVD systems inside magnet .

construction can be seen in Fig. and Fig. The generated magnetic field is not homo-
geneous, primarily aligned along the vertical axis, with a peak magnitude of approximately 1

T [i].

The two following systems, RICH and MuCH, are used interchangeably, being mounted on a
rail.

Ring Imaging Cherenkov detector

The main task of the Ring Imaging Cherenkov detector (the RICH detector) is the identifi-
cation of electrons and positrons with momenta up to 10 GeV, to separate them from pions.
The physical working principle is based on the Cherenkov radiation. Particles that move in a
medium at velocities higher than the speed of light in a medium emit photons. This emission
forms a cone-shaped front which is spread at an angle . This angle depends on the velocity

19

detector

Support
structure

detector

Figure 2.7: The RICH detector geometry [13].

of a particle in a medium (v) and the speed of light in a medium (¢/n):

c

cos(f) = o (2.1)
These emitted photons fall on mirrors, where they form rings, with radius dependent on
angle 0. Having position-sensitive photon detectors, it is possible to reconstruct those rings
and therefore the angle 6, from which we can get the particle velocity. Having velocity and
momentum, we can find the particle’s mass and identify this particle.

The RICH detector uses CO as a medium and is located 1.6 m from the target [13].

The Muon Chamber system

. >

Figure 2.8: Two views of MuCH mechanics in SIS100 configuration [14].

The Muon Chamber system (MuCH) is used for the identification of low-momentum muons
in an environment of high particle densities. It is mounted as an alternative to the RICH
detector. The MuCH detectors track particles through a hadron-absorber system and perform
a momentum-dependent muon identification. The MuCH system uses hadron absorbers sep-
arated into several layers, whereas tracking detectors are placed between absorbers. The first

20

hadron absorber consists of carbon, while the rest of them consist of iron. Tracking planes are
based on Gas Electron Multiplier (GEM) and Multigap Resistive Plate Chambers (MRPC)
technologies [14]. You can see MuCH schematic in Fig.

Transition Radiation Detector

Figure 2.9: The TRD station layout .

The Transition Radiation Detector (TRD) is used for the identification of electrons and
positrons with momenta larger than 1.5 GeV/c. The physics working principle is based on
the fact that charged particles, when crossing the boundary between two media with different
refractive indices, emit transition radiation. The total energy loss depends on the Lorentz
factor: v = % The TRD detector is located between the STS and TOF detectors and can
be used as an additional tracking detector [15], its layout can be seen in Fig. [2.9,

Time of Flight detector

rr-ﬂn e T g e T o ey g _..-I--I-F-I-r-'vw

Figure 2.10: The ToF wall front view. Modules are marked by dark boxes, and the red
crossed boxes denote the non-overlapping active areas of the single MRPC detectors inside.
The yellow frames represent the overlap of the MRPCs .

The Time of Flight detector (ToF) is used for the identification of charged particles, mostly
hadrons. The physics principle of identification was generally described in Section The

21

ToF detector consists of Multigap Resistive Plate Chambers (MRPC). MRPC is a modern gas
detector which replaced the metallic electrodes with resistive electrodes and contains in the
gas mixture the avalanche quenching factor. This allows the detector to operate continuously
and restricts discharges to a local area. MRPC is a relatively new technology for the TOF
system. MRPC has very high detection efficiency (> 95%) and very high time resolution
< 100 ps. The TOF wall has an area of 12 x 9 m? and is placed at a distance of 7 m from
the target [16].

Forward Spectator Detector

The Forward Spectator Detector (FSD) replaced the PSD detector in the CBM setup in 2022.
Its main goal is to measure the projectile-like nucleus and light charged fragments emitted
from it. Positioned at forward rapidity, the FSD detects a projectile-like nucleus. This
detector helps with the reconstruction of the event plane and the centrality of the collision by
measuring collective energy loss. Simulation studies have demonstrated that the FSD achieves
an event plane resolution of approximately 70% for the x-component and about 40% for the
y-component in Au+Au collisions at 11 AGeV [17]]1§].

2.3. Simulation Steps

A full chain of simulation of Au+Au collisions at 10 GeV /nucleon was performed by the
members of the CBM collaboration. As the first step, the dynamics of collision were simulated
with the help of the UrQMD transport model [19]. As the output from this model, an event-
based file containing all the emitted particles was generated. In the next step, the Geant
package |20] was used to transport the events with particles through the virtual representation
of the whole volume of the CBM spectrometer. At the digitisation level, interactions of
the simulated particles with the active layers of the detectors were generating the electronic
responses, stored in the dedicated files. Events in these files were analysed to perform a track
reconstruction. Next, the events with track were stored in the AnalysisTree format. Finally,
protons and 7~ mesons were combined into candidate pairs using the PFSimple |21] package
prepared by Oleksii Lubynets.

2.4. Structure of trees of pairs

The trees of pairs of tracks obtained by PFSimple contain 36 branches, each of which represents
one of the candidate parameters. For this paper, only 8 branches will be used:

1. Candidates_chi2_geo

2. Candidates_chi2_prim_first
3. Candidates_chi2_prim_second
4. Candidates_chi2_topo

5. Candidates_1

6. Candidates_1l_over_dl

7. Candidates_mass

22

https://github.com/HeavyIonAnalysis/PFSimple

2
Xprim,E

Figure 2.11: A scheme of topology of VO particle decay and relevant variables, see text for
details [22].

8. Candidates_generation

These variables were discussed in Section [I.1.4] and their choice is based on the physics ar-
gument of distinguishing VO particles from pairs directly from the collision. However, the
naming of relevant variables is currently different. Fig [2.11] shows the naming in correspon-
dence with the used data structure.

The generation parameter is an additional one and is available only for the simulation. It
marks the true origin of the particle as follows:

e 0 - candidate is not the particle, it is just a combination of two unrelated particles;

e 1 - candidate is the particle that came directly from a collision (first-generation particle);
e 2 - candidate is the particle that came from the decay of first generation particle;

e 3 - candidate is the particle that came from the decay of a second-generation particle;

For example, a value of 1 represents the A emitted directly from the collision, whereas a value
of 2 can be a product of X° decay into A. To distinguish between signal and background
for the training stage, we used the following criteria: Candidates_generation > (0 and
Candidates_generation = 0, respectively. However, at the application level, no such cutting
is made to mimic the true experimental situation, where signal and background can not be
distinguished. In the future, we will train models using simulated data and apply them to
real-world data, making this approach the most effective way to replicate true experimental
conditions.

23

Chapter 3

ROOT/TMVA

3.1. Description of the Tools

ROOT |[23] is an open-source, object-oriented data analysis framework developed at CERN.
It is designed to analyse high-energy physics data and provides the relevant tools for this.
The main feature of ROOT is the database-like T'Tree class and the ability to store ROOT
objects in files in .root format. They are optimised to work with large datasets. That is why
all the data used in this paper, both the training and test sets, as well as the analysis results,
are stored in TTrees inside .root files.

ROOT can work with different machine learning libraries, but it also offers native support
for supervised statistical learning techniques, both classification (multi-class and binary) and
regression, the already built-in library: TMVA - Toolkit for Multivariate Data Analysis with
ROOT [7].

TMVA offers a wide variety of machine learning techniques. However, for this paper, only
three of them will be used: k-Nearest Neighbours, Multilayer Perceptron and Boosted Deci-
sion Tree. They were described in Section

3.2. Configuration of chosen TMVA methods

A communication with TMVA proceeds through macros, written in C or C++ with the
ROOT and TMVA libraries. Macros that will be used in this work are based on training
and application examples for binary classification, provided by ROOT/TMVA tutorial [24]:
TMVAClassification.C| [25] and TMVAClassificationApplication.C| [26], respectively. These
macros were modified to train and use 3 selected methods: k-NN, BDT and MLP, whereas
MLP was used with 3 different settings:

e k-NN method with 20 nearest neighbours considered for classification. 80% of the train-
ing data is used to determine variable scaling (normalisation). We used weights for
neighbours similar to the equation in Fitting those weights constituted the entire
training process for this model. Further in this paper, we will reference this model as
k-NN.

e Boosted Decision Tree method, which uses 850 shallow trees with a depth of each tree
being no more than 3 levels. Each tree was trained on randomly sampled 50% of the
data to avoid over-fitting. For splitting, the Gini Index was used, with the optimal
number of splits set to 20. To prevent nodes from becoming too small, the stopping rule

24

https://root.cern/manual/tmva/
https://root.cern/doc/master/TMVAClassification_8C.html
https://root.cern/doc/master/TMVAClassificationApplication_8C.html

requires each node to have at least 2.5% of the training data. Further in this paper, we
will reference this model as BDT.

The MLP method had one hidden layer. For the activation function, we used the tanh
function. The number of training epochs (full passes through the dataset) was set to
700, with validation checks every 5 steps. We used three variants of this method, with
hidden layers containing 2, 5, and 12 nodes, respectively. This was done to analyse the
systematic error due to the number of nodes in the hidden layer. Further in this paper,
we will reference those models as MLP2, MLP7, and MLP12.

25

Chapter 4

Data Analysis and Comparison of ML
Methods

4.1. Data Preparation and Training of Models

To generate a dataset of candidates for pm~ pairs, the simulation of Au+Au collision at
the beam kinetic energy of 10 GeV /nucleon was performed. To achieve this, the UrQMD
simulation model was utilised. A step-by-step description of the simulation procedure is
provided in Section and the structure of the final dataset is described in Section This
dataset consists of about 1.9 - 10? events: about 30600 signal and the rest - background of
chance coincidences, and has the name urqmd-5000-events.tree.with.signal.and.b-
ackground.root.

For the model training process, we do not need the entire dataset. To speed up the data
processing, the macro create_train.C trimmed data to a subset consisting of all the signal
and 1 - 10° background events.

As it was said in Section the macro for training was based on TMVAClassification.C, an
exemplary macro. Methods that were used, and their parameters, were described in Section
For each iteration of the training process, our macro randomly selected 14000 signal
events and 50000 background events. In Table you can see the CPU time for training and
evaluation for each model. It appears that the k-NN model is fastest in the training stage.
However, in the evaluation stage, the MLP method shows the best result, while k-NN is the
slowest one.

Table 4.1: CPU time for training and evaluation with 64000 events for each method.

Method CPU time for training | CPU time for evaluation
with 64000 events |[s] of 64000 events [s]
k-NN 0.886 100
BDT 41 4.92
MLP (12 nodes) 1210 0.552
MLP (7 nodes) 1030 0.533
MLP (2 nodes) 783 0.441

Following training, a dataset directory was created that contains all the fitted parameters
per method in files in .xml format.

26

4.2. The ROC Curve

A key advantage of the TMVAClassifiction.C macro is that it gives tools to compare methods
that were used. One such tool is the ROC curve.

The Receiver operating characteristic (ROC) curve is a widely used method for visually com-
paring the performance of different binary classification algorithms |27].

It illustrates the model’s efficiency on a graphical plot, where the x-axis represents signal ef-
ficiency (chance of survival), ranging from 0 (0%) to 1 (100%). In turn, the y-axis represents
the probability for background rejection, which also ranges from 0 (0%) to 1 (100%).

1.0
—— Bad model.

—— Ideal model

0.8 4

e
(=]
1

Background rejection
[=]
-
1

0.2 4

0.0 T T T
0.0 0.2 0.4 0.6 0.8 L0

Signal efficiency

Figure 4.1: Example of the ROC curve. With the red curve, the ideal model is shown, while
with the blue line, a bad (random) model is shown. See text for details.

An ideal model that rejects 100% of the background while saving 100% of the signal will
create the ROC curve that forms a square. A bad model, which for 50% of rejected back-
ground, will identify only 50% of the signal (that is basically random selection), will form an
anti-diagonal line on the plot. Both of those models can be seen in Fig.

Consequently, the efficiency of different classification methods can be compared: the closer a
method’s ROC curve is to the upper-left corner (resembling a square), the better its perfor-
mance. The primary disadvantage of the ROC curve method for analysing the performance of
the models is the requirement of prior knowledge of the true class of each event, which limits
us to analysing the training data only.

In Fig. the ROC curve plot can be seen, generated by the TMVAClassification.C model.
This plot indicates that the k-NN method has the best performance, whereas all 3 MLP
methods are difficult to distinguish due to their similar performance. The BDT method falls
between the k-NN method and the MLP method in this plot, so as the method’s efficiency.

27

Background rejection versus Signal efficiency TMVA

c 1 -
1] -
o]
- 08 -
c]
=]
e o7
[o)]
=
MW 0.6 [AR O — [R—
@ E MVA Method: : : : : :
05 KNN
- ——— BDT : 5 : g
04 - MLP?
- —— MLP12 : : : : :
0_3 :_ MLP2 2
0.2 :I 111 | L 111 | L1l | L1111 | L1l | L 111 | L1l | L 111 | L1l | 111 I:
0 01 02 03 04 05 06 07 08 09 1

Signal efficiency

Figure 4.2: ROC curves for the training dataset, comparing the performance of each classi-
fication method implemented in TMVAClassification.C. MLP7 and MLP12 are under the
MLP2 curve.

4.3. Application and optimisation of classifiers

To apply fitted parameters per method from the dataset directory to the whole test dataset,
the modified TMVAClassificationApplication.C macro was used. It created TMVApp.root
file, where for each event the corresponding value of the classifier was assigned (one per
method): k-NN, BDT, MLP2, MLP7 and MLP12 values.

These values do not directly classify the event. Instead, they produce numerical scores within
a predefined range. A key task is to identify a signal-rich subrange within this classifier distri-
bution. Quantitatively, we aim to find the position of this threshold that would maximise the
signal quality measure (the latter called the objective function). To do this, for each method,
we will compare them for different threshold values and search for their maximum. The dis-
cussion on the justification for choosing those quality measures will be presented further in
this chapter.

Within a given ML method, for a given minimal value of the classifier, a histogram of
invariant mass for accepted pmr~ pairs is created. An example of such a histogram at the
minimal value of the BDT classifier of 0.39 can be seen in Fig. [£.3] Based on the observed
histogram, a hypothesis can be put forward that the signal events distribution can be modelled
through a normal distribution and the background events distribution - with a linear function.
The basis of this hypothesis is that the natural width I' of A hyperon is of the order of 10712
MeV (T 2), so it can be negligible. That’s why the main source of mass dispersion is the
measurement inaccuracy, and based on the Central Limit Theorem [28], the mass distribution
will approach a normal distribution. The selection of linear distribution for the remaining
background is based on the fact that the number of background counts per bin is small and
varies slowly compared to the signal peak.

28

600_— h
— Entries 6502
B Mean 1.116
500— Std Dev 0.007272
@ 400
C L
=)
3 B
O L
> 300—
) L
o B
E L
=]
Z -
200?
100
0; A \ = =+
1.09 1.1 1.11 1.12 1.13 1.14

" Candidates Invariant Mass (GeV)

Figure 4.3: The selected event sample (BDT response > 0.39) is shown as a grey mass
histogram, with a Gaussian fit (red curve) describing the signal peak.

Based on this hypothesis, the fit function looks like this:

2
f(m) = A+B-m+\jv2izjexp <—o.5 <(m;m°)> >] -dm (4.1)

After the fit is performed, following parameters, that will be used further, and their errors
(Aparameter) are obtained: the average mass (myg), the standard deviation of the distribution
(0), the number of signal counts (S). In Fig. you can see the fit result as a red curve.
To find the number of background counts (B), the histogram is integrated within the area
mo £ 30. Because of this choice of area, approximately 99.7% of the signal is accepted [29].
This procedure gives us the total number of counts (T), whereas the number of background
counts is: B =T - S.

An example of the implementation of this process in the C++ code using ROOT/TMVA
libraries for the BDT method can be seen in Appendix [A]

To determine the optimal thresholds for each method, two signal quality metrics (objective
functions) were employed: S/B ratio and S/Ag (the signal significance), where Ag is the error
of S, which was obtained during fitting. The choice of these metrics was motivated by the
goal of our analysis - to maximise the number of counts of reconstructed A? particles. That
is why, for this task, signal significance will be the best measure of the performance of our
models. In addition, we will also investigate S/B behaviour. For each method, two plots
were created, showing S/Ag and S/B ratio as a function of the threshold (minimal) value of
a relevant classifier. A code creating these plots can be seen in Appendix [B] while the results

29

can be seen in Fig. [I.4] for the k-NN method, Fig. [£.5 for the BDT method and Fig. [£.6] Fig.
47 Fig. for the MLP method with 2, 7 and 12 nodes in the hidden layer, respectively.

The threshold values of classifiers which maximise the S/Ag per method can be seen in the
Tab. whereas the ones which maximise the S/B ratio can be seen in the Tab.

Table 4.2: The threshold values of classifiers which maximise the S/Ag per method, along
with the corresponding S/B ratio and S/Ag ratio at this value.

Method | Boundary value of classifiers | S/B ratio | S/Ag
MLP2 0.995 1.21 61.8
MLP7 0.996 1.6 61.4
MLP12 0.999 1.4 61.5
k-NN 0.99 1.96 123.9
BDT 0.22 1.41 78.42

Based on Tab. the k-NN method achieves significantly higher signal significance compared
to all the other method. Figure [£.4] shows that the k-NN method’s signal significance growth
is discrete due to the model’s vote-based design. This model has 20 neighbours, so the
performance improvements occur only within specific value ranges, such as [0.95, 1), [0.9,
0.95), [0.85, 0.9) and so on, as described by Eq. (if we didn’t consider the weights of
neighbours, which was applied in the real model). This design prevents potential overfitting
at high thresholds, which explains the absence of a signal significance drop. For BDT and
MLP, the signal significance drops at a certain point, as can be seen in Fig. Fig. Fig.
[47] and Fig. [4.8] One of the possible causes of this decline can be overfitting.

Table 4.3: The threshold values of classifiers which maximise the S/B ratio per method, along

with the corresponding S/B ratio and S/Ag ratio at this value.

Method | Boundary value of classifiers | S/B ratio | S/Ag
MLP2 0.9968 2.2 56
MLP7 0.9981 6.2 16.8
MLP12 0.9998 2.3 41.9
k-NN 0.99 1.96 124
BDT 0.37 12.8 61.6

Figures and demonstrate a steady rise in the S/B ratio for both MLP2 and MLP12.
However, for MLP7, as can be seen in Fig. the S/B ratio reaches a maximum at the
threshold point 0.9981 before declining. In order to understand the reason, the values of S
and B were inspected. As can be seen in Table in Appendix [C] in the range of higher
threshold values of the classifier, the signal counts drop faster than the background. A similar
behaviour of the S/B ratio for the BDT method can be seen in Fig. A corresponding
table [C.2]in Appendix [C] reveals the same reason for this method.

This drop in the S/B ratio can also occur for other MLPs. However, the drop in signal
significance occurs at considerably smaller values of threshold classifiers, meaning that by the
time the S/B ratio starts declining, the significance is already too low to justify testing those
threshold values. In terms of S/B ratio, the BDT method emerges as the top performer, while
the k-NN method and the MLP methods exhibit comparable performance to each other.

In addition, the absolute signal yields for each method can be examined - Tab. [£:4] As one
can see, also in this respect, the k-NN model demonstrates the best performance again, with
MLP2 in second place.

30

Table 4.4: Number of accepted signal events at the optimal decision boundary threshold (with
respect to S/Ag) for each method.

Method | Boundary value of classifiers | Number of Signal Counts
MLP2 0.995 7577
MLP7 0.996 6526
MLP12 0.999 6917
BDT 0.37 4044
k-NN 0.99 22510

signal
background
| T T T T ‘ T T T T T T T T T |

0.5

09 095
Minimal allowed KNN value

(a) S/B ratio for k-NN across threshold interval [0.9, 0.99].

120

signal

100

onal
5
T T T T ‘ T T T T ‘ T T T T ‘ T T T

09 095
Minimal allowed KNN value

(b) Signal significance for k-NN across threshold interval [0.9, 0.99].
Figure 4.4: Quality measures for k-Nearest Neighbours (k-NN) classifier. Left panels show

signal-to-background ratio (S/B), right panels show signal significance (S/Ag). Threshold
intervals were optimised for this method.

31

signal
background
T

o

| L 2 | | | i
0.1 0.2 0.3 0.4
Minimal allowed BDT value

(a) S/B ratio for BDT across threshold interval [0.12, 0.42].

B0 —

60—

signal
Uslgnal

40—

20—

| | | | I
0.1 0.2 0.3 0.4

Minimal allowed BDT value

(b) Signal significance for BDT across threshold interval [0.12, 0.42].
Figure 4.5: Quality measures for Boosted Decision Trees (BDT) classifier. Left panels show

signal-to-background ratio (S/B), right panels show signal significance (S/Ag). Threshold
intervals were optimised for this method.

32

signal
background

=

=

05—
‘ 1 1 | 1 1 | 1 ‘ 1
0.99 D.982 0.994 0.998

Minimal allowed MLP2 value

(a) S/B ratio for MLP (2 nodes) across threshold interval [0.99, 0.997].

62—

60—

signal
0-slgni\\

58—

56—

=l ‘ 1 1 | 1 1 | 1 ‘ 1
0.99 n.992 0.994 0.998

Minimal allowed MLP2 value

(b) Signal significance for MLP (2 nodes) across threshold interval [0.99, 0.997].
Figure 4.6: Quality measures for the MLP classifier with 2 hidden-layer nodes. Left panels

show signal-to-background ratio (S/B), right panels show signal significance (S/Ag). Thresh-
old intervals were optimised for this method.

33

-

signal
background

| I I | | i
0.99 0.995

Minimal allowed MLP7 value

(a) S/B ratio for MLP (7 nodes) across threshold interval [0.99, 0.9989)].

60—

40—

signal
Gsignal

20

| I I | | | F
0.99 0.995

Minimal allowed MLP7 value

b) Signal significance for MLP (7 nodes) across threshold interval [0.99,
0.9989].

Figure 4.7: Quality measures for the MLP classifier with 7 hidden-layer nodes. Left panels

show signal-to-background ratio (S/B), right panels show signal significance (S/Ag). Thresh-
old intervals were optimised for this method.

34

signal
background
=
|

05— | | i | | I I i | . |
0.994 0.996 0.998 1

Minimal allowed MLP value

(a) S/B ratio for MLP (12 nodes) across threshold interval [0.994, 0.9998].

B0

signal

50

45

6signal
II\Il\\I\ll\\Illl\\ll\l

i I R S N R S R L
0.994 0956 0.938 1

Minimal allowed MLP value

b) Signal significance for MLP (12 nodes) across threshold interval [0.994,
0.9998].

Figure 4.8: Quality measures for the MLP classifier with 12 hidden-layer nodes. Left panels

show signal-to-background ratio (S/B), right panels show signal significance (S/Ag). Thresh-
old intervals were optimised for this method.

35

4.4. A mass reconstruction cross check

The performance of those methods can be cross-checked in terms of correctness, A hyperon
mass reconstruction. For reference, A hyperon mass is given by the PDG: 1115.683 4 0.006
MeV . Fig. shows the comparison of the extracted mass centroids for examined ML
methods at optimal threshold classifier values, to Eq. model fitting. All of them are found
to be in agreement with the PDG value within a 20 range.

KNN - . | 1 | =-=- Mass of neutral A baryon (PDG)
1 1 1
1 1 1
B
| | |
1 | 1
1 | 1
BDT 1 1 | b &

1 | 1
1 | 1
1 | 1

o 1 1 1
1 1 1

2 [

@ MLP12 - Lol »

E 1 1 1
1 1 1

= o
1 1 1
1 1 1
1 1 1

MLP7 Lo =
1 1 1
1 1 1
1 1 1
B
| | |
1 | 1
MLP2 T i

1 1 1

T T T T T
1.11566 1.11568 1.11570 1.11572 111574
Mass of neutral A baryon (GeV)

Figure 4.9: Comparison of reconstructed A° hyperon masses across classification methods at
optimal threshold values of classifiers. The dashed vertical line indicates the PDG reference
value, with its uncertainty represented by the grey band. Points show the fitted mass values
(with statistical uncertainties) for different methods.

36

Chapter 5

Conclusion and Outlook

In this bachelor’s thesis, the identification of A° hyperons from simulated Au+Au collisions at
10 GeV /nucleon using the CBM experimental setup and the TMVA machine learning package
was examined. The work begins with a theoretical introduction on modern particle physics,
particle detection and reconstruction, and supervised learning techniques. An overview of
the CBM station and the simulation of particle collisions is provided. The application of
machine learning methods for classification and a comparative analysis of their performance
in distinguishing signal from background events was the main focus of this thesis.

The results of the comparative analysis are as follows:

e Considering the S/Ag quality measure, and neglecting the evaluation time, the k-NN
method shows the best performance. This method detects the largest number of signal
counts while being the most significant. The drawback is the necessity of having a big
training dataset and strong computational resources, due to the dimensionality curse,
we have the longest evaluation time among all the methods. The only room for model
improvement by is by changing the number of neighbours, however in comparison to
other models presented in this paper, it is a restrictive hyperparameter optimisation
strategy

e The Boosted Decision Tree method showed itself as the fastest method, while in terms
of performance, qualified by the signal significance, it was the second one. The BDT
method also showed good results in terms of S/B ratio, but in number of signal counts
it had the worst performance.

e The MLP methods, while being tested with different configurations of hidden layer
nodes, showed similar results across all of them, which means, that there is a necessity
of more thorough testing of hyperparameters (different number of nodes or hidden layers)
in the MLP methods, to see progression or regression in terms of performance. Right
now, this model shows the worst results in terms of the signal significance among all the
models. The key advantage is the ability to fine-tune, and theoretically, it can provide
the best performance across all models [7]. But fine-tuning of the MLP model is quite
CPU-consuming and exceeds the volume of this Bachelor’s thesis.

Based on these findings, we conclude that for the reconstruction of A from Au+Au at 10A GeV,
the k-NN model was found to be the best choice, prioritising statistical significance without
time constraints. For faster processing, the BDT method is the preferred alternative. While
the MLP method holds the greatest theoretical potential, further examination is required to
fully realise its capabilities.

37

Bibliography

[1] R. Dvorak and L. Chlad. “Performance studies for the mCBM experiment campaigns
in 2022”. In: PoS FAIRness2022 (2023), p. 013. DOI: |10.22323/1.419.0013

.[2] M. Thomson. Modern particle physics. New York: Cambridge University Press, 2013.
DOI: [10.1017/CB09781139525367

. [3] S. Navas et al. “Review of particle physics”. In: Phys. Rev. D 110 (2024). DOI: [10.1103/
PhysRevD.110.030001

. |4] D. J. Griffiths. Introduction to Electrodynamics. 4th ed. Cambridge University Press,
2017. DOI: [10.1017/9781009397735

. [5] Lambda topology scheme on STAR collaboration web-page. URL: https://drupal .star.
bnl.gov/STAR/system/files/userfiles/3639/tcut.png

. [6] T.Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer
Series in Statistics. New York, USA: Springer New York Inc., 2001. DOI: [10.1007/978-
0-387-84858-7

.71 A. Hoecker et al. TMVA - Toolkit for Multivariate Data Analysis. 2009. DOI: 10 .
48550 / arXiv . physics/0703039. URL: https://root . cern. ch/download/doc/
tmva/TMVAUsersGuide . pdf

. 18] R E Bellman. Adaptive Control Processes: A Guided Tour. First introduction of curse
of dimensionality. Princeton University Press, 1961. 1SBN: 9780691652214

.19] T. Ablyazimov et al. (CBM Collaboration). “Challenges in QCD matter physics. The
scientific programme of the Compressed Baryonic Matter experiment at FAIR”. In: Eur.
Phys. Jour. A 53, 60 (2017). DOI: [10.1140/epja/12017-12248-y

. |10] The Micro-Vertex Detector of the CBM Experiment at FAIR. Tech. rep. Darmstadt,
Germany: CBM Collaboration, GSI Helmholtz Center for Heavy Ion Research, 2021.
URL: https://repository.gsi.de/record/246516

. |11] Technical Design Report for the CBM Silicon Tracking System (STS). Tech. rep. Darm-
stadt, Germany: CBM Collaboration and The STS Workgroup, GSI Helmholtz Center
for Heavy Ion Research, 2013. URL: https://repository.gsi.de/record/54798

.|12] M. Zyzak. “Online selection of short-lived particles on many-core computer archi-
tectures in the CBM experiment at FAIR”. URN: urn:nbn:de:hebis:30:3-414288. PhD
thesis. Faculty of Computer Science and Mathematics of the Johann Wolfgang Goethe
University in Frankfurt am Main, 2015

. [18] Technical Design Report for the CBM Ring Imaging Cherenkov Detector (RICH). Tech.
rep. Darmstadt, Germany: CBM Collaboration and The CBM-TRD Working Group,
GSI Helmholtz Center for Heavy lon Research, 2013. URL: https://repository.gsi.
de/record/65526

38

https://doi.org/10.22323/1.419.0013
https://doi.org/10.1017/CBO9781139525367
https://doi.org/10.1103/PhysRevD.110.030001
https://doi.org/10.1103/PhysRevD.110.030001
https://doi.org/10.1017/9781009397735
https://drupal.star.bnl.gov/STAR/system/files/userfiles/3639/tcut.png
https://drupal.star.bnl.gov/STAR/system/files/userfiles/3639/tcut.png
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.48550/arXiv.physics/0703039
https://doi.org/10.48550/arXiv.physics/0703039
https://root.cern.ch/download/doc/tmva/TMVAUsersGuide.pdf
https://root.cern.ch/download/doc/tmva/TMVAUsersGuide.pdf
https://doi.org/10.1140/epja/i2017-12248-y
https://repository.gsi.de/record/246516
https://repository.gsi.de/record/54798
https://repository.gsi.de/record/65526
https://repository.gsi.de/record/65526

. |14] Technical Design Report for the CBM Muon Chambers (MuCh). Tech. rep. Darmstadt,
Germany: CBM Collaboration and The MUCH TDR Workgroup, GSI Helmholtz Center
for Heavy Ion Research, 2015. URL: https://repository.gsi.de/record/161297

. [15] Technical Design Report for the CBM Transition Radiation Detector (TRD). Tech. rep.
Darmstadt, Germany: CBM Collaboration and The CBM-TRD Working Group, GSI
Helmholtz Center for Heavy Ion Research, 2018. URL: https://repository.gsi.de/
record/217478

. |16] Technical Design Report for the CBM Time-of-Flight System (ToF). Tech. rep. Darm-
stadt, Germany: CBM Collaboration and The TOF Workgroup, GSI Helmholtz Center
for Heavy Ion Research, 2014. URL: https://repository.gsi.de/record/109024

. [17] M. Teklishyn. “Detectors and Electronics for the CBM experiment at FAIR”. In: (2025).
DOI: 10.48550/arXiv.2506.20545

. [18] R. Dvorak. “Forward Spectator Detector for CBM”. EPJ Featured Poster, Quark Mat-
ter 2025, Goethe University Frankfurt, Germany, poster session 1, Detectors & Fu-
ture Experiments (Apr. 2025). URL: https://indico.cern.ch/event/1334113/
contributions/6289932/

. [19] S.A. Bass et al. “Microscopic models for ultrarelativistic heavy ion collisions”. In: Prog.
Part. Nucl. Phys 41 (1998), p. 255. DOI: |10.1016/s0146-6410(98) 00058- 1

. [20] R. Brun et al. GEANT: Detector Description and Simulation Tool; 1994. CERN Pro-
gram Library. Geneva: CERN, 1993. URL: https://cds.cern.ch/record/1082634

. [21] O. Lubynets. PFSimple. URL: https://github.com/HeavyIonAnalysis/PFSimple

. [22] R. Korsak. Hypertriton reconstruction using machine learning technique at the CBM
experiment. Tech. rep. GSI Helmholtz Center for Heavy lon Research, 2023

. [23] ROOT Team/CERN. ROOT. URL: https://root.cern
. [24] ROOT Team/CERN. TMVA. URL: https://root.cern/manual/tmva/

.[25] ROOT Team/CERN/TMVA. TMVA Classification Example. URL: https ://root .
cern/doc/master/TMVAClassification_8C.html

. [26] ROOT Team/CERN/TMVA. TMVA Classification Applcation Example. URL: https:
//root.cern/doc/master/TMVAClassificationApplication_8C.html

. [27] M. Junge and J. Dettori. “ROC Solid: Receiver Operator Characteristic (ROC) Curves
as a Foundation for Better Diagnostic Tests.” In: Global Spine Journal, 8, 424 (2018).
DOI: [10.1177/2192568218778294

. [28] I Barany and V. Vu. “Central limit theorems for Gaussian polytopes”. In: The Annals
of Probability 35.4 (2007), pp. 1593-1621. DOI: |10.1214/009117906000000791

. [29] F.Huber. A Logical Introduction to Probability and Induction. Oxford University Press,
2018. 1SBN: 9780190845407

39

https://repository.gsi.de/record/161297
https://repository.gsi.de/record/217478
https://repository.gsi.de/record/217478
https://repository.gsi.de/record/109024
https://doi.org/10.48550/arXiv.2506.20545
https://indico.cern.ch/event/1334113/contributions/6289932/
https://indico.cern.ch/event/1334113/contributions/6289932/
https://doi.org/10.1016/s0146-6410(98)00058-1
https://cds.cern.ch/record/1082634
https://github.com/HeavyIonAnalysis/PFSimple
https://root.cern
https://root.cern/manual/tmva/
https://root.cern/doc/master/TMVAClassification_8C.html
https://root.cern/doc/master/TMVAClassification_8C.html
https://root.cern/doc/master/TMVAClassificationApplication_8C.html
https://root.cern/doc/master/TMVAClassificationApplication_8C.html
https://doi.org/10.1177/2192568218778294
https://doi.org/10.1214/009117906000000791

Appendix A

Classifying events with the BDT
method.

#include <cmath>
#include <vector>
#define PI 3.1425
#define plot start 1
#define plot end 1.25
#define fit start 1.10
#define fit end 1.13

//Function
Double t m fun (Double t sxarg, Double t xpar) {
Double t m = xarg|0];
Double t A = par|[0], B = par|[1],
Nlam = par[2]|, m0 = par|[3], sig = par[4], dm = par|[5];

Double t exp arg = (m — m0)/sig;

return (A + B * m + Nsig / (TMath:: Sqrt (2«xPlxsigx*sig)) x
TMath::Exp(— 0.5 % exp arg % exp arg)) * dm ;

}

vector<float > classify BDT (Float_ t b_value)

{

/ /CREATING HISTOGRAM AND CANVAS

TCanvas* ¢l = new TCanvas("cl", "Canvas with Legend", 1000, 1000);
cl-—>SetGrid (0, 0);

cl-—>SetTopMargin (0.05);

cl—SetBottomMargin (0.15);

cl—SetRightMargin (0.04);

cl—SetLeftMargin (0.16);

TH1F+« h = new THIF("h", "", 400, plot start, plot end);

/ /READING

40

TFile «f = TFile::Open ("TMVApp.root");

Float t mass, BDT;

TTree *OutputTree = (TTreex) f-—>Get ("OutputTree");
OutputTree—SetBranchAddress ("Candidates mass", &mass);
OutputTree—>SetBranchAddress ("BDT", &BDT);

//FILLING HISTOGRAM
for (int evt=0; evt < OutputTree—>GetEntries (); evt++)
{
OutputTree—>GetEvent (evt);
if (BDT >= b_value && mass > plot start && mass < plot end){
h-—>Fill (mass);
}

}

/ /PLOTTING

h—SetFillColor (18);

h—>GetXaxis()—>SetTitle ("Candidates Invariant Mass (GeV)");
h—GetXaxis()—>CenterTitle (true);
h-—>GetXaxis()—>SetTitleOffset (1.25);
h—GetXaxis()—>SetTitleSize (0.055);
h—GetXaxis()—>SetRangeUser (1.09, 1.14);
h-—>GetYaxis()—>SetTitle ("Number of Counts");
h—GetYaxis()—>CenterTitle (true);
h-—>GetYaxis()—>SetTitleOffset (1.25);
h—GetYaxis()—>SetTitleSize (0.055);
h—Draw () ;

//FIT PREPARATION

TF1 fun("function", m_ fun, fit start, fit _end, 6);
fun.SetParameters (1.0, 0.0, 200, 1.115, 0.001, h—>GetBinWidth (2));
fun.FixParameter (5 , h-—>GetBinWidth (2));

//fun.SetParLimits (2, 1le3, 1le6);

fun.SetParLimits (3, 1.1, 1.13);

fun.SetParLimits (4, 0, 0.003);

/ /FITTING
TFitResultPtr fitRes = h-—>Fit (&fun , "RSIEM");

//GETTING RESULTS
float signal = round(fun.GetParameter(2));

float signal error = fun.GetParError(2) ;
float min mass = fun.GetParameter(3) — 3 * fun.GetParameter (4);
float max mass = fun.GetParameter(3) + 3 * fun.GetParameter (4);

//GETTING BACKGROUND FOR 3sigma SEGMENT
float tot = 0;

int bin_ min = h—FindBin (min mass);

int bin_max = h—>FindBin (max_ mass);

41

tot = h—>Integral (bin_min, bin max);
float background = tot — signal;

//SAVING PLOT
std ::stringstream filenameStream;
filenameStream <<
"./plots/BDT/plot iteration " << b value << " value " << ".jpg";

std::string filename = filenameStream.str ();
cl-—>SaveAs(filename.c_str());
std :: cout << "Canvas saved as: " << filename << std::endl;

//Creating output vector
vector<float > values;
values.push back(signal);
values.push back(signal error);
values.push back(background);

//CLOSING EVERYTHING
delete cl;

delete h;
f—Close ();

return values;

42

Appendix B

Comparing quality measures of the
BTD method for different thresholds.

#include <vector>
#include <array>
#include "compare BDT.h"

#define min b 12
#define max b 42
#define min_b 2 330
#define max_b_2 360
#define div 100
#define div_2 1000

int BDT treshold comparing()

vector<float > b_vec;

vector<float > sign _ error vec;

vector<float > sign back vec;

vector<float > classification quality ;

//BDT FOR SET b_values

for (Float t i = min b; i <= max b; i = i + 5){
classification quality = classify BDT (i/div);
b value = i/div;
signal = a|0];
error = a[l];
background = a|[2];
sign_error = signal/error;
sign _back = signal/background;
b _vec.push back(b_ value);
sig_error vec.push back(sign error);
sign _back vec.push back(sign back);
classification quality.clear ();

}

for (Float t i = min b 2; i <= max b 2; i = 1 + 5){
classification quality = classify BDT (i/div);
b _value = i/div;

43

signal = a[0];

error = a[l];
background = a[2];
sign _error = signal/error;

sign _back = signal/background;
b _vec.push back (b value);
sig_error vec.push back(sign error);
sign back vec.push back(sign back);
classification quality.clear ();
}
/ /CREATING GRAPH
TGraph sgraphl = new TGraph(b_ vec.size (), &b vec|0]|, &sign back vec|[0]);
TGraph sgraph2 = new TGraph(b_ vec.size (), &b vec|[0], &sig error vec|[0]);

/JCREATING CANVAS FOR SIGNAL/BACKGROUND

TCanvas *c2 = new TCanvas("c2", "signal/background", 800, 600);
gStyle—>SetOptStat (0);

gStyle—>SetLegendBorderSize (0);

gStyle—>SetLegendTextSize (0.025);

gStyle—>SetLabelSize (0.025, "XY");

gStyle—>SetNdivisions (505 , "XY");

gStyle—>SetTextFont (42);

graphl—SetTitle (" signal /background");

/X
graphl—GetXaxis

()—>SetTitle ("Minimal allowed BDT value");
graphl-—>GetXaxis(
(
(

—>CenterTitle (true);
—>SetTitleOffset (1);
—>SetTitleSize (0.035);

graphl—GetXaxis
graphl—GetXaxis
/Y

graphl—GetYaxis
graphl—GetYaxis
graphl-—>GetYaxis
graphl—GetYaxis

— — —

—>SetTitle ("#frac{signal}{background}");
—>CenterTitle (true);
—>SetTitleOffset (0);
—>SetTitleSize (0.035);

NN N
— — — —

//DRAWING AND SAVING

graphl-—>SetMarkerStyle (20);

graphl—SetMarkerSize (0.5);

graphl-—>Draw ("AP");

std ::stringstream filenameStream;

filenameStream << "./plots/BDT compare/signal background "<< min b << " " << ma>
std::string filename = filenameStream.str ();

c2—>SaveAs(filename.c_ str());

/ /CREATING CANVAS FOR SIGNAL/ERROR

TCanvas *c3 = new TCanvas("c3", "signal/signal error", 800, 600);
graph2-—>SetTitle ("signal/signal error");
//X

graph2—GetXaxis()—>SetTitle ("Minimal allowed BDT value");
graph2-—>GetXaxis()—>CenterTitle (true);

44

graph2-—>GetXaxis()—>SetTitleOffset (1);
graph2—GetXaxis()—>SetTitleSize (0.035);
/Y
graph2—GetYaxis
graph2—GetYaxis
graph2—GetYaxis
graph2—GetYaxis

)—>SetTitle ("#frac{signal}{#sigma {signal}}");
)—>CenterTitle (true);
)—>SetTitleOffset (1);
)—>SetTitleSize (0.035);

NN N N

//DRAWING AND SAVING

graph2—SetMarkerStyle (20);

graph2—SetMarkerSize (0.5);

graph2—Draw ("AP");

std ::stringstream filenameStreaml ;

filenameStreaml << "./plots/BDT compare/signal signal error "<< min b << " " -
std::string filenamel = filenameStreaml.str ();

c3—>SaveAs(filenamel.c str());

outputFile-—>Write ();
outputFile—Close ();

return 0;

}

sign_error_vec and sign_back_vec are vectors, that stored Ny;q/erry

sig

values respectfully, for different boundary values, that are stored in b_vec.

and Nsig /Nback

45

Appendix C

Tables

Table C.1: S/B ratio and number of counts for signal and background as a function of threshold
for the MLP7 method.

Threshold | S B S/B
0.99 9276 | 15205 | 0.61
0.991 8996 | 13380 | 0.67
0.992 8808 | 11562 | 0.76
0.993 8570 | 9753 | 0.88
0.994 8151 | 7955 | 1.02
0.995 7556 | 6093 | 1.24
0.996 6526 | 4069 | 1.60
0.997 2868 | 802 | 3.58
0.998 369 62 5.95

0.9981 323 52 6.21
0.9982 285 o0 5.7
0.9983 254 46 | 5.52
0.9984 208 42 4.95
0.9985 184 36 | 5.11
0.9986 154 37 4.16
0.9987 131 25 5.24
0.9988 101 30 3.37
0.9989 76 27 2.81
0.999 47 24 1.96

46

Table C.2: S/B ratio and number of counts for signal and background as a function of threshold
for the BDT method.

Threshold S B S/B
0.12 26253 | 127107 | 0.21
0.17 17144 | 31440 | 0.55
0.22 11282 | 10004 | 1.13
0.27 8469 3338 | 2.54
0.32 6998 1219 | 5.74
0.33 6623 1039 | 6.37

0.335 6497 865 | 7.51
0.34 6282 775 8.11
0.345 5245 513 10.2
0.35 9125 471 10.9
0.355 4946 423 11.7
0.36 4715 384 12.3
0.37 4044 315 12.8
0.42 357 30 11.9

47

	Goal of the Thesis
	Theoretical Introduction
	Physical Basics
	Elementary Particles
	Basics of Special Relativity
	Selected physics principles of particle detection in CBM
	Reconstruction Methods

	Machine Learning Methods
	Introduction
	Supervised learning and Classification
	k-Nearest Neighbours Algorithm
	Neural Networks: Multilayer Perceptron
	Boosted Decision Tree

	CBM - description of setup and data generation
	Overview of the CBM Experiment
	Experimental setup
	Simulation Steps
	Structure of trees of pairs

	ROOT/TMVA
	Description of the Tools
	Configuration of chosen TMVA methods

	Data Analysis and Comparison of ML Methods
	Data Preparation and Training of Models
	The ROC Curve
	Application and optimisation of classifiers
	 mass reconstruction cross check

	Conclusion and Outlook
	Bibliography
	Classifying events with the BDT method.
	Comparing quality measures of the BTD method for different thresholds.
	Tables

