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Abstract
Modernhigh-energy physics (HEP) experiments produce data at unprecedented scales,
necessitating real-time processing solutions capable of handling throughput exceed-
ing 1TB/s. This dissertation addresses these challenges by developing and deploying
GPU-accelerated workflows in the ALICE and CBM experiments at CERN and FAIR, re-
spectively.

In ALICE, several components of the Time Projection Chamber (TPC) reconstruction
chainwere optimized for GPUs, including the initial zero-suppression decoding, a par-
allelized trackmerger yielding a 30x speedup, and an efficient gathering kernel for the
final data transfers. These optimizations enable the O2 framework to sustain real-time
event reconstruction at collision rates up to 50 kHz, handling the full 1 TB/s data stream
since the start of LHC Run 3 in 2022.

Furthermore xpu is introduced, a lightweight C++ library designed for portable GPU
programming across CUDA, HIP, and SYCL backends. By exploiting separate compila-
tion of device code and dynamic backend selection, xpu achieves near-native perfor-
mance on multiple architectures with negligible overhead. The library is designed for
modern C++ without sacrificing performance or predictability.

Finally, a complete GPU-based reconstruction chain for the Silicon Tracking System
(STS) written in xpu for CBMwas developed and integrated into the experiment’s free-
streaming data framework. The GPU implementation achieves up to 122x speedup
over the previous CPU-based code by employing parallel algorithms for cluster find-
ing, hit reconstruction, and an optimized merge sort. When deployed during the May
2024 mCBM beamtime, the system reliably processed up to 2.4GB/s, demonstrating
the feasibility of high-rate online data processing for future CBM operations.
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Chapter 1

Introduction
Modern high-energy physics (HEP) experiments face unprecedented computational
challenges due to increasing collision rates and detector complexity. At the Large
Hadron Collider (LHC), traditional triggered readout systems are being replaced by
continuous data acquisition to enable more sophisticated event selection. In this con-
text, two different processing phases are used: online processing, which refers to real-
time data analysis during detector operation under strict timing constraints, and offline
processing, which encompasses the analysis of stored data after data taking with less
stringent time requirements but often more sophisticated algorithms. The ALICE ex-
periment pioneered the online processing approach for Run 3, processing heavy-ion
collisions at 50 kHz without a hardware trigger [6], producing data rates exceeding
1TB/s. Similarly, LHCb has moved to a software-only trigger system [59], while the
upcoming CBM experiment at FAIR plans continuous readout at collision rates up to
10MHz for heavy-ion collisions with expected data rates around 500GB/s [2].

Graphics Processing Units (GPUs) have proven to be particularly well-suited for HEP
reconstruction algorithms like track finding and cluster reconstruction, making it fea-
sible to handle these extreme data rates in soft real-time. The ALICE High Level Trig-
ger first demonstrated large-scale GPU usage in high-energy physics, employing GPUs
for real-time track reconstruction during LHC Run 2 [9]. For Run 3, LHCb developed
the Allen GPU trigger system that processes the full 40 Tbit/s detector readout [4]. AL-
ICE’s new O2 framework uses GPUs for the majority of the online processing and to
speed up offline processing, with the complete TPC reconstruction running on GPUs
to handle up to 50 kHz Pb–Pb data [33]. While these implementations demonstrate
the performance potential of GPUs in HEP, the decade-plus operational lifetimes of
these experiments create significant challenges for GPU software development. The
code must not only support multiple hardware architectures for initial deployment
but also remain maintainable as GPU technology evolves and hardware is upgraded
over the experiment’s lifetime.

This dissertation presents three major contributions to GPU computing in high-energy
physics experiments. For the ALICE experiment, several components throughout the
TPC reconstruction chain were optimized for GPU processing, including zero-suppres-
sion decoding of raw detector data, parallelized track merging providing 30x speedup
over the sequential implementation and an efficient gathering kernel that optimizes
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Chapter 1 Introduction

the final DMA transfer of clusters to the host. The second contribution introduces
xpu, a lightweight C++ library for portable GPU programming that enables writing
hardware-independent code while maintaining native performance with neglible o-
verhead. Through separate compilation of device code and dynamic backend selec-
tion, xpu supports multiple GPU architectures while allowing optimal compiler usage
for each platform. For the CBM experiment, a complete GPU-accelerated reconstruc-
tion chain for the Silicon Tracking System (STS) was developed. Compared to the exist-
ing CPU-based reconstruction, the implementation achieves a 122x speedup through
parallel algorithms for cluster finding and hit reconstruction and a custommerge sort
implementation optimized for GPUs. The STS reconstruction is tested alongside the
other CBM online components under real-world conditions in synthetic runs as well
as during a four-day beamtime in the mini-CBM test setup.

The following chapters discuss these contributions in more detail:

• Chapter 2 provides background on the ALICE and CBM experiments, with fo-
cus on the Time Projection Chamber and Silicon Tracking System detectors. The
chapter also describes the computing infrastructure used for data processing in
both experiments.

• Chapter 3 examines various GPU processing tasks in the ALICE TPC reconstruc-
tion chain. This includes optimizations for zero suppression decoding, cluster
gathering, and track merging, along with a detailed performance analysis of
these improvements.

• Chapter 4 presents xpu, a lightweight C++ library for portable GPU programming.
The chapter discusses the design principles, implementation details, and per-
formance characteristics of the library, demonstrating how it enables efficient
cross-platform GPU code.

• Chapter 5 describes the development of a GPU-accelerated reconstruction chain
for CBM’s Silicon Tracking System. The implementation of parallel algorithms
for cluster finding and hit reconstruction is detailed, followed by a performance
evaluation using both simulated and real detector data.

• Chapter 6 summarizes the contributions and briefly discusses future directions
for GPU computing in high-energy physics experiments.
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Chapter 2

Background

This chapter provides background information about the two high-energy physics ex-
periments that provide the context for the development of the software and algorithms
discussed in this thesis: the ALICE experiment at CERN and the Compressed Baryonic
Matter (CBM) experiment at FAIR.

Section 2.1 introduces the ALICE experiment at CERN’s Large Hadron Collider, with
particular focus on its Time Projection Chamber (TPC) detector (Section 2.1.1) and the
computing infrastructure used for data processing in Run 3. Section 2.1.2 describes
the Event Processing Node (EPN) farm that handles the substantial data rates from
Pb–Pb collisions and Section 2.1.3 outlines the O2 software framework used for data
processing in ALICE.

Section 2.2 presents the upcoming CBM experiment at FAIR, focusing on its Silicon
Tracking System (STS) detector (Section 2.2.1) and the challenges posed by its high
interaction rates and triggerless data acquisition. Section 2.2.2 covers the mCBM test
setup at GSI, which serves as a testbed for both detector hardware and online software
development.

2.1 The ALICE Experiment

The ALICE (A Large Ion Collider Experiment) experiment [5] is one of the four major
experiments at the Large Hadron Collider (LHC) at CERN. Unlike the other LHC exper-
iments, that primarily study proton-proton collisions, ALICE is specifically designed to
study heavy-ion collisions. Its main goal is to investigate the properties of the quark-
gluon plasma, a state of matter that existed microseconds after the Big Bang where
quarks and gluons move freely before combining into hadrons.

ALICE is a complex detector system consisting of multiple specialized components, as
shown in Figure 2.1. At its core lies the Time Projection Chamber (TPC), a large cylin-
drical detector used for tracking charged particles and particle identification. The TPC
is surrounded by several other detectors including the Inner Tracking System (ITS) for
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Chapter 2 Background

Figure 2.1: Schematic representation of the ALICE experiment.
(Image source: [10])
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2.1 The ALICE Experiment

Figure 2.2: Illustration of the dataflow in ALICE. (Image source: [57])

precise vertex determination, the Time-Of-Flight detector (TOF) for particle identifica-
tion, and various forward detectors for event characterization and triggering.

The experiment has undergone periodic upgrades to improve its capabilities. During
Long Shutdown 2 (2019–2022), ALICE received major upgrades to handle increased
collision rates during LHC Run 3, including a new continuous readout system and
enhanced computing infrastructure [6]. This enables the experiment to record Pb–Pb
collisions at rates up to 50 kHz and process the resulting data stream of up to 1.2 TB/s
in real time.

2.1.1 The TPC Detector

The Time Projection Chamber (TPC) [12] is the main tracking detector of ALICE. The
detector is designed as a large cylindrical chamber, 5meters in length and 5meters in
diameter, filled with a gasmixture. When charged particles pass through the TPC, they
ionize the gas along their path, creating trails of electrons that drift towards the end-
caps under the influence of an electric field. At the endcaps, these signals are amplified
and detected, allowing the reconstruction of particle trajectories in three dimensions
with high precision.

In addition to tracking, the TPC also plays a crucial role in particle identification by
measuring the energy loss of particles as they pass through the gas. The detector un-
derwent a major upgrade during the Long Shutdown 2 to cope with the increased

5



Chapter 2 Background

collision rates in Run 3. The original readout chamberswere replacedwithmoremod-
ern detectors based on Gas Electron Multiplier (GEM) technology, enabling the TPC to
handle interaction rates of up to 50 kHz [25].

2.1.2 The ALICE EPN Farm

The Event Processing Node (EPN) farm forms a crucial part of ALICE’s upgraded com-
puting infrastructure for Run 3. The farm consists of 350 servers equipped with 2800
GPUs in total, designed to handle the substantially increased data rates from Pb–Pb
collisions at up to 50 kHz interaction rates.

The computing nodes are divided into two configurations: older nodes equipped with
AMD MI50 GPUs and newer nodes featuring AMD MI100 GPUs. The MI50 nodes con-
tain two AMD EPYC 7452 32-core CPUs and 512GB of DDR4-3200 RAM per node, while
the MI100 nodes are equipped with two AMD EPYC 7552 48-core CPUs and 1TB of
DDR4-3200 RAM. Each GPU has 32GB of main memory.

Processing of Time Projection Chamber (TPC) data presents the main computational
challenge, requiring around 90%of the GPU compute capacity during data taking. The
use of GPUs was driven by both efficiency and cost considerations — a CPU-only solu-
tion would require approximately eight times as many servers to achieve equivalent
processing power.

The EPN farm is housed in modular IT containers at the LHC Point 2 experiment site.
Three of these containers currently host the worker nodes, infrastructure nodes, and
network equipment. The facility employs an energy-efficient adiabatic cooling system
that helps reduce operational costs and environmental impact. Under typical operat-
ing conditions during Pb–Pb data taking, the farm consumes around 550kW of power
while maintaining a Power Usage Effectiveness (PUE) ratio as low as 1.05.

Data flows from the detector readout electronics through First Level Processor (FLP)
nodes near the experimental cavern to the EPN farm via a high-speed InfiniBand net-
work, as illustrated in Figure 2.2. The FLP nodes can transfer data at rates up to 1.2 TB/s
to the EPN farm for processing. After reconstruction and compression, the data is
transferred at around 200GB/s to CERN’s central IT storage facilities (EOS) that pro-
vide approximately 92PB of storage with 25% redundancy. From there, the data is
distributed to archival storage on the computing grid, with about 70% going to Tier 0
and 30% to Tier 1 storage. Themodular design of the farm allows for future upgrades,
with plans already in place to expand capacity during Long Shutdown 3 to handle the
anticipated 20% increase in data rates for Run 4. A full description of the EPN farm is
given in [58].

6



2.2 The Compressed Baryonic Matter Experiment

2.1.3 The O2 Framework

The O2 framework is the software package of ALICE for data processing in Run 3. It
unifies what were previously separate online and offline frameworks into a single
system that handles both synchronous (real-time) and asynchronous data processing.
The framework is built on a message-passing architecture using the FairMQ library
[71] as its transport layer. Processing is organized into separate processes called de-
vices that can be connected as different topologies to form processing workflows.

The framework employs a layered architecture: The transport layer handles datamove-
ment between processes, with optimizations like shared memory for local communi-
cation. A data layer provides different serialization backends including ROOT [15] as
well as detector-specific formats optimized for GPU processing. The top-level Data Pro-
cessing Layer (DPL) presents users with a high-level interface where they can describe
their processing as a directed graph of tasks with data dependencies.

A key feature of O2 is its ability to handle both synchronous processing during data
taking, where data must be processed in real-time to keep up with detector readout,
and asynchronous processing for final reconstruction. The same code and workflows
can be used in both scenarios, with only the data source changing between live detec-
tor data and stored compressed data. The framework provides automatic deployment
capabilities for distributed processing but can also run workflows locally on a single
machine for development and debugging. A full description of the O2 framework is
given in [33].

2.2 The Compressed Baryonic Matter Experiment

The Compressed Baryonic Matter (CBM) experiment [60] is being built as part of the
Facility for Antiproton and Ion Research (FAIR) [39] at the GSI Helmholtz Centre for
Heavy Ion Research [41]. The goal of the experiment is to explore the properties of
dense nuclear matter, similar to what exists in neutron stars and in the core of su-
pernova explosions. To this end, heavy-ion collisions are created to study this dense
matter. Data-taking is currently expected to begin in 2028.

CBM is expected to run at very high collision rates of up to 10MHz. At these rates, it
is no longer feasible to select potentially interesting events with a hardware trigger.
Instead a so called ”triggerless” or ”free-streaming” data acquisition is planned with
event selection being done in software. This allows for detecting rare probes andmore
complex decay topologies that might be missed by a hardware trigger. However, this
requires an efficient online processing that reconstructs the rawdata back into particle
tracks. Online processing will take place in the Green IT Cube data center while data
acquisition will be performed in the FLES entry cluster located near the CBM cave.
Both clusters will be connected via a long-range InfiniBand network. Figure 2.3 shows
a rendering of the planned extension of the GSI campus with the CBM cave and Green
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Figure 2.3: Rendering of the GSI compound with the finished SIS-100 exten-
sion. Marked are the CBM building and the Green IT cube where
the online processing will take place. (Image source: [2])

IT cube. The planned setup is described in detail in the CBM online Technical Design
Report [2].

2.2.1 The Silicon Tracking System Detector

The Silicon Tracking System (STS) detector is a central component of the CBM experi-
ment. Positioned inside the magnet and upstream of the target, it is the first detector
after the Beam Monitor together with the MVD. Made up of double-sided silicon strip
sensors spread across 8 layers (also referred to as stations) it enables track reconstruc-
tion and momentum determination of charged particles. The planned detector layout
is shown in figure 2.5. Stations are made up of double-sided strip sensors1 consisting
of 8 ASICs with 128 readout channels each on the front and back sides. Strips on the
front side run vertically, while backside strips are rotated by 7.5°. Figure 2.6 shows
a single sensor with readout cables. In total the STS will be made up of 896 of these
sensors. The high temporal and spatial resolutions of 5ns and 25µmmake it a key de-

1Also referred to as modules within the CBM software.
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2.2 The Compressed Baryonic Matter Experiment

Figure 2.4: Schematic representation of the CBM experiment.
(Image source: [2])

Figure 2.5: View of the STS stations placed inside the dipol magnet.
(Image source: [3])
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Figure 2.6: A sensor of the STS detector connected to readout cables.
(Image source: [61])

tector for track reconstruction and thus particularly important for online processing.
A full description of the system is given in the associated Technical Design Report [3].

2.2.2 The mCBM Experiment

The mCBM experiment is a FAIR Phase-0 experiment that is also used as a proof of
concept for the CBM hardware [17]. It has been connected to the beam of the SIS18
synchrotron [64] and has been in operation since 2018. The system consists of small
prototypes for all major subsystems. As such a mSTS detector is installed with 2 track-
ing stations comprising of 11 modules. A third station, dubbed Station 0, with a single
module was installed in 2023 in front of the other two at 5 cm upstream of the target.
Figure 2.7 shows a photo of the mCBM setup.

ThemCBMexperiment is connected to anmFLES system that supports the free-stream-
ing data acquisition. This creates the opportunity to use it as a test environment for
the CBM online software alongside the detector hardware. The online reconstruction
of mCBM data is discussed in detail in Chapter 5.
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2.2 The Compressed Baryonic Matter Experiment

Figure 2.7: The mCBM experiment setup at SIS18. (Image source: [34])
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Chapter 3

Online GPU Processing in ALICE

3.1 Introduction

This chapter examines various GPU processing tasks in ALICE’s Time Projection Cham-
ber (TPC) reconstruction chain, focusing on improvements and optimizations imple-
mented for Run 3. The TPC, introduced in Section 2.1.1, serves as ALICE’smain tracking
detector and generates the majority of data that must be processed.

The collision rates increased in Run 3, reaching up to 50 kHz in Pb–Pb collisions com-
pared to at most 8 kHz during Run 2 [6], require real-time processing of data rates
exceeding 1TB/s. This necessitated the development of a GPU-accelerated reconstruc-
tion chain running on the Event Processing Node (EPN) farm detailed in Section 2.1.2.
Central to this processing chain is the TPC cluster finder, which combines charge de-
posits in neighboring pads and time bins into clusters representing particle crossing
points. Section 3.2 provides an overview of this algorithm’s key steps. This is meant
to provide context for the rest of the chapter, as most of the discussed components are
adjacent or related to the cluster finder.

The remainder of this chapter is structured as follows:

• Section 3.3 describes the fragment-based processing strategy that enables the
cluster finder to handle arbitrary-length time frames within GPU memory con-
straints.

• Section 3.4 examines the implementation of zero-suppressed data decoding on
GPUs, comparing the performance characteristics of different encoding formats.

• Section 3.5 details the implementation of the noisy pad filter, which identifies
and excludes malfunctioning TPC pads that could interfere with cluster finding.

• Section 3.6 discusses the propagation of Monte Carlo labels through the recon-
struction chain, essential for evaluating detector and reconstruction performance
using simulated data.

• Section 3.7 presents improvements to the track merger, focusing on parallel pro-
cessing techniques that significantly reduce execution time.

13
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• Section 3.8 explores optimizations in cluster gathering, where efficient datamove-
ment betweenhost anddevicememory is crucial for overall systemperformance.

All components discussed in this chapter are part of ALICE’s online processing soft-
ware in the O2 framework and have been successfully used for data taking since the
start of Run 3 in 2022.

3.1.1 Test Setup

All performance measurements presented in this chapter were conducted on the AL-
ICE Event Processing Node (EPN) farm. The tests used both generations of processing
nodes currently deployed in the farm: the older nodes equippedwith AMDMI50 GPUs
and newer nodes featuring AMDMI100 GPUs. TheMI50 nodes contain two AMDEPYC
7452 32-core CPUs while MI100 nodes are equipped with two AMD EPYC 7552 48-core
CPUs. A more detailed description of the hardware is given in Section 2.1.2. The soft-
ware environment consisted of ALMA Linux 8.7 as the operating system, used across
the EPN farm.

To conduct the tests, a simulated timeframe was used consisting of Pb–Pb collisions
at 50 kHz interaction rate spanning 128 LHC orbits, generated via Pythia 8.3 [13] with
the ALICE configuration for Pb–Pb interactions. This dataset was chosen to represent a
realisticworkload encountered during data taking at high-intensity Pb–Pb collisions.

3.2 TPC Cluster Finder Summary

This section describes the basic functionality of the TPC cluster finder. These steps
were originally developed in the author’s master thesis [74], which contains a more
thorough discussion on the implementation and functionality of the cluster finder.

The cluster finder combines charges neighboring in pad (space) and time direction into
clusters and consists of four steps. In a first step, local maxima called peaks are found.
The second step applies a noise filter to the found peaks, discarding false positives.
Afterwards, charges are split between neighboring peaks. Finally, charges around all
peaks are combined into clusters. Clusters are limited to a single TPC row. No clusters
can be found across rows. All rows of a single TPC sector are processed at once.

The input to the clusterizer is a two-dimensional array (with a pad and time axis) that
contains all charges within the timeframe or subtimeframe respectively, this array is
dubbed chargeMap. The second input parameter is a list of all positionswith non-zero
values on the chargeMap. The individual steps of the clusterizer process the positions
on this list in parallel, or on a list of positions produced by a previous step.
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Figure 3.1: The different substeps of the cluster finder. Figure (a) illustrates the
peak finding step. Figure (b) shows the following noise suppres-
sion. Figure (c) shows the deconvolution step, that splits charges
between neighboring clusters. Lastly, Figure (d) shows how neigh-
boring charges are combined into a cluster. Note that charges in
the 5×5 neighborhood are only added if they have a corresponding
charge in the 3× 3 neighborhood. Thus three of the outer charges
are not part of the cluster in this example.
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Figure 3.1a outlines the peak finding. Each ADC value is compared with it’s eight im-
mediate neighbors. Values that are local maxima in this 3 × 3 area are marked as
peaks.

The noise suppression is shown in figure 3.1b. Each peak is compared with all other
peaks in a 7× 5 area. For each pair the smaller one is discarded, if there is no minima
between both peaks. A minima is this case is defined as |p − q| < ε, where p is the
ADC value of the smaller peak, q is the ADC value of the potential minima and ε is a
configurable parameter.

During the deconvolution step, ADC values are split between their neighboring peaks.
The process is shown in figure 3.1c. For each ADC value the number of peaks in 3× 3
and 5 × 5 neighborhoods are counted. The charge is then divided by the number of
peaks in the 3× 3 are, if there are any. Otherwise, it is divided among the peaks in the
5× 5 area.

After the deconvolution was applied to all charges, a cluster is created around every
peak as shown in figure 3.1d. ADC values in the 3 × 3 neighborhood are always part
of the cluster. Additionally, charges in the 5× 5 area around the peak are added to the
cluster, if they have no peak in their 3× 3 neighborhood.

The complete TPC reconstruction chain consists of multiple components that support
the core cluster finding algorithm. As shown in Figure 3.2, two processing paths exist
- one for real detector data and one for simulated data. For real data, the processing
begins with zero suppression decoding of the raw data stored in 8 kB pages, followed
by filtering of noisy pads that could interfere with cluster finding. Simulated data
bypasses these steps, instead requiring only the filling of the charge map from the
generated digits. Both paths then converge at the cluster finder, which follows the
steps outlined previously. When processing simulated data, an additional re-run of
the clusterizer kernel on the CPU propagates the Monte Carlo truth information by
tracking which simulated particle contributed to each cluster. This allows validation
of the GPU-based reconstruction chain by comparing its output against the known true
particle trajectories that generated the signals.

3.3 Dividing Timeframes

The TPC clusterizer must handle timeframes that can span up to 100000 time bins. At
this scale, the memory required by the clusterizer can exceed the available GPUmem-
ory. To address this limitation, the clusterizer implements a fragmentation strategy
that divides timeframes into smaller subtimeframes while ensuring consistent cluster
finding results.

The core of this approach is the CfFragment class, which represents a contiguous
section of time bins within the larger timeframe. Each fragment maintains an over-
lapping region of 8 time bins with its neighboring fragments, ensuring that clusters
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Figure 3.2: The different steps of the cluster finder with simulated and real
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spanning fragment boundaries are properly reconstructed. This overlap is particu-
larly crucial because the cluster finder examines a 5 × 5 window around potential
peaks, which could otherwise be split across fragment boundaries.

The clusterizer processes fragments sequentially, with each fragment handling 4000
time bins by default. This allows parallel processing of three TPC sectors, enabling
overlapping of computation and data transfer. For a fragment with index i, the time
range processed is:

[tstart + i · (l − 2o), tstart + (i+ 1) · l]

where l is the fragment length and o is the overlap size (8 time bins). The 2o term in
the stride accounts for the double counting of overlap regions - each internal time bin
appears exactly once in the final output, while bins in overlap regions are processed
twice but only counted in one fragment.

When processing overlap regions, the clusterizer must carefully handle cluster assign-
ment to ensure consistent results. For each fragment after the first, the first 8 time bins
are treated as backlog, and their clusters are discarded since they were already pro-
cessed in the previous fragment. Similarly, for fragments before the last, the final 8
time bins are marked as future overlap, and their clusters are retained to ensure con-
tinuity with the next fragment.

This fragmentation strategy effectively enables processing of arbitrarily large time-
frames with limited GPU memory while maintaining the quality of cluster finding.
The overlap mechanism ensures that no clusters are lost or malformed at fragment
boundaries, producing results identical to processing the entire timeframe at once.

3.4 Zero Suppression Decoding

The TPC data is transmitted using zero-suppression (ZS) encoding to reduce bandwidth
requirements. In this format, only channels that recorded charge depositions above
a threshold are stored, organized into 8 kB pages. The task of decoding this data effi-
ciently on GPUs presents several challenges, particularly in terms of memory access
patterns and parallel processing.

Over time, the TPC zero-suppression format has evolved to better handle the increas-
ing data rates in Run 3. The initial row-based format was replaced by a link-based
version in 2022, which was subsequently refined into the dense-link-based format to
achieve better compression ratios necessary for handling high-intensity Pb–Pb colli-
sions. In this section the implementation of the GPU decoder of the two link-based
formats for online processing is discussed.
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Figure 3.3: Approximate page layout of link based and dense-link based zero
suppression formats, shown respectively in Figure (a) and Fig-
ure (b).

1 int warpPredicateScan(int pred, int* sum) {
2 int iLane = hipThreadIdx_x % warpSize;
3 uint64_t waveMask = __ballot(pred);
4 uint64_t lowerWarpMask = (1ull << iLane) - 1ull;
5 int myOffset = __popcll(waveMask & lowerWarpMask);
6 *sum = __popcll(waveMask);
7 return myOffset;
8 }

Figure 3.4: Optimized variation of the warp scan operation in HIP for comput-
ing the prefix sum over boolean values. The register shuffles and
additions are replaced with a single call to the ballot intrinsic.
The prefix sum is then given by a popcount of the n least significant
bits, where n is the thread position within the warp. This version
additionally computes total sum with an additional popcount call
as this value is needed by zero suppression decoding. The imple-
mentation in CUDA is equivalent but uses 32bit integers to store
the bitmasks instead due to the smaller warp size.
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Before decoding can begin, pages must be assigned to the appropriate fragment of the
timeframe (compare Section 3.3). This is accomplished by examining the time infor-
mation in each page’s header and computingwhich pages contribute to each fragment.
As pages may contain data spanning fragment boundaries, this must account for po-
tential overlap. Pages that fall between two fragments are necessarily decoded twice
and ADC values that fall outside of the current fragment are discarded after decod-
ing.

Each page begins with a standard raw data header containing metadata such as the
CRU (Common Readout Unit) identifier and heartbeat orbit information. This is fol-
lowed by TPC-specific headers and the actual zero-suppressed ADC values. The decod-
ing process must extract these values and place them into a three-dimensional charge
map indexed by pad, row, and time required by the clusterizer.

Regardless of the format, each decoded ADC value requires additional memory ac-
cesses: one for gain correction from a calibration table, and in the case of link-based
formats, another access to map the front-end card position to global pad coordinates.
These scattered memory accesses can impact performance, particularly on architec-
tures with limited cache capacity.

3.4.1 Link Based Zero Suppression

The layout of a link-based zero suppression page is outlined in Figure 3.3a. Every 8 kB
page beginswith a format-independent raw data header. This header contains, among
other things, information on the CRU where the page originated from and the heart
beat frame during which the data was collected. The next 128 bytes consist of the TPC
ZS header containing metadata about the page, like the number of timebins and offset
relative to the first timebin.

Each timebin contains the data of up to 80 neighboring channels collected during a
single tick. These timebins beginwith another 128-byte headerwhere the first 80 bytes
form a bitmask indicating which channels have data. The header is then followed by
the ADC values for those channels. Within a page, timebins are stored sequentially
with padding added at the end of a page if needed to maintain the 8 kB page size.

The decoding is parallelized at two levels: across pages at the block level and across
channels within each page at the thread level. The decoder first performs a parallel
scan over the channel bitmask to determine the output positions for each channel’s
data. This scan operation is implemented efficiently using warp-level primitives to
minimize synchronization overhead, as shown in Figure 3.4.

This optimized implementation replaces multiple register shuffles and additions typ-
ically needed for scan operations with ballot and population count intrinsics. The
ballot operation creates a bitmask where each bit represents whether a thread in the
warp has data to process. A population count on the bits below a thread’s position
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Figure 3.5: Layout of a timebin block header in the dense link-based zero sup-
pression format.

then gives its offset in the output, while a population count of the full mask provides
the total number of active channels.

Each GPU thread is assigned a channel within the timebin. For channels marked as
active in the bitmask, the thread decodes the corresponding ADC value and writes it
to the charge map at the position determined by the scan operation. The thread also
applies the gain correction and maps the front-end electronics position to global pad
coordinates. This mapping requires additional memory lookups but is necessary to
convert the raw data to the detector geometry needed for reconstruction.

3.4.2 Dense-Link Based Zero Suppression

The dense-link-based ZS format introduces several optimizations to achieve higher
compression rates necessary for high-luminosity Pb–Pb data processing. As shown
in Figure 3.3b, the format follows a similar overall structure with raw data and TPC-
specific headers, but introduces key changes to the timebin organization. Instead of
processing each link separately, multiple links are collected into timebin blocks, and
the last block in a page can overflow into the next page, eliminating padding waste.

Each timebin block beginswith a compact header, detailed in Figure 3.5. The first 4 bits
are the number of links contained within the timebin block. The next 12bits are the
LHC bunch crossings within the timeframe used to compute the TPC timebin of the
block. The timebin block header is followed by nLinks timebin link headers consisting
of the link id and bitmask of active channels, each with a variable size of 3 to 11bytes.
The first 5 bits are the link id within the CRU. The next bit L2 indicates if the channel
mask has two levels. IfL2 is not set, the next 10bits indicatewhich bytes of the channel
mask are present to eliminate zero bytes from the mask. Otherwise all 10 bytes of the
mask are present and the two bits after L2 are unused.

The dense decoder employs a two-phase approach for each timebin block. In the
first phase, link headers are processed sequentially to determine data offsets and con-
struct an index of channel positions. This phase cannot be fully parallelized due to the
variable-sized headers. The second phase decodes ADC values with full warp utiliza-
tion, with each thread processing a single ADC value based on the indices computed
in the first phase.

Special handling is required for timebin blocks that overflow into the next page. The
implementation provides two code paths: an optimized version for standard blocks
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that omits bounds checking and a more conservative version that performs bounds
checking when crossing page boundaries. The latter implementation is necessary, as
the overflow can happen at an arbitrary point in the timebin block. The appropriate
version is selected based on flags in the page header, ensuringmaximumperformance
for the common case while maintaining correctness for overflow blocks.

To minimize thread divergence, the implementation first uses a warp-level parallel
scan to determine positions for ADC decoding, similar to the approach used in the
link-based decoder. However, the scan must now account for multiple links within
the same timebin block. The decoder maintains a shared memory buffer containing
channel indices and link identifiers, allowing threads to efficiently look up their target
positions in the output charge map while minimizing global memory accesses. 1

Cache utilization is improved by processing ADC values in order within each timebin
block, maximizing spatial locality for the calibration table lookups. The implemen-
tation also ensures coalesced memory accesses when writing decoded values to the
chargemap bymaintaining proper alignment of output positions within eachwarp.

3.4.3 Performance

Parallelism on CPU

To enable fair comparison between CPU and GPU performance, careful considera-
tion must be given to the CPU parallelization strategy. The O2 framework employs
a two-level parallelization approach: the outer level distributes work across TPC sec-
tors, while the inner level processes the 8 kB pages within each sector in parallel. This
creates a challenge in thread allocation, as the 36 TPC sectors suggest the outer thread
count should be a factor of 36, which conflictswith the 128 hardware threads available
on the test system (compare Section 3.1.1).

For N total threads, the O2 framework allocates ⌈N
36⌉ threads to the inner loop while

maintaining one thread per sector for the outer loop. Figure 3.6 illustrates the per-
formance scaling of the dense link-based decoder with increasing thread counts. A
notable observation is the significant performance jump when moving from 64 to
72 threads, where the speedup factor increases from 29 to 47. This occurs because
both configurations process TPC sectors with 2 threads, but with 64 total threads, the
OpenMP [30] runtime cannot execute all sectors simultaneously, leading to processing
stalls.

The impact of simultaneous multithreading (SMT) is particularly pronounced in this
workload. Using all 128 virtual cores (64 physical cores with SMT) achieves a speedup

1On the AMD MI50, 1.6 kB of shared memory can be allocated per warp before occupancy is reduced.
For reference, each compute unit has 64 kB and can run up to 40 warps at once. Storing the number
of samples per timebin block, the link ids and the channel index per ADC requires 2∗16+16+80∗16 =
1328B. Thus the allocated shared memory doesn’t reduce occupancy for the decode kernel.
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Figure 3.6: Speedup of the dense link-based decoder without thread affinity.
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Figure 3.7: Speedup of the dense link-based decoder with threads pinned to
NUMA domains.
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of 81, significantly outperforming both the 72-thread case and the 144-thread oversub-
scription scenario. As the decoder is highly memory bound, a possible explanation for
the improvement with SMT is that the CPU can hide latency by switching between
hardware threads when a stall, due to memory access, occurs.

An intuitive optimization approach would be to pin threads processing the same TPC
sector to a single NUMA domain, theoretically eliminating cross-domain memory ac-
cess overhead. This was implemented by setting

OMP_PLACES=sockets and OMP_PROC_BIND=spread,master

to pin first-level threads to NUMA domains while keeping second-level threads within
the same domain. As shown in Figure 3.7, this strategy provides modest performance
improvements at lower thread counts. However, when the CPU is fully utilized with
128 or 144 threads, performance actually degrades compared to the unpinned case,
with the speedup factor dropping from 81 to 75. This suggests that the operating
system’s scheduler can better balance resources when given the flexibility to move
threads between domains.

A more granular approach, discussed in detail in Appendix B.3, attempts to maximize
memory bandwidth by distributing TPC sectors across Core Complex Dies (CCDs), each
with its own L3 cache. While this further improves performance at lower thread
counts, it similarly suffers from reduced efficiency under full CPU utilization like the
socket-level pinning.

The performance characteristics described above were measured on the AMD EPYC
7452 CPU, which comprises the majority of the processing farm’s MI50 nodes. While
the MI100 nodes use the EPYC 7552 with a higher core count, it exhibits the same
single-thread performance and scaling behavior, as demonstrated in Appendix B. The
appendix also includes comprehensive performance data for all three decoding algo-
rithms, which show consistent scaling patterns despite differences in absolute perfor-
mance and maximum achievable speedup.

GPU Performance

Figure 3.8 shows the GPU runtime performance for the three zero suppression formats
across different processing architectures. The performance characteristics exhibit in-
teresting patterns when moving from CPU to GPU execution. While the row-based
format performs best on CPU, it shows the worst performance on GPUs, requiring
around 1155ms on the MI50. The link-based format achieves intermediate perfor-
mance across all platforms, with runtimes of approximately 1246ms and 823ms on
the MI50 and MI100, respectively.

The dense link-based format, despite having the poorest performance onCPU, achieves
the best runtime on both GPU architectures. It processes timeframes in around 900ms
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on the MI50 and 750ms on the MI100, with the MI100 consistently delivering 20% to
30% better performance across all formats. However, when examining the time spent
per page, an interesting pattern emerges. The dense link format exhibits the highest
per-page processing time on CPU at 1.92 µs, and while it improves to 1.0 µs to 1.2 µs on
GPU, this is still relatively high compared to the other formats.

This higher per-page cost stems from the format’s primary optimization goal - maxi-
mizing compression ratio to support higher network throughput rather than optimiz-
ing for GPU processing patterns. The format achieves better overall performance on
GPUs despite higher per-page costs simply because it processes fewer pages in total.

3.5 Noisy Pad Filter

The Noisy Pad Filter is responsible for detecting and excluding TPC pads that have
lost their baseline during data taking. Such pads can emit a continuous stream of
noise that would interfere with cluster finding. To efficiently detect these pads, the
filter analyzes charge patterns by examining two key metrics for each pad: the total
number of charges above threshold and the maximum number of consecutive time
bins containing charges. The filter processes TPC data in parallel by assigning mul-
tiple pads to each thread block. For efficient memory access, pads are processed in
groups matching the cache line size. The implementation uses shared memory as a
temporary buffer when running on GPUs, allowing threads within a block to cooper-
atively analyze charge patterns. For CPU execution, the implementation takes advan-
tage of vectorization through the Vc library [47] when available. This enables efficient
SIMD processing of multiple pads simultaneously. The vectorized code path processes
charges in blocks of eight pads, matching common SIMD widths on modern proces-
sors. A pad is marked as noisy if either of two conditions is met:

1. The total number of charges exceeds a threshold calculated based on the times-
lice length.

2. Thenumber of consecutive timebinswith charges exceeds a configurable thresh-
old.

Additionally, a saturation check is performed - if a pad’s maximum charge exceeds
a configurable threshold, it is not marked as noisy regardless of the charge patterns.
This prevents accidentally excluding pads with valid high-energy deposits. The filter’s
runtime remains constant regardless of the timeslice length since it processes a fixed
number of pads. On the AMDMI50 GPU, the filter typically requires about 35 millisec-
onds to process a complete timeslice, while the more powerful MI100 completes the
same task in approximately 25 milliseconds. This represents only about 0.1% of the
total timeslice processing time, making it a relatively inexpensive step.
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3.6 Monte Carlo Propagation

To evaluate the results of reconstruction algorithms, data generated by simulations
also contains ground truth data, called Monte Carlo labels. These map digits onto the
particle tracks that contributed to the digit. Labels are propagated along the recon-
struction chain. The labels of TPC clusters are the set of labels from all digits that
contributed to the cluster.

Extending the cluster finder to support Monte Carlo (MC) labels poses several prob-
lems. The number of labels a cluster will have is not known beforehand. In principle
all tracks could contribute to the same cluster, but this is not a useful upper bound.
This makes static memory allocation beforehand for labels difficult. Therefore collect-
ing labels purely on GPU is very complex and dynamic allocation per cluster instead
is required. Furthermore, the compute overhead from MC labels must be minimized
for online-scenarios where no labels are present.

Monte Carlo labels are stored as integers that represent the corresponding track id.
Input to the cluster finder in addition to an array of digits is an array containing the
labels with a second array that maps digits to the offset where it’s labels are stored.
The output of the cluster finder has the same structure. An array of clusters with an
array of labels and a mapping from clusters to the offset in the label array.

Labels are collected for every cluster during cluster creation. This is very natural,
as all digits that belong to the cluster are iterated at this point anyway. As the label
collection requires dynamic memory allocation it is removed at compile time from
GPU code. This removes any overhead for online processing and allows the usage of
STL containers. In the initial implementation std::unordered_set was used for
collection to prune duplicate labels. However this turned out to be too slow and was
replaced by a std::vector with a bloom filter. Runtime of that kernel improved by
a factor 5 with this change.

Combining the collected labels into a flat array is done with a simple reduction. The
number of labels in each TPC row can be computed in parallel. With this we have the
total number of collected labels to allocate the output memory. Now the offset of every
row can be calculated and the labels are copied to the corresponding position in the
target array. This step is trivial parallel across TPC rows.

To fully evaluate GPU reconstruction, using only CPU labels isn’t sufficient. While in
principal both versions should produce identical clusters, differences might still be
present due to hardware differences in handling of floating-point numbers or soft-
ware bugs. When labels are present, the cluster id is stored alongside the accompa-
nying peak on GPU. All relevant buffers are then transferred back to the host and the
clusterizer kernel is run again on CPU to collect only labels and discard the clusters.
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3.7 Parallel Track Merging

Given a list of track slices and links of which slices should be connected to tracks, the
track merger kernel finds the positions where slices should be connected. This is not
a very expensive kernel, but it is too slow when run fully serial with only a single
GPU thread. This is hard to parallelize without locking. One would need to check
for collisions when threads are writing to the same slice and potentially add a repair
step.

Instead of attempting to parallelize the track merging itself, one could instead look for
independent set of track slices. Between these sets no collisions are possible and can be
processed in parallel. Track slices and links can be interpreted as vertices and edges of
a graph. The connected components of this graph are the independent sets we look for.
Finding the connected components in a graph is a basic problem in computer science
for which efficient (and surprisingly simple) GPU algorithms already exist [67]. Each
GPU block can then process separate connected components to merge track slices.

3.7.1 Perfomance

To allow a fair comparison between the sequential and parallel implementations, the
sequential trackmergerwas backported into the current O2 version. This ensures both
versions operate on the same data structures and time frames.

Figure 3.9 shows the performance comparison between the sequential and parallel
variants on both the AMD MI50 and MI100 GPUs, with timings including the over-
head from the connected component detection. The parallel implementation achieves
remarkable speedups - over 30x on the MI50 (from 6739ms to 204.9ms) and 47x on
the MI100 (from 7607ms to 159ms). It’s worth noting that while the connected com-
ponents algorithm introduces some overhead, its contribution to the total runtime is
minimal - less than 5% of the execution time.

3.8 Cluster Gathering

After track reconstruction, TPC clusters need to be copied from GPU memory back to
the host. The clusters are stored in a Structure of Arrays (SoA) format and are scattered
in memory according to their track assignments. A naive approach to copying these
clusters would require millions of small memory transfer operations, which would
be highly inefficient. Several strategies have been implemented to handle this data
movement efficiently.

The initial approach uses Direct Memory Access (DMA) to write directly to pinned host
memory. To minimize the impact on concurrent processing, this kernel uses only 1–
2 blocks, each occupying a single compute unit, allowing the data transfer to run in
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the background while the next timeframe is being processed. Each block processes
clusters sequentially, writing them directly to host memory.

An improved version maintains the same execution strategy of using only 2 compute
units but introduces shared memory buffering to optimize memory transactions. The
kernel first performs a small write to align the destination pointer in host memory,
then accumulates clusters in sharedmemory buffers. Once a buffer is full, it is written
to host memory in a single operation with writes of 128bytes2. This buffering strategy
helps coalesce memory writes and reduces the total number of DMA operations.

The current implementation used in ALICE online processing, the multiBlock kernel,
takes a different approach by utilizing the full GPU device. Instead of writing directly
to host memory, this kernel first compacts the scattered cluster data into contiguous
device memory. The work is divided between cluster types: attached clusters (be-
longing to tracks) and unattached clusters. Odd-numbered blocks handle unattached
clusters while even-numbered blocks process attached clusters, enabling better load
balancing.

The kernel uses a warp-based approach for data movement, where each warp han-
dles a contiguous section of clusters. The work distribution is calculated using parallel
prefix sums (scans) to determine the output positions for each warp. When process-
ing attached clusters, the implementation uses a cooperative approach where threads
within awarpwork together to process clusters from the same track, ensuring efficient
memory access patterns despite the variable-length nature of the data.

After the clusters are compacted in device memory, a single large memory transfer
operation copies the data back to the host. Only this final transfer operation over-
laps with the processing of the next timeframe. This approach effectively balances
the competing goals of efficient data movement and minimal impact on concurrent
processing. By performing the compaction on the GPU and reducing the host transfer
to a single operation, the implementation achieves better overall system throughput
compared to the earlier approaches.

3.8.1 Performance

Figure 3.10 compares the performance of four different approaches to cluster gather-
ing, tested on both the AMDMI50 andMI100 GPUs. The naive approach of performing
individual DMA transfers to host memory for each track proves prohibitively slow, re-
quiring approximately 200 s per timeframe on both devices. This poor performance
is likely bottlenecked by driver overhead from the numerous small memory transfers
rather than hardware limitations, as evidenced by the similar execution times across
different GPU architectures.

2This is done via uint4, the biggest vector type supported by the GCN 5 architecture.
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Figure 3.10: Performance of different gather algorithms on the MI50 and
MI100.

The gather kernel writing directly to host memory via DMA, shown in orange, shows
a dramatic improvement, executing 43 times faster on the MI50 and nearly 60 times
faster on the MI100 compared to the naive approach, shown in the blue bar. Adding
shared memory buffering to coalesce memory writes further improves performance
by roughly a factor of 3 on both devices. The buffered implementation achieves this
by accumulating clusters in shared memory and performing fewer, larger DMA trans-
fers.

Finally, performing the gather operation entirely on the device using all available com-
pute units before a single transfer to host memory yields another significant speedup
of approximately a factor of 7. This approach proves most efficient by maximizing
GPU utilization and minimizing PCIe transfers.

Figure 3.11 provides a detailed breakdown of the execution time for this final ap-
proach. On theMI50, about one quarter (60.4ms) of the processing time is spent in the
gather kernel, with the remaining time (158.5ms) taken up by the DMA transfer back
to host memory. The ratio is even more pronounced on the MI100, where only about
one fifth (38.4ms) is spent gathering, leaving the majority (137.2ms) for data transfer.
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Figure 3.11: Breakdown of cluster gathering times for gathering on device
memory and performing DMA transfer.

However, since this final DMA transfer can overlap with the processing of the next
timeframe, the actual performance impact is minimal. The data suggests that PCIe
bandwidth remains the fundamental bottleneck for cluster gathering, as evidenced
by the substantial portion of time spent in data transfer across both devices.
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Chapter 4

xpu - A C++ Libary for Portable GPU
Code

4.1 Introduction

Modern high-energy physics experiments increasingly rely on GPU computing to han-
dle their demanding data processing requirements. (See Chapter 1 for examples) How-
ever, developingGPU-accelerated software for these experiments presents unique chal-
lenges: code must be portable across different GPU architectures, maintainable over
long time periods, and capable of achieving high performancewithout sacrificing flex-
ibility. Moreover, the code often needs to run efficiently on CPUs for development and
testing, while still integrating with existing C++ codebases.

In the course of this thesis, xpu was developed as a lightweight C++ library to ad-
dress these challenges. A particular focus were the needs of the CBM experiment’s
online processing system (compare Chapter 5) that shaped the development and in
turn served as a testbed for the library. It provides a unified interface for CUDA, HIP,
and SYCL while allowing code to run on CPUs, enabling developers to write portable
GPU codewithout sacrificing performance or control over hardware-specific optimiza-
tions. The library’s design emphasizes explicit memory allocations, separate compila-
tion of device code, and zero-overhead abstractions - features particularly important
for high-energy physics applications where performance and predictability are cru-
cial.

At its core, xpu takes a pragmatic approach to GPU abstraction. Rather than attempting
to hide hardware differences completely, it provides a thin layer that maps efficiently
to native GPU programming models while maintaining consistent semantics across
platforms. This approach allows developers to reason about performance character-
istics and utilize platform-specific features when needed, while still writing portable
code.

33



Chapter 4 xpu - A C++ Libary for Portable GPU Code

This chapter describes the design and implementation of xpu. It structured as fol-
lows:

• The following two Sections 4.1.1 and 4.1.2 explain the motivation and require-
ments that shaped the development and discuss existing alternatives and their
limitations and shortcomings that xpu attempts to address.

• Section 4.2 describes the chosen architecture and how xpu achieves portability
through separate compilation and dynamic loading of device code.

• The following Section 4.3 details the library’s key features including memory
management, kernel execution, and profiling capabilities.

• Section 4.4 goes into detail how the dynamic loading of device code is handled.

• The chapter concludes in Section 4.5 with a performance analysis comparing
xpu to native implementations and alternative abstraction approaches.

4.1.1 Motivation

The development of xpuwas driven by the specific requirements of high-energy phys-
ics (HEP) experiments, particularly the needs of the CBM experiment’s online process-
ing system (compare Chapter 5). With data taking scheduled to begin in 2028, CBM
faces unique challenges in its computing infrastructure that existing GPU program-
ming solutions do not fully address.

A primary consideration is hardware flexibility. While current planning envisions
GPU-accelerated processing in the Green IT Cube computing center, the specific hard-
ware that will be available in 2028 cannot be determined with certainty. This necessi-
tates a programmingmodel that can target multiple GPU architectures without requir-
ing significant code changes. Additionally, the ability to run the same code on CPUs
is crucial for development, debugging, and providing a fallback option for processing
pipelines.

Beyondhardware portability, several key requirements emerged during development:

1. Performance Transparency
The abstraction layer must not introduce significant overhead in device code
compared to native implementations. This is particularly critical for online sce-
narios in HEP experiments where performance is critical to reduce the amount
of hardware needed to process live data. Any abstraction must compile down
to essentially the same machine code as direct CUDA or HIP implementations
would produce.

2. Explicit Memory Management
While automatic memory management can simplify development, HEP process-
ing chains require precise control over when and where memory is allocated.
This is crucial for:
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• Managing limited GPU memory efficiently during continuous data taking.

• Ensuring predictable performance by avoiding hidden allocations.

• Enabling zero-copy operations when beneficial for performance.

• Supporting differentmemory types (device, host-pinned,managed) depend-
ing on access patterns.

3. Compiler Independence
Different GPU vendors often provide highly optimized compilers for their archi-
tectures. For example, NVIDIA’s nvcc compiler can produce more efficient code
for CUDA than generic solutions. xpu’s design allows using the optimal com-
piler for each target platform while maintaining a unified interface, unlike ap-
proaches that require using a single compiler for all backends.

4. Modern C++ Integration
The library should support modern C++ features and idioms while remaining
lightweight and maintainable. This includes:

• RAII-based resource management

• Type safety through templates

• Clear separation between host and device code

These requirements led to the following key design decisions that differentiate xpu
from existing solutions:

• Device code is compiled separately for each backend, allowing the use of vendor-
specific compilers and optimizations.

• Memory management follows RAII [55] principles while providing explicit con-
trol over allocations.

• Platform-specific features (like constant memory) are exposed through a com-
mon interface where possible.

• The library maintains a minimal codebase (< 5000 LOC) to ensure maintainabil-
ity.

This approach provides several advantages for HEP computing environments:

• Development teams can write portable code without sacrificing performance on
any platform.

• The same codebase can be used for production GPU processing and CPU-based
development / debugging.

• Integration with existing C++ codebases is straightforward.
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The following sections detail the technical implementation of these design decisions
and demonstrate how they address the requirements of modern HEP computing en-
vironments.

4.1.2 Alternatives

Numerous frameworks exist for GPU development, each with their own restrictions
and downsides. In this section, I will address some of them in the context of CBM and
motivate the development of xpu as an abstraction atop of existing solutions.

The CUDA [49] framework is widely used for GPU programming. However it’s re-
stricted to usage with Nvidia GPUs. This makes it unsuitable as the target platform for
development in CBM as the code will be only runnable on devices from a single GPU
vendor and can’t easily be run on CPU.

HIP [8] is an alternative to CUDA developed by AMD. HIP closely follows the CUDA API
and enables compilation of device code for AMD GPUs via ROCm [7] and Nvidia GPUs
via CUDA. Like CUDA, HIP is primarily a C-API and currently it’s not possible to target
Intel GPUs. There is also limited support for CPUs via HIP-CPU [72]. However this only
enables compilation of the GPU code for the host. Running kernels on the device and
host side by side is not possible.

SYCL [40] is a C++ standard for GPU programming. As the successor to OpenCL [65], it
also aims to provide a cross-platform API for heterogeneous computing. While SYCL
addresses many of the same issues as xpu, some differences and issues remain. The
supported platforms depend on the implementation. For example, Intel’s oneAPI has a
ROCm backend but the supported version can lag behind upstream releases. Further-
more in the SYCL 2020 specification access to constant memory was removed. Lastly
the buffer API limits control over when and where memory is allocated. A more de-
tailed discussion on this and the approach chosen in xpu instead is given in section
4.3.2.

Similar to xpu, alpaka [76] is a C++ library aiming to provide an abstraction layer for
accelerator programming. However there is a key difference in the approach to man-
aging device code. Alpaka tries tomake every platform available that the current com-
piler supports while xpu compiles code for each platform separately, allowing a dif-
ferent compiler for each platform. The former can simplify some projects as device
code doesn’t have to be in a separate compilation unit from host code like in xpu. But
on the downside this requires the entire device code to be templated to generate dif-
ferent symbols for each backend. Also only one compiler can be used at a time for all
backends, whereas xpu can use a different compiler per backend. See sections 4.2 and
4.4 for more detail on how device code is handled in xpu. One notable alternative to
Alpaka with similar design goals is the Kokkos library [70].

36



4.2 Architecture

Application

xpu runtime

drivers

cpu CUDA HIP SYCL

device library 1

cpu CUDA HIP SYCL

device library 2

cpu CUDA HIP SYCL

Figure 4.1: Overview of the xpu architecture. Orange color indicates compo-
nents that are part of xpu. User components are colored in green.
Sub components that are loaded at runtime are marked in blue.

4.2 Architecture

The architecture of xpu is designed around three key components working together
to enable portable GPU code while maintaining high performance and compiler flex-
ibility. Figure 4.1 illustrates this architecture.

4.2.1 Runtime System

At the core of xpu is a runtime system that manages device discovery, memory alloca-
tion, and kernel execution. The runtime provides a unified interface to the application
while delegating the actual implementation to backend-specific drivers.

4.2.2 Backend Drivers

For each supported backend (CUDA, HIP, SYCL, CPU), xpu compiles a separate driver
as a shared library. These drivers implement the common interface defined by the
runtime, providing basic functionality like device discovery and selection, memory
operations, and command queue creation. Through this driver architecture, xpu can
dynamically load backends based on available hardware and even support multiple
backends simultaneously within the same application.

4.2.3 Device Libraries

Device code in xpu is organized into separate libraries that can be compiled indepen-
dently for each backend.

Each device library undergoes dual compilation: once as regular C++ code for the
host, enabling type checking and symbol resolution, and again as device code for each
available backend using the appropriate compiler. This approach allows xpu to use
the optimal compiler for each platform - for instance, nvcc for CUDA and hipcc for HIP
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- while maintaining regular C++ compilation for CPU code without additional depen-
dencies. The result is separately optimized device code for each target platform.

The runtime dynamically loads the appropriate implementation for each kernel based
on the active backend through a custom symbol table mechanism. This system maps
kernel types to function pointers at during initialisation, providing type-safe access
to kernel implementations and enabling efficient switching between backends. This
mechanism is discussed in detail in Section 4.4.

4.3 Usage

4.3.1 General Usage

Conceptually, xpu loosely follows the CUDA API. However, as it’s written in C++, amore
object-oriented approach was chosen and RAII [55] is applied where appropriate. The
following paragraphs introduce the basic concepts for using xpu and integration of
the library via the build system. Later sections cover different parts of the interface in
more detail.

For a full runnable example using xpu, see Appendix A.

The API is divided into three main headers:

• device.h - Contains the device-side API for implementing kernels and device
functions.

• host.h - Provides the host-side API for managing devices, memory, and kernel
execution.

• common.h - Defines components used by both host and device code.

Additionally, defines.h provides essentialmacros likeXPU_D and XPU_H formarking
device and host functions respectively.

Device code in xpu is organized into separate libraries that can be compiled indepen-
dently for each backend. For implementation reasons, device libraries must define a
unique type to identify with and are marked using the XPU_IMAGEmacro:

1 struct DeviceLib {}; // Unique type to identify the device library
2 XPU_IMAGE(DeviceLib); // Must be called exactly once per library
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Basic Workflow

Using xpu typically involves the following steps:

1. Initialize the runtime:
1 xpu::initialize(); // Use default settings
2 // Or with custom settings:
3 xpu::settings settings;
4 settings.device = "cuda0"; // Select specific device
5 xpu::initialize(settings);

2. Create a command queue for execution:

1 xpu::queue queue; // Uses default device
2 // Or for a specific device:
3 xpu::queue queue(xpu::device{"cuda0"});

3. Allocate memory:

1 // Allocate memory on host and device for transfer
2 xpu::buffer<float> input(1024, xpu::buf_io);
3 // Allocate memory only on device
4 xpu::buffer<float> internal(1024, xpu::buf_device);

4. Transfer memory and launch kernels:

1 // Copy 'input' buffer from host to the device
2 queue.copy(input, xpu::h2d);
3 // Launch kernel
4 queue.launch<SomeKernel>(xpu::nblocks(1024), input, internal);
5 queue.wait(); // Wait for kernel to finish

The details ofmemorymanagement and kernel declaration are covered in Sections 4.3.2
and 4.3.4 respectively.

CMake Integration

xpu is added to CMake-based projects as a regular subproject. This can be done by
calling add_subdirectory or using the FetchContentmodule:

1 include(FetchContent)
2 FetchContent_Declare(xpu
3 GIT_REPOSITORY https://github.com/fweig/xpu
4 GIT_TAG master
5 )
6 FetchContent_MakeAvailable(xpu)

xpuprovides CMake integration through thexpu_attach function. This functionhan-
dles the compilation of device code for all enabled backends:
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1 add_executable(my_app ${sources})
2 xpu_attach(my_app ${device_sources})

Backends are enabled by setting the corresponding CMake options:

1 set(XPU_ENABLE_CUDA ON) # Enable CUDA backend
2 set(XPU_ENABLE_HIP ON) # Enable HIP backend
3 set(XPU_ENABLE_SYCL ON) # Enable SYCL backend

The CPU backend is always enabled and serves as a fallback for development and
debugging.

Another notable CMake option is XPU_DEBUG, which compiles device code without
optimizations and debug information enabled.

In addition to the xpu-library, a small utility application called xpuinfo is always com-
piled alongside xpu. This can be used to list all available devices found by xpu.

Environment Variables

Most options passed to xpu::initialize can also be overwritten via environment
variables:

• XPU_DEVICE: Overwrite the selected default device.

• XPU_VERBOSE: Switch to toggle internal logging. Displays information about de-
vice operations like memory allocation, kernel launches and memory transfers.
Useful for debugging.

• XPU_PROFILE: Toggle to enable xpu timers. See also Section 4.3.3.

• XPU_EXCLUDE: Comma seperated list of backends that should be disabled at run-
time.

4.3.2 Memory Management

Memory management in heterogeneous computing requires careful consideration of
differentmemory spaces and datamovement between them. While some frameworks
like SYCL attempt to abstract this complexity away through automatic memory man-
agement, this can lead to reduced control and potential performance issues. xpu takes
a different approach, providing RAII-based memory management while maintaining
explicit control over allocations and data movement.

In principle, much of the complexity of GPU memory management is solved with the
usage of managed memory. In this case, both host and device can access memory via
the same address. The device driver migrates memory pages through page faults as
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needed. This eliminates the need for explicit copy operations and allows GPUmemory
to be handled like regular host memory. While this can simplify GPU development, it
comes at significant performance costs. Compared to direct memory management
operations can be slower by a factor of 10 to 100. Even worse serialization in the
driver can create a further bottleneck for parallel workloads [11]. Given the memory
intensive nature of most tasks in HEP processing, this makes managed memory as the
primary mechanism for handling device memory unacceptable. xpu also supports
managed memory but this type of allocation is not the default and must be explicitly
chosen by the user.

The core of xpu’s memory management is the buffer class, which stores only a pointer
to device memory. All additional information, including reference counting, is man-
aged by the xpu runtime outside the buffer object. This design ensures that buffers can
be used like raw pointers in device code with zero overhead. Upon buffer creation,
the type of memory allocation must be specified:

• device: Memory allocated on the current device, not accessible from host.

• pinned: Memory allocated on host that is also accessible from the device.

• managed: Memory accessible from both host and device, with automatic syn-
chronization.

• io: Memory allocated on host and device. Additionally eliminates double allo-
cations and copy operations when running on CPU.

To access buffer data, xpu provides two view classes:

• view: For device-side access, can be constructed from a buffer or pointer with
size.

• h_view: For host-side access. Retrieves the corresponding host buffer from the
runtime and throws an exception if the memory is not host-accessible.

Both view classes provide similar interfaces to std::span in C++20, butwith different
safety guarantees. The device-side view includes range checking through device-side
assertions in debug mode. The host-side h_view always performs range checking for
safety, with an unsafe_at method provided for performance-critical sections where
bounds checking overhead needs to be eliminated.

This design provides several advantages:

• No hidden allocations or copies that could impact performance.

• Clear distinction between device and host access patterns.

• Support for zero-copy operations through io buffers.

• RAII-based cleanup of allocations.

• Zero overhead in device code through lightweight buffer objects.

41



Chapter 4 xpu - A C++ Libary for Portable GPU Code

• Type-safe access to memory with optional bounds checking.

This contrasts with SYCL’s approach, which offers two different memory models. The
buffer API requires the creation of accessors for every kernel that needs to access a
buffer, leading to significant boilerplate code. While this enables automatic task par-
allelization, it comes at the cost of verbose code and limited control over allocations
and copy operations. The USM (Unified Shared Memory) API introduced in SYCL 2020
offers direct allocation control but provides only C-stylemanualmemorymanagement
without RAII support.

xpu’s approach combines the safety of RAII with the control of manual memory man-
agement, making it suitable for applications where predictable performance and ex-
plicit memory control are essential.

4.3.3 Profiling API

Performance analysis of GPU applications requires tracking multiple types of oper-
ations: kernel execution, memory transfers, memory initialization, and overall wall
time. xpu’s profiling API provides an integrated way to collect these metrics with min-
imal code instrumentation and without the need to use external tools.

The core of the API is the timer concept. Timers can be started explicitly or created as
scoped objects:

1 // Explicit timer management
2 xpu::push_timer("processing");
3 process_data();
4 auto timing = xpu::pop_timer();
5

6 // RAII-based alternative
7 {
8 xpu::scoped_timer timer("processing", &timing);
9 process_data();

10 }

Each timer automatically collects:

• Total wall time

• Time spent in each kernel, including per-invocation times

• Duration of host-to-device and device-to-host transfers

• Time spent in memset operations
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Timers can be nested to provide hierarchical profiling information:

1 xpu::push_timer("full_pipeline");
2 {
3 xpu::push_timer("preprocessing");
4 prepare_data();
5 auto prep_time = xpu::pop_timer();
6

7 xpu::push_timer("computation");
8 run_algorithm();
9 auto comp_time = xpu::pop_timer();

10 }
11 auto total_time = xpu::pop_timer();

To enable performance analysis in terms of throughput, the API allows specifying the
amount of data processed:

1 // Record bytes processed in current timer scope
2 xpu::t_add_bytes(input_size);
3

4 // Record bytes processed by specific kernel
5 xpu::k_add_bytes<MyKernel>(input_size);

This information is used to automatically calculate processing rates in GB/s, accessible
through the throughput()methods of the timings and kernel_timings classes.
The profiling system is designed to have very little overheadwhen disabled. Only wall
time measurements are collected unless profiling is explicitly enabled during initial-
ization:

1 xpu::settings settings;
2 settings.profile = true;
3 xpu::initialize(settings);

When profiling is enabled, the system introduces implicit synchronization points af-
ter each kernel launch and memory operation to collect accurate timing information.
This means that operations that would normally execute asynchronously are forced
to complete before the next operation begins. While this provides precise timing data,
it can significantly impact the overall performance of the application by preventing
concurrent execution. Users should be aware of this overhead and disable profiling
for production runs where maximum performance is required.

All timing data is accessible through the timings and kernel_timings class, allow-
ing for programmatic analysis of performance data or integration with external mon-
itoring systems.
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1 #include <xpu/device.h>
2

3 struct VectorAdd : xpu::kernel<DeviceLib> {
4 using block_size = xpu::block_size<256>;
5 using context = xpu::kernel_context<>;
6 XPU_D void operator()(
7 context &ctx,
8 xpu::buffer<const float> a,
9 xpu::buffer<const float> b,

10 xpu::buffer<float> c,
11 size_t N);
12 };

Figure 4.2: Example of a kernel definition in xpu.

4.3.4 Device-side API

The following sections provide an overview of device-side functionanlity in xpu.

Kernel Definition

Kernels in xpu are implemented as callable objects that inherit from the xpu::kernel
class. For this, every kernel must overload the function call operator marked with
the XPU_D macro for device code compilation. The first argument of this operator is
always a kernel context object, which provides access to the thread position, shared
memory, and constant memory.

The kernel class can specify several optional properties through member type defini-
tions:

• block_size: Sets the number of threads per block at compile time.

• shared_memory: Defines the shared memory layout for the kernel.

• constants: List of values in constant memory that the kernel needs to access.

• context: Can be used as a shorthand to define the kernel’s context type, com-
bining shared memory and constant memory requirements.

• openmp: Controls the OpenMP [30] execution settings when running on CPU.

Additional kernel arguments following the context parameter can be of any type that
is copyable to the device. For frequently used types, xpu provides specialized buffer
objects that manage device memory. When passing buffers to kernels, their size can
often be inferred from other parameters or the grid size, reducing register usage in
device code. Plain pointers are also supported as kernel arguments, though the user
is then responsible for ensuring the memory is accessible on the device.
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The kernel implementation must be marked with XPU_EXPORT to register it with the
runtime system. This enables xpu to dynamically load the appropriate implementa-
tion for the active backend at runtime. For the CPU backend, the kernel is compiled
as a regular C++ function using OpenMP for parallelization, with the thread indexing
system adjusted to mimic GPU behavior.

An example for a basic kernel declaration is given in Figure 4.2. The kernel receives
three buffers a, b, c and the buffer sizeN as arguments. Additionally kernels can spec-
ify the block size at compile time via the block_size member type. The first argu-
ment of each kernel is required to be a context object. The context contains the thread
position, a pointer to the sharedmemory and access to constantmemory if required.

Note: xpu also supports templated kernels. However, due to the separate compilation
of host and device code, kernels and the corresponding host code are never in the
same compilation unit. Thus every kernel template must be instantiated explicitly
with a call to XPU_EXPORT. This can lead to a lot of boilerplate for heavily-templated
code. Away tomitigate this issue in xpu is calling these kernels through host functions
(see Section 4.3.6) instead.

Grid Position

Each kernel receives a context object that provides information about the thread’s po-
sition in the execution grid. The position is defined by three coordinates in a hierarchi-
cal system: the position of the thread within its block (thread_idx), the dimensions
of the block (block_dim), and the position of the block within the grid (block_idx).
These coordinates can be accessed individually for each dimension (x, y, z) through
methods like thread_idx_x() or block_dim_y(). Additionally, the total grid di-
mensions are available through grid_dim_x/y/z(). This system directly maps to
CUDA/HIP’s built-in threadIdx, blockDim, and blockIdx variables. On CPU, these
functions reflect a grid layout with blocks of size 1.

Shared Memory

Sharedmemory in xpu is declared as a nested class namedshared_memorywithin the
kernel. This class is allocated into sharedmemory at kernel launch and canbe accessed
through the context object via the smem()-method. While this approach requires the
shared memory size to be known at compile time, it enables straightforward usage of
C++ unions in cases where device occupancy is limited by shared memory size. If no
shared memory is required, the kernel can use xpu::no_smem as its shared memory
type.
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4.3.5 Constant Memory

Constant memory is a special type of memory in GPU programming that provides fast,
read-only access to data that remains unchanged during kernel execution. While this
feature is natively supported by CUDA and HIP, it was deprecated in SYCL in the 2020
specification [40]. However, constant memory remains valuable for many applica-
tions, particularly in high-energy physics where it can efficiently store calibration data
or detector geometry information. To address this, xpu provides a unified abstraction
for constant memory that works consistently across all supported backends.

Constants in xpu are declared as types that inherit from xpu::constant, specifying
both the device library they belong to and their data type:

1 struct CalibrationData : xpu::constant<DeviceLib, float[1024]> {};
2 XPU_EXPORT(CalibrationData);

This declaration creates a type that represents a constant array of 1024 floating-point
values. The first template parameter associates the constant with a specific device
library, enabling separate compilation of device code, while the second parameter de-
fines the type of data to be stored. Like kernels, constants must be registered with the
runtime system using XPU_EXPORT.
To use constants in a kernel, they must be explicitly declared through the kernel’s
constants type:

1 struct Calibrate : xpu::kernel<DeviceLib> {
2 using constants = xpu::cmem<CalibrationData>;
3 using context = xpu::kernel_context<xpu::no_smem, constants>;
4

5 XPU_D void operator()(context& ctx, xpu::buffer<float> data) {
6 float calibration = ctx.cmem<CalibrationData>()[idx];
7 data[idx] *= calibration;
8 }
9 };

The constants type definition uses xpu::cmem to specify which constants the kernel
requires access to. Multiple constants can be specified if needed:

xpu::cmem<Constant1, Constant2, ...>.

Within the kernel, constants are accessed through the context object, either by request-
ing a specific constant with ctx.cmem<Constant>() or accessing the entire constant
memory object with ctx.cmem().
On the host side, constant values are set using the xpu::set function:

1 float calibration_data[1024] = { /* ... */ };
2 xpu::set<CalibrationData>(calibration_data);
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The implementation internally handles the mapping to appropriate backend-specific
features. For CUDA and HIP, it uses native constant memory. For SYCL, where constant
memory is no longer available, constants are instead written to global memory. This
ensures that code written using xpu’s constant memory abstraction remains portable
across different GPU architectures while retaining optimal performance where native
support exists.

Math Functions

xpu supports the overlap of math functions supported by CUDA, HIP, SYCL and the C++
standard library. Exceptions are functions where trivial fallbacks are possible. Some
examples for this are the cospi and sinpi functions that are not available in the C++
standard library but are supported by the other backends available in xpu.

Atomic Operations

xpu provides atomic operations that work consistently across all supported backends.
The standard set of atomic operations (compare-and-swap, addition, subtraction, bit-
wise AND, OR, and XOR) are available for 32-bit integers, with atomic compare-and-
swap and addition also supporting single-precision floating point values.

For improved performance when threads are known to be in the same block, block-
scoped variants of these operations are provided with the _block suffix. On GPUs,
these are compiled to block-scoped intrinsics when supported by the architecture,
falling back to regular atomic operations otherwise. On CPU, where blocks have a
size of 1, these operations are compiled as regular non-atomic operations since syn-
chronization is not needed in this case.

Block- and Warp-wide Functions

For efficient parallel processing, xpu provides a set of common parallel primitives that
operate across warps and thread blocks. These operations include reductions, scans
(prefix sums), and ballot operations. The implementation automatically selects op-
timal native functions for each backend while providing portable fallbacks for CPU
execution.

4.3.6 Native Host Functions

By design, host code in xpu is seperated fromdevice code andhas to go through the xpu
runtime to start kernels. However, in some cases it can be beneficial to compile host
code with the GPU compiler and access device kernels directly. For this reason xpu
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supports integrating native GPU library functions through its function mechanism.
Similar to kernels, functions are declared by inheriting from xpu::function and
must be registered with XPU_EXPORT. This allows platform-specific implementations
to be compiled separately for each backend and selected at runtime.

This feature is particularly useful for two scenarios: First, when integrating heavily-
templated kernels where the template instantiation should happen in the GPU com-
pilation unit instead of the host code. Second, when using native libraries like CUB
[50] or hipCUB [43] that provide optimized device-wide operations. The function ab-
straction provides type safety and seamless integrationwith xpu’s buffermanagement
while maintaining the performance characteristics of native implementations.

4.4 Mixing Compilers and Dynamic Loading

One of xpu’s key design goals is supporting multiple GPU architectures while using
each vendor’s optimized compiler for their respective platform. This differs from ap-
proaches like Alpaka that support all platforms available to the current compiler, re-
quiring device code to be templated to comply with the One Definition Rule (ODR)
[51]. Instead, xpu compiles device code separately for each backend, allowing differ-
ent compilers to be used for different platforms. While this approach provides optimal
performance for each target, it creates the challenge of managing multiple compiled
versions of the same functions and selecting the appropriate version at runtime.

The POSIX standard provides basic facilities for loading code at runtime through func-
tions like dlopen, dlsym and dlclose. However, these functions were designed for
C and present several challengeswhenworkingwith C++ code. Due to namemangling
in C++, there’s no portable way to derive a symbol name from a function name. And
reverting to C identifiers for kernel names would complicate the usage of namespaces
and templated kernels.

Another approach would be to call dlopen multiple times for different backends to
switch between implementations on the fly. However this has multiple drawbacks
when using devices with different backends at once. The relocations can cause a lot
of overhead when switching backends. Furthermore this is a global operation so it’s
not thread-safe either and would require additional synchronization.

To address these limitations, xpu implements a custom symbol table mechanism, il-
lustrated in Figure 4.3 . Internally each device library maintains its own symbol table
mapping types to function pointers. The symbol table is exported through a C inter-
face accessible via dlsym. A custom type information system maps types to numeric
identifiers (0...N) instead of using STL’s std::type_info 1 which provides hash codes

1std::type_info’s hash and type name are implementation defined. This makes it unusable between
compilers and for introspection. Libraries that rely on this functionanlity usually instead implement
their own version relying on template and C-macro tricks. One notable type_info implementation
can be found in the entt library [16].
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Figure 4.3: Concept how kernels, constants and host functions in xpu device
libraries are propagated to the runtime and enable calling from
user host code.
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that aren’t guaranteed to be consistent across compilers.

The implementation uses functors rather than plain functions, providing several ad-
vantages:

• Additional compile-time information can be attached (e.g., block sizes for ker-
nels).

• Type safety is maintained across the dynamic loading boundary.

• Function addresses can be registered during static initialization.

Here’s how xpu components are registered with the symbol table:

1 // Kernel definition
2 struct MyKernel : xpu::kernel<DeviceLib> {
3 XPU_D void operator()(context& ctx, /*...*/) { /* Implementation */ }
4 };
5

6 // Host function definition
7 struct MyHostFunc : xpu::function<DeviceLib> {
8 int operator()(/*...*/) { /* Implementation */ }
9 };

10

11 // Constant definition
12 struct MyConstant : xpu::constant<DeviceLib, float[1024]> {};
13

14 // Register with symbol table
15 XPU_EXPORT(MyKernel); // Register kernel
16 XPU_EXPORT(MyHostFunc); // Register host function
17 XPU_EXPORT(MyConstant); // Register constant
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The registration is handled by register_action, which provides specialized imple-
mentations for kernels, host functions, and constants:

1 template<typename A, xpu::driver_t D>
2 struct register_action {
3 using image = typename A::image;
4 using tag = typename A::tag;
5

6 register_action() {
7 // Register with the symbol table based on the action type
8 if constexpr (std::is_same_v<tag, kernel_tag> ||
9 std::is_same_v<tag, function_tag>) {

10 symbol_table::instance<image, D>().template add<A>(
11 (void*)&action_runner<tag, A, decltype(&A::operator())>::call);
12 } else if constexpr (std::is_same_v<tag, constant_tag>) {
13 symbol_table::instance<image, D>().template add<A>(
14 (void*)&action_runner<tag, A>::call);
15 }
16 }
17

18 static register_action<A, D> instance;
19 };
20

21 template<typename A, xpu::driver_t D>
22 register_action<A, D> register_action<A, D>::instance{};

The XPU_EXPORTmacro then simply expands to a template instantiation
of register_action:

1 #define XPU_EXPORT(name) \
2 template struct xpu::detail::register_action<name, \
3 XPU_DETAIL_COMPILATION_TARGET>

4.4.1 Runtime Symbol Resolution

When a component is accessed through the xpu runtime, the following process oc-
curs:

1. The runtime looks up the active backend’s symbol table.

2. The type is used to find the corresponding function pointer.

3. For kernels and functions, arguments are passed to the implementation via vari-
adic templates.

4. For constants, the value is written to the appropriate memory location.

This approach allows for efficient switching between implementationswithout reload-
ing libraries. While also supporting multiple backends simultaneously and maintain-
ing type safety across compilation boundaries. The symbol resolution overhead is
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minimal as it occurs only once during initialization, with subsequent accesses read-
ing single values from an array of function pointers.

4.5 Performance Overhead

In this section, the potential performance overhead with xpu and SYCL is investigated.
The GPU port of the STS unpacker was chosen as the basis for the benchmark. The
unpacker is first step in the processing chaing and decontextualizes the stream of raw
detector data which is required for the subsequent cluster finding. The details of the
unpacker are discussed in themaster thesis of S. Heinemann [42]. The unpacker kernel
was chosen for the following reasons:

• It is highly memory bound, making it sensitive to potential inefficient ordering
of memory instructions by the compiler.

• It is also simple and small to allow enough equivalent implementations across
multiple frameworks. This narrows potential performance factors down to the
device compiler and native device functions.

The initial implementation of the unpacker was written in xpu. Additionally a native
CUDA and SYCL port were added for comparison. The HIP implementation is gener-
ated from CUDA via the ROCm hipify script. SYCL was compiled with AdaptiveCpp
24.06 and Intel’s icpx compiler shipped with OneApi 2024.2.1. Additionally ROCm
version 6.0 and CUDA version 12.6.0 were used. Tests were conducted on a RTX 2080
Ti andMi50 for Nvidia and AMD hardware respectively. 30 timeslices from themCBM
2022 campaign were used as testdata. As the unpack kernel is very short, < 1ms to a
few milliseconds depending on the size of the timeslice, each timeslice was processed
1000 times consecutively. The benchmark shows the accumulated time of all kernel
calls.

Performance numbers are compared in figure 4.4. The xpu version is essentially able
tomatch the performance of both native implementations, with only a 0.2% overhead
in runtime compared to the respective CUDA and HIP variants. The generated assem-
bly is almost identical. Figure 4.5 shows an example for differences in the machine
code. For both the native CUDA implementation and xpu identical instructions are
generated, only their ordering is different is this case.

The performance differences between SYCL implementations can be traced back to
their distinct compiler architectures. Intel oneAPI and AdaptiveCpp both build upon
LLVM / Clang but take fundamentally different approaches. Intel oneAPI uses a heavily
customized Clang fork with proprietary optimizations, which explains its more con-
sistent but slower performance across platforms - about 36% slower on CUDA with
a similar performance gap on ROCm. AdaptiveCpp, compiled with Clang 18, uses a
plugin architecture to generate backend code. While this approach promises better
maintainability and easier updates to new Clang versions, the performance results
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Figure 4.4: Performance comparison of different implementations of the STS
unpacker. The left plot shows multiple implementations targeting
Nvidia using the native CUDA implementation compiled with nvcc
as baseline. Likewise implementations targeting AMD are shown
on the right with the native HIP implementation compiled with
amdclang as baseline.

Offset Cuda compiled via nvcc xpu compiled with nvcc
1a20 LDS.U R16, [0x8a4] ; LDS.U R16, [R18.X4+0x8a8]
1b30 LDS.U R13, [R18.X4+0x8a8] LDS.U R13, [0x8a4] ;
1b50 IADD3 R33, P2, P3, R16, R6 IMAD.SHL.U32 R23, R23, 0x2
1b60 IMAD.SHL.U32 R23, R23, 0x2 LOP3.LUT R28, R28, 0x1ff,
1b70 LOP3.LUT R28, R28, 0x1ff, LOP3.LUT R28, R23, 0x200,
1b80 IADD3.X R31, RZ, R7, R31, IMAD.MOV.U32 R25, RZ, RZ,
1b90 LOP3.LUT R28, R23, 0x200, IADD3 R33, P2, P3, R13, R6
1ba0 IMAD.MOV.U32 R25, RZ, RZ, IADD3 R13, P4, R16, -c[0x0
1bb0 IADD3 R13, P4, R13, -c[0x0 IADD3.X R31, RZ, R7, R31,

Figure 4.5: Example of the differences in generated assembly by nvcc when
compiling CUDA code directly (left) versus compiling it via xpu
(right). In this case, identical instructions are generated but in a
different order.
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suggest that the translation layer from SYCL to native GPU code introduces significant
overhead, particularly for AMDhardwarewhere the implementation runs 47% slower
than native HIP.

Beyond pure performance considerations, both SYCL implementations exhibited is-
sues when integrated with xpu. While both compilers successfully compile the test
kernel when using SYCL directly, the additional abstraction layer in xpu revealed sta-
bility problems. The oneAPI compiler failed to generate correct code for the kernel
when compiled through xpu, producing no results and ignoring debug output. Adap-
tiveCpp’s ahead-of-time compilation worked for HIP but crashed at runtime when
targeting CUDA via xpu. Its just-in-time compilation mode, which enables additional
backends like OpenCL and Level Zero, lacks support for the block-wide scan operations
required by the kernel, preventing its use in the benchmark entirely. These limitations
also effectively prevented testing on Intel GPUs, where only the native Intel compiler
is available.

It’s important to note that this benchmark is limited in scope, focusing only on the STS
unpacker kernel which represents a specific data access pattern. A recent study by
Davis et a. [31] compared SYCL, CUDA, and HIP performance across a more broader
set of benchmarks. Their results show SYCL matching or even slightly outperforming
native implementations in many cases, suggesting SYCL’s overhead may be less pro-
nounced for more general computational patterns. However, how well either result
can be generalised to the rest of the processing chain in CBM, in particular for track
reconstruction, remains future work.
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Chapter 5

GPU-Accelerated STS
Reconstruction in CBM

5.1 Introduction

The Compressed Baryonic Matter (CBM) experiment, currently under construction at
the Facility for Antiproton and Ion Research (FAIR) at GSI, aims to explore the proper-
ties of strongly interacting matter under extreme conditions of temperature and den-
sity via heavy-ion collisions. The Silicon Tracking System (STS) reconstruction in CBM
faces significant computational challenges due to its free-streaming data acquisition
approach. Unlike traditional triggered systems, CBM must process the complete raw
data stream in real-time at interaction rates up to 10MHz. As the primary tracking de-
tector, the STS plays a crucial role in track reconstruction, making its efficient online
processing critical for real-time event selection.

The existing CBM software framework, CBMRoot, was primarily developed with de-
tector simulation and offline analysis in mind. Built on ROOT, it provides an envi-
ronment for physics analysis but its deep integration with ROOT and focus on simu-
lation and event-based processing make it less suitable for online reconstruction of
free-streaming data. To handle the expected data rates in real-time, a new sub-project
within CBMRoot was created, that avoids these constraints [36]. The design elimi-
nates dependencies on ROOT in its core algorithms, focusing instead on optimization
for continuous data processing. A key architectural decision was the clear separation
between algorithms and framework layers, allowing performance-critical code to be
developed and optimized independently.

As part of this software rewrite, several key components were developed and inte-
grated. A new executable was created to run the online reconstruction chain, integrat-
ing unpacking from all available subsystems, reconstruction algorithms from STS, TRD
and TOF as well as track reconstruction. For real-time monitoring during data taking,
an integration with InfluxDB and Grafana was implemented. The continuous integra-
tion systemwas extended to support container building for online reconstruction, and
a new YAML-based configuration systemwas developed to handle both geometry and
readout descriptions.
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Figure 5.1: Overview of the CBM online processing chain. The workflow be-
gins with unpacking raw data from all detector subsystems, pro-
ducing digis that feed into either a simple multiplicity trigger path
and a reconstruction path with hit finding, tracking, and vertex-
based triggering. Both paths ultimately result in digi events.
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As shown in Figure 5.1, the online processing workflow begins with unpacking raw
data from multiple detector subsystems from timeslices. These timeslices represent
fixed-duration intervals of continuous detector readout, typically spanning several
milliseconds and containing multiple collision events. Unlike traditional event-based
data acquisition, timeslices capture all detector signals within their time window re-
gardless of trigger decisions. The resulting digis serve as input for one of two process-
ing branches: a multiplicity-based trigger path and a more complex reconstruction
path. The multiplicity trigger provides a computationally inexpensive first-level selec-
tion by simply counting the number of digis across detectors, allowing quick identifica-
tion of events with sufficient activity. Alternatively, the reconstruction path performs
hit finding for the tracking detectors (STS, TOF, TRD), followed by track reconstruc-
tion and vertex-based triggering. The vertex trigger offers more sophisticated event
selection by identifying collision vertices and applying physics-motivated criteria such
as vertex position and track multiplicity. Both paths result in digi events that can be
stored for later physics analysis.

Within that context, this chapter presents the GPU-accelerated STS reconstruction de-
veloped for the online framework. New parallel algorithms for cluster and hit finding
that exploit the parallelism available in GPUs are introduced. An abbreviated descrip-
tion of the GPU-accelerated hitfinder and testing of the online software through data
challenges have also been published in the CBM Progress Report 2023 [73][29].

The chapter is organized as follows:

• Section 5.2 describes the existing offline STS reconstruction algorithm and its
limitations.

• Section 5.3 presents the implementation of the GPU-accelerated algorithms for
cluster and hit finding.

• Section 5.4 analyzes the performance characteristics of different GPU sorting
strategies.

• Section 5.5 provides a performance evaluation of the complete STS reconstruc-
tion.

• Section 5.6 discusses the integration and validation through data challenges and
deployment during the May 2024 mCBM beamtime.

5.2 The Offline STS Hitfinder

5.2.1 Overview

The Silicon Tracking System’s reconstruction transforms raw detector measurements
into four-dimensional spacetime points suitable for track reconstruction. As shown in
Figure 5.2, the reconstruction pipeline processes input from two distinct sources: real
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Figure 5.2: High level overview of the STS reconstruction steps.

detector data that must be unpacked from timeslices, or artificial data from detector
simulation1. Both sources produce digis. These are time-stamped charge measure-
ments carrying information about the deposited charge, the strip that collected it, and
its timestamp.

The processing chain starts by distributing digis to their corresponding module side
via a bucket sort. Afterwards digis are sorted by their timestamp as prerequisite for
the following cluster finding.

Within each module side, the cluster finding algorithm identifies groups of adjacent
strips that registered charge deposits within a configurable time window. These clus-
ters capture the one-dimensional position along the strips through charge-weighted
averaging, accompanied by timing information derived from the contributing digis.
The resulting clusters are again sorted by time to prepare the hit finding stage.

The hit finding then combines time-matched clusters from both sensor sides of a mod-
ule to reconstruct hit positions. When clusters from opposite sides are found within
a matching time window, their intersection point determines the hit position in the
sensor plane. The algorithm propagates measurement uncertainties from the initial
charge measurements through clustering to the final hit position, providing error es-
timates for the reconstructed coordinates and timestamp. So the reconstructied hits
are four-dimensional spacetime points that serve as input for subsequent track recon-
struction.

At the highest level, this reconstruction process is modularized to handle data inde-
pendently for each sensor module, enabling parallel execution via OpenMP [30] that
was introduced by F. Boeck [14]. The core algorithms for cluster and hit finding were
developed by V. Friese [37] and H. Malygina [48], respectively.

5.2.2 Cluster Finding

In its sequential form, the algorithm processes time-sorted digis by examining each
measurement in order. When encountering a new digi, it checks whether an existing
cluster is being formed on adjacent strips within a configurable time window. If such

1In this case, the simulation is not on raw data level.
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Figure 5.3: Visualization of ADC values recorded on one side of a STS module.
The horizontal axis represents the detector channels (strips), while
the vertical axis shows the time dimension. Each black square indi-
cates a channel-time positionwhere an ADC value above threshold
was recorded. Red circles highlight groups of adjacent ADC values
that are combined into clusters during reconstruction. (Graphic
adapted from [37]. Circles added for emphasis.)

a cluster exists, the digi is added to it. Otherwise, a new cluster is started. This pro-
cess continues until all digis have been processed, resulting in a collection of clusters
characterized by their charge-weighted mean positions and timing information. An
example of digis combined into clusters is shown in Figure 5.3.

The offline implementation splits this process into two steps. The first step identifies
which digis belong together, storing indices of contributing digis for each cluster. This
separation allows the second step to analyze the collected digis and compute the cluster
properties. this two-step approach requires additionalmemory to store the digi indices
and involves a second pass over the data.

While this sequential approach is effective, it presents several challenges for parallel
implementation, particularly on GPUs. The algorithm fundamentally relies on exam-
ining time-ordered data sequentially, with each decision potentially affecting subse-
quent cluster formation. This dependency makes partitioning the work effectively
across multiple threads difficult. The variable-length nature of clusters further com-
plicates work distribution, as the number of digis that will form a cluster is not known
in advance.
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5.2.3 Hit Finding

The hit finding algorithm transforms two-dimensional cluster measurements (time
and channel) from both sensor sides into three-dimensional hit positions (time, x and
y position on the sensor).2 At its core, the algorithm processes two sorted lists of clus-
ters from the front and back sides of each sensor. For each potential cluster pair, the
algorithm first checks whether their time measurements are compatible within a con-
figurable window. For time-matched clusters, the algorithm calculates their geometric
intersection points along the overlapping strips. The temporal matching significantly
reduces the number of cluster combinations that need to be evaluated geometrically,
improving computational efficiency.

The intersection calculation is performed in the sensor’s local coordinate system. Each
strip direction defines a line in this coordinate system, and the intersection of these
lines determines the hit position. However, due to the periodicity of the strip pattern,
multiple intersections may occur for a single cluster pair. These ambiguities, known
as ghost hits, are an inherent feature of the strip geometry and must be handled by
the subsequent track reconstruction stage.

For each reconstructed hit, the algorithm must also propagate the position uncertain-
ties from the input clusters to the final hit coordinates. This error propagation con-
siders both the uncertainties in the cluster positions and the geometric effects of the
stereo angle. The resulting hit objects contain the reconstructed position in global coor-
dinates, timing information derived from the contributing clusters, and the associated
measurement uncertainties.

5.3 The Online STS Hitfinder

5.3.1 General Performance Considerations

The online STS hitfinder employs several fundamental optimizations focused on effi-
cient data structures and memory management. These optimizations are particularly
critical given that the reconstructionmust process between 108 and 109 hits per times-
lice in real-time during data taking. 3

A primary optimization involves the complete redesign of the data structures used for
reconstruction. The offline reconstruction uses a hierarchical class structure deeply
integrated with ROOT [15]. Hit classes follow the inheritance chain

2Technically, both cluster and hit position have an additional dimension along the z-axis that represents
the distance from the target. However, this value is given implicitly by the sensor position in world
coordinates.

3Rough estimate assuming a timeslice size of at least 10GB with the STS making up at least 25% of the
data volume. See [2, p. 32–34] and [2, p. 45] for estimates of detector data rates and targeted timeslice
sizes.
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TObject [69]→ CbmHit [18]→ CbmPixelHit [19]→ CbmStsHit [20],

,while cluster classes use

TObject→ CbmCluster [21]→ CbmStsCluster [22].

This inheritance fromTObject is necessary as the objects are stored inROOT’sTClones-
Array containers [68] throughout the CBMRoot framework. While these structures
could theoretically be optimized in the offline code aswell, applying the changes retroac-
tively is a very involved undertaking. In particular a large number of analysis tasks
depend on the current class hierarchy and member variables of STS hits and clusters
or use the base classes for polymorphy to implement common operations across de-
tector classes. In turn this means any change to these classes would entail adapting or
restructuring large parts of the code base.

The online hitfinder instead implements lightweight C++ structures that eliminate these
dependencies. By removing the ROOT integration and flattening the inheritance hier-
archy, the redesign significantly reduces the memory footprint of the basic data types
used throughout the reconstruction chain. For instance, the size of a cluster object is
reduced from 112byte in the offline reconstruction to just 24 byte in the online ver-
sion. Similarly, hit objects are reduced from 136byte to 48byte. 4

These reductions are achieved through several optimizations. Where full double pre-
cision is not required for reconstruction, single-precision floating point values are used
instead. Timestamps are stored as 32-bit integers rather than 64-bit floating point
numbers. The storage ofMonte Carlo information, which requires an additional 8 byte
per object for pointer storage and is crucial for simulation studies but irrelevant for
online reconstruction, is separated from the main data structures.

The encoding of sensor information is also optimized. While the offline reconstruction
uses 32-bit integers to encode sensor addresses, in the STS digi, the sensor address can
be encoded using just 17bit [23]. Combined with packing the 5-bit ADC value and 10-
bit channel, this allows the reduction of the digi size to 8 byte from previously 16byte.
By keeping the sensor address inside the digi, it was possible to apply this change to
the offline digi, which in turn is now used in both offline and online code.

For hits and clusters, the online code takes a different approach to handling the sensor
address by using specialized container classes

PartitionedVector [53] and PartitionedSpan [52].

4These sizes can likely be even further reduced. Most fields of the STS clusters and hits don’t need full
32 bit floating point precision. E.g. for position and time error estimates 16bit or even 8bit fixed-point
numbers are probably sufficient.
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These containers, which conceptually follow the design of vector and span from
the C++ standard library, partition data by hardware address, storing the address only
once per partition rather than in each object. The container classes are general enough
to be used acrossmultiple detector systems in the online reconstruction. This currently
includes both the Time-of-Flight (TOF) [32] and Transition Radiation Detector (TRD) [1],
the other two detectors whose hit reconstruction was ported to the online code.

Another significant optimization involves the handling of digi indices during cluster
creation. The offline reconstruction allocates additional memory to store indices of
contributing digis for each cluster, requiring both the memory for a std::vector
object (24 byte), and an additional heap allocation. The online implementation elimi-
nates this overhead by directly computing cluster properties during construction.

The reconstruction chain also exploits opportunities for increased parallelization. The
offline version typically processes data at themodule level, the online implementation
can instead parallelize across module sides where appropriate, effectively doubling
the available parallelism for these operations.

5.3.2 Efficient Sorting on GPU

The STS hitfinder performs sorting at multiple stages of its pipeline. First, incoming
digis must be ordered by channel and time to enable efficient cluster finding. Later,
clusters must be sorted by time to facilitate hit reconstruction.

The chosenGPU implementation divides the sorting task alongnatural partition bound-
aries - each GPU thread block processes data from a single module side independently.
Within each block, a two-phase sorting approach is employed. First, the data is divided
into fixed-size chunks that are sorted using a block-level radix sort. These sorted se-
quences are thenmerged in parallel using theMerge Path algorithm [38]. This parallel
merge occurs entirelywithin the thread block, using sharedmemory to optimizemem-
ory access patterns. The parallel merge step was implemented in xpu (see Chapter 4)
by K. Hunold as part of his master thesis [44].

The block-level radix sort phase processes data in fixed-size chunks, with each thread
responsible for handling multiple elements. The implementation uses CUB’s Block-
RadixSort [27] which utilizes shared memory to minimize global memory accesses
during the sorting process. Both the block size and the number of elements processed
per thread are tunable parameters that affect the balance between device occupancy
and shared memory usage. For the RTX 2080 Ti, optimal performance was achieved
with 512 threads per block and 11 elements per thread, allowing each thread block
to sort 5632 elements simultaneously. These parameters were chosen to maximize
occupancy while staying within the device’s shared memory constraints.

The parallel merge phase combines these sorted sequences using the Merge Path al-
gorithm. For each merge operation, the algorithm first determines the appropriate
partition points that split the sequences into roughly equal portions for each thread.
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Channel 1Channel 0 Channel 2 Channel 1022Channel 3 Channel 1023

Figure 5.4: Illustration of the linked-list structure used by the parallel cluster
finder, showing connections between digis in adjacent channels.
Colored regions represent charge deposits in each channel with
increasing time stamps, while arrows indicate connections estab-
lished between digis that form clusters.

These partition points are computed in parallel using binary search, with each thread
responsible for finding its own starting position in the merged sequence. The actual
merging is then performed with each thread processing its assigned portion of the
sequences, using shared memory as a temporary buffer to optimize memory access
patterns.

The performance of this approach depends heavily on having sufficient partitions to
fully utilize the GPU. Each partition (corresponding to a module side) is processed by
a single thread block, requiring at least as many partitions as compute units on the
device to achieve full occupancy. This is no issue for the full STS detector with its 1792
module sides but becomes a limitation for the mCBM test setup, where the mSTS has
only 24 module sides and doesn’t fully utilize modern GPUs. Section 5.4 discusses the
performance implications of this and compares it to CUB’s DeviceSegmentedSort [28],
which would be an alternative sorting primitive that could be used in this case.

Concat Sort

In his master thesis [54], S. Sedighi developed a linear time sorting algorithm called
”Concat Sort” for the STS data. This algorithm exploits the layout of microslices, where
data from a single channel is always increasing in time but channel data may be in-
terleaved. Thus only a reordering of data across channels is necessary. However,
recent changes in the STS readout hardware broke these assumptions [75], whereby
the algorithm isn’t applicable anymore to newer STS data.

5.3.3 Parallel Cluster Finding

The parallel cluster finding algorithm was originally developed by K. Hunold for his
master thesis [44]. His approach implements a two-phase strategy to enable efficient
parallel processing on GPUs. Rather than attempting to identify complete clusters in a
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single step, which would require complex synchronization between threads, the algo-
rithm first establishes connections between digis that belong to the same cluster, then
creates the actual cluster objects in a second phase.

At the core of this approach is the DigiConnector structure, which implements a
simple linked list to track cluster membership. Each connector uses a single 32-bit
value to store both the index to the next digi in the cluster and a flag indicatingwhether
the digi has a predecessor. The highest bit is reserved for the predecessor flag, while the
remaining 31bit store the index of the next digi or zero to indicate the end of a cluster.
This representation allows atomic updates to the entire structure using compare-and-
swap operations, ensuring thread safetywhenmultiple GPU threads attempt tomodify
connections simultaneously.

Hunold’s implementation parallelized theworkload by assigning oneGPU thread block
to each sensor side. Within each block, individual threads process digis in parallel.
While this approach proved effective for the full STS detector with its 1792 module
sides, it ran into limitations when processing data from the mCBM setup with only 24
module sides.

To address this issue, the algorithmwas adapted tomaximizeGPUutilization on smaller
detector configurations. The key modification was restructuring the implementation
to enable parallelization across all digis regardless of their module assignment. In-
stead of organizing work at the module level, the cluster finding was decomposed into
three kernels that each operates with one thread per digi:

1. A kernel that computes offsets for each channel, enabling efficient data access in
subsequent steps.

2. The connection finding kernel that establishes links between digis.

3. The cluster creation kernel that traverses the connections to build clusters.

In the connection phase, each GPU thread processes a single digi, examining neigh-
boring channels for potential cluster members. Two digis are considered part of the
same cluster if they are in adjacent channels and their time difference falls within a
configurable window. Figure 5.4 illustrates this process, showing how digis in adja-
cent channels are connected to form clusters. The colored regions represent charge
deposits in each channel with increasing Timestamps, while the arrows indicate the
connections established between digis. To efficiently find matching digis, the algo-
rithm uses binary search to locate the first digi within the time window in the neigh-
boring channel, taking advantage of the fact that digis are already sorted by channel
and time. When a match is found, the thread atomically updates the DigiConnector
to establish a forward edge to the next digi and sets the predecessor flag on the target
digi.

The cluster creation phase follows a similar thread-per-digi approach. EachGPU thread
that processes a digi without a predecessor (indicating the start of a cluster) is responsi-
ble for creating the corresponding cluster. The thread follows the chain of connections
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established in the first phase, computing cluster properties like total charge, position,
and timing information directly during traversal. This approach eliminates the need
to store intermediate arrays of digi indices, reducing memory usage compared to the
offline implementation to additional 4 byte per digi.

5.3.4 Parallel Hit Finding

The primary change to the hit finding algorithm was to increase the parallel work
compared to the offline implementation. While the offline version processes data at
themodule level with one CPU thread permodule, the GPU implementation instead as-
signs one thread per front-side cluster, enabling full parallelization across all potential
hits.

For each front-side cluster, the assigned GPU thread searches for matching clusters on
the back side of the sensor. To efficiently find potential matches, the algorithm exploits
the fact that clusters are already sorted by time. The thread performs a binary search
to locate the first back-side cluster within the configurable time window relative to
its front-side cluster. This optimization significantly reduces the number of cluster
pairs that need to be evaluated for geometric intersection, as clusters outside the time
window can be quickly discarded.

The algorithm implements early exit conditions based on time differences between
clusters. As both cluster arrays are sorted by time, the thread can stop searching once it
encounters a back-side cluster whose time difference exceeds the maximumwindow.
This approach, combinedwith the binary search for the initialmatching cluster, means
that each thread typically only needs to evaluate a small subset of back-side clusters.

Memory management for hit output employs a bucket-based approach, with preallo-
cated space for each module sized according to the number of input clusters. Each
thread uses atomic operations to obtain an index in the appropriate module’s bucket
when writing a new hit.

5.4 GPU Sorting Performance

5.4.1 Setup

The performance of the custom merge sort implementation was evaluated against
CUB’s DeviceSegmentedSort [28]. Two variants of the CUB implementation were
tested: sorting key-value pairs and sorting keys only. For the pair sort, 8-byte keys
are constructed containing the channel (2 byte) and timestamp (4byte) with 2byte of
padding, while using the complete digis as values. The key-only variant requires mod-
ifying the digi format to store only channel, timestamp, and ADC value (8 byte total),
dropping the 17-bit sensor address that is included in the current definition.
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Figure 5.5: Synthetic benchmark to comparing GPU sorting algorithms on data
from the full STS setup.

The performancemeasurementswere conducted on twoGPUarchitectures: anNVIDIA
RTX 2080 Ti using CUDA 12.3 and an AMD MI50 using ROCm 6.0. For the AMD plat-
form, the hipCUB port [43] of CUB’s algorithms was utilized. The test dataset consists
of approximately 1.5 GB of synthetic STS digis, chosen to occupy the majority of the
RTX 2080 Ti’s available memory with sorting buffers.

Two configurations representing different scenarios were examined: the full STS de-
tector with 1792 segments (corresponding to module sides) and the mSTS test setup
with only 24 segments. In both cases the dataset was uniformly distributed among
these segments. This allows the evaluation of how the sorting approaches scale with
different levels of parallelism. The performance measurements focus solely on kernel
execution time. Each test configuration was run for 11 iterations, with the first iter-
ation discarded as a warmup run. The reported results represent the median, maxi-
mum and minimum execution time of the remaining 10 iterations.

While the key-value pair sorting can serve as a direct replacement for the custom im-
plementation, the key-only variant would require a bigger restructuring of the online
code due to the removal of the sensor address from the digi format. The memory
implications of these different approaches are discussed in detail in Section 5.4.4.

5.4.2 Full STS Sorting Benchmark

For the full STS detector configuration, Figure 5.5, the custommerge sort completes in
93.8ms on the RTX 2080 Ti and 78.6ms on theMI50, showing the fastest performance.
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Figure 5.6: Synthetic benchmark to compare sorting algorithm on data from
the mSTS setup.

In contrast, CUB’s key-value pair sorting proves to be the least efficient approach, re-
quiring approximately twice the execution time at 189.1ms on the RTX 2080 Ti and
173.1ms on the MI50. The key-only variant of CUB offers improved performance over
pair sorting but still remains 10% to 15% slower than the custom implementation,
taking 104.6ms and 126.0ms on the respective devices.

An interesting observation is comparing the performance across hardware platforms.
While the custom merge sort achieves better performance on the MI50 compared to
the RTX 2080 Ti, CUB’s key-only sort shows the opposite behavior, running approxi-
mately 20% slower on the AMD hardware. This suggests higher optimization of the
CUDA implementation compared to the HIP port.

5.4.3 mSTS Sorting Benchmark

The performance characteristics change dramatically when processing data from the
mSTS setup. As illustrated in Figure 5.6, in this scenario, the performance pattern
inverts completely. CUB’s key-only sorting emerges as the fastest option, completing
in 166.7ms on the RTX 2080 Ti, while the custom merge sort becomes the slowest at
276.6ms. This performance degradation is evenmore pronounced on theMI50, where
the merge sort requires 326.7ms.

The custommerge sort’s performance degrades by a factor of 3–4 on both devices com-
pared to the full STS configuration. This is not unexpected, as the 24module sides of the
mSTS occupy only about one-third of the available compute units on either device (68
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SMs on the RTX 2080 Ti and 60 CUs on the MI50). In contrast, the CUB variants main-
tain better performance by additionally parallelizing work within each partition.

5.4.4 Memory Usage

The memory requirements differ significantly between implementations. For n digis,
the custom merge sort operates with 2n memory usage, requiring only an input and
output buffer. Conversely, CUB’s key-value pair sorting demands 6n memory, allo-
cating space for two input buffers, two output buffers, and two temporary storage
buffers (for keys and values respectively). The key-only variant of CUB reduces this to
3n, needing only one buffer each for input, output, and temporary storage.

CUB’s implementation enforces strict separation between input, temporary, and out-
put buffers, prohibiting any overlap between these memory regions and preserving
the input buffer’s contents. On the other hand, the custommerge sort implementation
reduces memory usage by modifying the input buffer during sorting, as the original
order of the input data doesn’t have to be preserved in this case.

5.5 Hitfinder Performance

5.5.1 Setup

To evaluate the performance improvements of the GPU-accelerated hitfinder imple-
mentation, a simulated dataset representing conditions of the full STS detector was
used. The dataset consists of 1000 central Au+Au collisions, resulting in approximately
17.2 × 106 STS digis that produce 5.9 × 106 clusters and 4.8 × 106 reconstructed hits. The
total input size of the dataset is approximately 130MB.

Performance measurements were conducted on three different computing platforms.
For GPU execution, an AMDMI50 and an NVIDIA RTX 2080 Ti were used. CPU scaling
was evaluated on an Intel Xeon Gold 6130 running at 2.10GHz. The CPU system fea-
tures a dual-socket configuration with 16 cores per socket and two threads per core,
providing a total of 64 hardware threads.

All measurements were performed on Ubuntu 22.04 using the GCC 11 compiler for
host compilation. For GPU compilation and execution, CUDA 12.6 was used on the
NVIDIA platform while ROCm 6.0 was employed for the AMD hardware.

Each test configuration was run for 11 iterations, with the first iteration discarded as
a warmup run. The reported results represent the median execution time of the re-
maining 10 iterations or the breakdown of processing steps from that median run.
Runtime measurements include both the complete reconstruction chain and timings
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Figure 5.7: Performance comparison of the offline and online STS hitfinder.

of individual components to analyze the performance characteristics of different pro-
cessing stages in the following sections. To allow consistent comparison, all speedup
figures are calculated relative to the single-threaded execution time of the offline im-
plementation.

5.5.2 Total Runtime

The overall performance characteristics of the hitfinder implementations are shown
in Figure 5.7. For the offline implementation, the figure distinguishes between the
parallel reconstruction phase (light red) and sequential overhead phases (dark red).
These sequential phases comprise the initial distribution of digis to modules and the
final collection of clusters and hits into contiguous output arrays.

When examining single-threaded performance, the offline implementation requires
11.67 s total runtime, with 9.4 s spent in the parallel section and 2.3 s in sequential
overhead. The online implementation achieves better baseline performance at 5.48 s,
representing a 2.1x speedup before any parallelization is applied.

Both implementations demonstrate effective scaling as the thread count increases. The
parallel section of the offline version continues to scale up to 64 threads, showing
that the reconstruction algorithm itself parallelizes well. However, the overall perfor-
mance becomes increasingly dominated by the sequential overhead. This creates a

69



Chapter 5 GPU-Accelerated STS Reconstruction in CBM

Processing step Execution time
Off. CPU

(1t)
Off. CPU
(64t)

On. CPU
(1t)

On. CPU
(64t) GPU

Sorting 2.4 s 0.16 s 1.22 s 0.069 s 0.006 s
Clustering 5.3 s 0.28 s 2.48 s 0.074 s 0.011 s
Hit Finding 1.63 s 0.1 s 1.19 s 0.065 s 0.009 s
Digi Pre-Sorting 1.34 s 1.56 s 0.287 s 0.021 s 0.017 s
Hit Collection 0.985 s 0.807 s 0.150 s 0.015 s -
DMA Transfer - - - - 0.038 s

Table 5.1: Performance comparison of individual processing steps in the STS
reconstruction chain. GPU measurements use the AMD MI50 times
and show the accumulated kernel times for sorting, clustering and
hit finding substeps.

performance bottleneck that limits the maximum achievable speedup for the offline
implementation.

The online implementation addresses this limitation by parallelizing both the recon-
struction and the data movement phases. This approach maintains scaling across the
full range of tested thread counts, reaching 0.38 s at 64 threads for a 14.4x speedup
from its sequential baseline. It should be noted that the relatively modest improve-
ment when moving from 32 to 64 threads in both implementations is attributable
to the use of simultaneous multithreading (hyperthreading), where the additional 32
threads run on the same physical cores as the first 32 threads, sharing execution re-
sources.

GPU execution provides further substantial speedup. Both tested devices, the NVIDIA
RTX 2080 Ti and AMDMI50, achieve similar performance of around 0.095 s. This rep-
resents approximately a 122x speedup compared to sequential offline execution and is
4.0x faster than the best CPU performance of the online version. The consistent perfor-
mance across these different GPU architectures demonstrates the algorithm’s ability to
effectively utilize diverse hardware platforms.

5.5.3 Performance of Individual Processing Steps

Table 5.1 presents a breakdown of the execution time for individual processing stages
in the STS reconstruction chain across different hardware configurations. This gran-
ular view reveals where performance gains originate and identifies remaining bottle-
necks.

Examining the three core reconstruction steps (sorting, clustering, and hit finding),
significant speedups are evident even on CPU-only execution. Detailed performance
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scaling plots for these steps are provided in Appendix C.1. The online implementation
achieves approximately a 2x speedup for sorting (2.4 s to 1.22 s), 2.1x for clustering
(5.3 s to 2.48 s), and 1.4x for hit finding (1.63 s to 1.19 s) in single-threaded execution
compared to the offline version. These improvements stem from the optimized data
structures and algorithmic changes described in Section 5.3.1.

When comparing the best CPU performance (64 threads, online implementation) with
GPU execution, additional substantial speedups are observed: approximately 11.5x for
sorting, 6.7x for clustering, and 7.2x for hit finding. The clustering step benefits most
from GPU acceleration in absolute terms, with execution time reduced from 2.48 s to
just 0.011 s when comparing single-threaded CPU execution to GPU—a 225x improve-
ment.

The digi pre-sorting and hit collection steps show different characteristics from the
main reconstruction steps. In the offline implementation, these operations are not par-
allelized, explaining the minimal changes in runtime when increasing thread count.
Although it remains unclear why these steps would be affected by the thread count at
all and show a relatively large fluctuation in runtime.

The online implementation significantly improves the digi pre-sorting performance
through two main optimizations. First, a hash map was replaced with a direct lookup
table that uses the 17-bit address from digis to obtain the sensor index. Second, the
online version implements proper parallelization for this step. On GPU, the digi pre-
sorting benefits slightly from the fact that the pinned memory for digis is pre-faulted
before processing begins, whereas on CPU the memory is allocated per timeslice, po-
tentially causing page faults during execution that impact performance.

Hit collection in the offline version incurs significant overhead that scales poorly with
thread count. The online CPU implementation reduces this time by a factor of 65x
(from 0.985 s to 0.015 s) when comparing single-threaded to 64-threaded execution.
On GPU, hit collection is effectively merged with the DMA transfer operation, elimi-
nating it as a separate step.

The DMA transfer time (0.038 s) now constitutes more than one-third of the total GPU
execution time, making it the dominant factor in overall performance. Combinedwith
digi pre-sorting (0.017 s), these data movement operations account for approximately
half of the total GPU runtime.

This bottleneck suggests several future optimization opportunities. The DMA transfer
could potentially be overlapped with processing operations to hide latency. A more
significant improvement would involve moving the unpacking step to the GPU, elimi-
nating the need to transfer digis from host to device. This would be particularly bene-
ficial since digis increase the data volume by approximately a factor of two compared
to the raw timeslice data.

An architectural limitation in the current design relates to the dual use of digis. They
serve as input for both hit reconstruction and the multiplicity trigger. While hit recon-
struction requires digis to be sorted by sensor, the multiplicity trigger expects them to
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Figure 5.8: Performance comparison of the offline and online STS reconstruc-
tion on mCBM data.

be time-sorted. Resolving this conflict would require either maintaining two copies
of the data in different sort orders or adapting the multiplicity trigger to support a
different input format.

5.5.4 Performance on mCBM Data

While the GPU-accelerated hitfinder was primarily optimized for the full STS detector
configuration, its performance was also evaluated on real data from the mCBM exper-
iment. The test dataset consists of 20 timeslices from Run 2966 of the May 2024mCBM
beamtime, containing approximately 44.5 × 106 STS digis that produce 34.7 × 106 clus-
ters and 1.4 × 106 reconstructed hits5. The total input size of the dataset is approxi-
mately 340MB.

ThemCBM setup represents a drastically scaled-down version of the full detector, with
only 24 module sides compared to the 1792 in the full STS. This reduction creates a

5In comparison to the simulated dataset described in Section 5.5.1, the mCBM data contains more than
twice the number of digis but produces approximately four times fewer reconstructed hits. This in-
dicates that the real detector data likely contains significantly higher noise levels than accounted for
in simulation.
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challenging scenario for parallelization that was not specifically targeted during algo-
rithm development. Figure 5.8 shows the accumulated processing time over all times-
lices for both implementations.

In single-threaded execution, the offline implementation processes the dataset in 27.46 s,
while the optimized online version completes in 11.87 s. This 2.3x speedup derives
purely from the algorithmic improvements and data structure optimizations, match-
ing the improvement ratio observed with full STS data.

The scaling characteristics with increased thread count reveal limitations specific to
the mCBM configuration. The offline implementation’s performance plateaus around
16 threads at 13.88 s, constrained by the limited parallelism available with only 12
modules. Although the online implementation maintains somewhat better scaling
up to 32 threads, reaching 3.71 s, both versions demonstrate substantially worse scal-
ing than observed with full STS data due to the inherently limited parallelism in the
smaller detector configuration.

GPU acceleration still provides significant benefits, with processing times of 0.710 s on
the RTX 2080 Ti and 0.651 s on the MI50. However, the speedup of approximately 40x
over single-threaded CPU execution falls considerably short of the 128x improvement
achieved with full STS data. This reduced relative gain stems primarily from the sort-
ing stage limitations, where the 24 module sides occupy only about one-third of the
GPU’s compute units. The clustering and hit finding stages maintain better relative
performance as they can parallelize work at finer granularity regardless of module
count.

These results highlight how the optimizations, while not specifically targeted at small
detector configurations like mCBM, still provide substantial performance improve-
ments even in suboptimal parallelization scenarios. A more detailed breakdown of
processing time for individual stages on mCBM data is provided in Appendix C.2.

5.6 Deployment and Evaluation in Production Environment

The preceding sections described the development and optimization of GPU-acceler-
ated algorithms for STS reconstruction, demonstrating performance improvements in
a controlled environment. To validate these results under real-world conditions, a
complete production environment was established for deployment and testing. This
section examines the transition from algorithm development to practical deployment,
focusing on three key aspects: the container-based deployment strategy, systematic
evaluation through controlled data challenges, and performance in an actual beam
experiment. The integration of the optimized reconstruction chain into the broader
CBM online software framework proved essential for reliable operation under exper-
imental conditions, where factors such as variable data rates, system stability, and
integration with other detector systems introduce additional complexity beyond pure
algorithmic performance.
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5.6.1 Container Building and Deployment

The deployment of the online processing software uses a container-based approach,
providing necessary isolation of dependencies and simplifying the deployment pro-
cess. This containerization strategy was especially crucial as bare metal access to the
Virgo cluster, administered by the GSI IT department, processing nodes was not avail-
able, making containers a requirement rather than an optional design choice.

The container building process for the CBM online software follows a three-stage ap-
proach illustrated in Figure 5.9. The first stage creates two base containers that contain
all dependencies: a development container containing build tools and all dependen-
cies, and a minimal runtime container with only the required runtime libraries. This
runtime container has a size of only about 160MiB while the development container
currently has a size of 2.6GiB.

The base containers are maintained in a separate continuous integration pipeline that
triggers rebuilds when dependency versions change. Additionally, container images
are rebuild once per week automatically to ensure that operating system packages
remain up-to-date with security patches and bug fixes, independent of dependency
updates. By maintaining separate base containers, dependency updates like operat-
ing system versions, ROCm [7] or FairSoft [35] can be managed independently of the
application code. When a dependency requires updating, only the relevant base con-
tainer needs rebuilding, after which application containers automatically inherit the
changes in subsequent builds.

The actual build process compiles the code within the development container. The re-
sulting binaries and required runtime files are then copied into a new container based
on the minimal runtime image. This multi-stage build process is automated through
continuous integration using Kaniko [45]. The automation enables fast turnaround
times - from code changes being pushed to a deployable container being available
typically takes less than 10minutes.

5.6.2 Data Challenges

The performance of the online reconstruction chain was evaluated using archived
data from two mCBM benchmark runs (2391 and 2488) from the 2022 data taking
campaign. To emulate the data flow of the actual experiment, a distributed system
consisting of replay nodes and processing nodes was established, as illustrated in Fig-
ure 5.10.

In preparation for synthetic runs, dubbed ”Data Challenges”, the timeslice files from
the benchmark runs were first merged and then split into 80 separate streams, en-
abling controlled testing at both original and accelerated data rates. Additionally, four
replay nodes were configured to continuously stream timeslice data to the processing
infrastructure.
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Figure 5.9: Flow chart of the container building process for CBM online soft-
ware. Base images (OS and tooling) are periodically mirrored,
from which the development and runtime images are built. Code
changes trigger compilation using these images and deployment to
the container registry deployment.
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Figure 5.11: Number of digis per timeslice for every subsystem found dur-
ing DC 4. Additionally the number of digis selected into events
is shown.

The processing infrastructure consisted of 10 nodes from the Virgo computing cluster.
Each processing node was configured to run 8 reconstruction processes in parallel,
with jobs managed through the Slurm workload manager. The reconstruction soft-
ware was deployed using the previously mentioned online containers.

Timeslices were streamed from the replay nodes to the processing nodes, where a
TS Receiver process wrote the incoming data to shared memory. The reconstruction
processes on each node read their input from this shared memory buffer, processed
the data, and wrote the reconstruction results to Lustre mass storage.

A monitoring infrastructure was implemented to track system performance and data
quality. The monitoring system consisted of three main components: Prometheus for
systemmetrics collection, InfluxDB to store application level metrics, and Grafana [24]
for visualization. Three categories of metrics were collected: system metrics tracking
hardware utilization via the Prometheus node exporter 6, monitoring metrics captur-
ing processing rates and performance7, and physics histograms for quality assurance.
A ROOT QA server was deployed to enable live inspection of the physics histograms.

This setup enabled systematic testing of the online reconstruction chain, starting with
processing at the original data rate and gradually increasing to higher rates. The sys-
tem’s performance could be tested up to approximately 8 times the original data rate.

5.6.3 Results

The container-based deployment strategy anddistributed testing environment described
in the previous section enabled systematic evaluation of the CBM online chain, includ-

6The node exporter was provided by the GSI IT department and was running separately from the other
components of the data challenge.

7Besides processing times for each timeframe, this includes for example values like the number of digis
per subsystem per timeframe or the number of reconstructed tracks.
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Figure 5.12: Performance metrics for STS reconstruction during a data chal-
lenge. The top panel shows processing time per timeslice, the
middle panel displays processing throughput, and the bottom
panel illustrates reconstruction quality through counts of STS
clusters and hits. The transition from CPU to GPU processing
at 15:30 demonstrates the significant performance improvement
achieved by GPU acceleration.
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ing the GPU-accelerated STS reconstruction, under conditions closely resembling the
production environment. Through a series of progressively more complex data chal-
lenges, the system’s performance, stability, and integrationwith other detector subsys-
tems were assessed. This section presents the key findings from these tests, focusing
particularly on processing throughput, resource utilization, and reconstruction qual-
ity.

Figure 5.11 shows the number of digis processed per timeslice during the fourth data
challenge, demonstrating stable system operation over more than an hour. The STS
detector contributed the largest data volumewith approximately 20M digis per times-
lice, while other detectors showed consistent rates in the range of 2M to 5M digis. The
significant reduction between total digis and digis selected into events, visible in the
difference between solid and dashed lines, demonstrates the effectiveness of the event
selection process.

The processing infrastructure successfully handled the distributed workload, with 80
parallel reconstruction processes spread across 10 nodes (8 processes per node). Real-
timemonitoring through the Grafana interface confirmed stable operation throughout
the test period. The system not only processed data at the original recording rate but
demonstrated scalability up to 8 times acceleration, validating its capability to handle
higher data rates than currently required.

GPU acceleration was tested separately on a smaller number of nodes with MI100
GPUs. As illustrated in Figure 5.12, the transition from CPU to GPU processing at ap-
proximately 15:30 resulted in a dramatic reduction in processing time. While CPU
processing exhibited considerable variability with times ranging from 0.5 s to 3.5 s per
timeslice, the GPU-accelerated version consistently achieved processing times of ap-
proximately 0.12 s per timeslice. This up to 96% reduction in execution time directly
corresponds to the substantial improvement in processing throughput visible in the
middle panel, where rates increased from less than 100MB/s to over 600MB/s inmany
cases.

The bottompanel shows that this performance improvementwas achievedwhilemain-
taining reconstruction quality, as evidenced by the consistent relationship between
the number of clusters and reconstructed hits across both processing modes. The re-
construction successfully identified between 15-–20 million clusters and 5-–10 million
hits regardless of the processing architecture. The gap visible at approximately 15:50
represents the transition between the two benchmark data runs used in the data chal-
lenges.

Through these data challenges, the online reconstruction chain demonstrated stable
operation over extended periods, successful integration of multiple detector systems,
and efficient utilization of both CPU and GPU resources. The ability to process data at
accelerated rates provides confidence in the system’s readiness for deployment.
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Figure 5.13: The produced datarates at mCBM beamtime.

5.6.4 May 2024 mCBM Beamtime

The developments of the online software system and experience from data challenges
culminated in its first production deployment during the May 2024 mCBM beamtime.
For four days, the online reconstruction ran continuously in parallel to recording of
raw timeslices to disk. This ensured unprocessed data was still available for later of-
fline analysis while marking the first demonstration of online processing capabilities
in CBM.

The deployment required several technical adaptations. The unpacker implementa-
tions needed updates to handle changes in the firmware data format implemented
since the 2022 benchmark runs. Additionally, the system had to be integrated with
an updated readout setup and detector geometry. Over the duration of the beamtime
new detector calibrations became available that had to be updated as well.

The system demonstrated robust performance processing continuous data streams.
As shown in Figure 5.13, the average data rate reached approximately 800MB/s, with
peaks up to 2.4GB/s. The STS detector contributed the largest portion at an average of
310MB/s, reaching peaks of 900MB/s. The periodic structure visible in the data rates
reflects the spill pattern of the SIS18 synchrotron extraction.

Figure 5.14 shows the reconstruction performance for STS data over a three-hour pe-
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Figure 5.14:Monitoring data of the STS reconstruction from the mCBM beam-
time showing the number of reconstructed clusters and hits per
timeslice.

Figure 5.15:Monitoring data of the track reconstrcution from the mCBM
beamtime showing the number of reconstructed tracks and hits
attached to tracks per timeslice. The shown data is from the same
time period as Figure 5.14.
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riod. The system consistently processed between 3 and 4 million hits per timeframe,
derived from 15–20 million clusters. The periodic structure visible in both figures
reflects the spill pattern of the SIS18 synchrotron extraction, with intervals of high
activity followed by pauses where minimal data was recorded. During these pauses
these some clusters are still found in the recorded noise, but only a negligle number of
hits and tracks are created. These reconstructed hits provided the foundation for track
finding, with Figure 5.15 demonstrating stable track reconstruction over the same time
period. During active spills, approximately 1.5 × 106 hits per timeframe contributed
to the reconstruction of around 500 × 103 tracks, maintaining consistent track yields
throughout the beam delivery cycles.

The successful deployment during the May 2024 mCBM beamtime demonstrated that
the reconstruction chain could operate effectively under real-world conditions, pro-
cessing data fromactual detectors rather than idealized simulations. The systemmain-
tained stable performance despite varying beamconditions, including fluctuating data
rates corresponding to the SIS18 extraction cycle, detector noise, and evolving cali-
bration parameters. This operational validation provided crucial evidence that the
reconstruction algorithms are robust enough to handle the unpredictable aspects of
experimental data taking, including hardware imperfections and beam instabilities
that cannot be fully captured in simulations. The continuous operation over four days
further confirmed the system’s reliability for extended production runs, establishing a
solid foundation for the future CBM experiment’s online processing infrastructure.
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Chapter 6

Conclusion
This dissertation presents several contributions toGPU computing in high-energy phys-
ics experiments, focusing on three main areas.

For the ALICE experiment, several components of the TPC reconstruction chain were
optimized for GPU processing. This includes zero-suppression decoders for two for-
mats, which use warp-level ballot operations for parallel scan replacing multiple reg-
ister shuffles with a single instruction. The track merger was parallelized using graph
connected components to identify independent sets, enabling a 30x speedup without
requiring synchronization or locks. Cluster gathering to host memory at the end of
the processing chain was improved by using shared memory buffering and coalesced
128-byte DMA transfers. This kernel is about three orders of magnitude faster than
performing naive device-to-host transfers. The presented software pieces have been
successfully deployed in the ALICE online processing since the start of the LHC Run 3
in 2022.

The second contribution introduced xpu, a lightweight C++ library for portable GPU
programming that enables writing code for CUDA, HIP, and SYCL backends without
sacrificing performance. Compared to similar libraries, xpu supports using vendor-
optimized compilers for each backend simultaneously through a custom symbol reso-
lution system that handles C++ namemangling across different compilers. The library
provides buffer classes for RAII-based memory management while maintaining ex-
plicit control over allocations, and includes a built-in profiling API for measuring ker-
nel execution and DMA transfer times. Through separate compilation of device code
and dynamic backend selection, xpu achieves performance within 0.2% of native im-
plementations. Tests of the STS unpacker showed Intel oneAPI being 35-50% slower,
while AdaptiveCpp matched xpu’s performance on NVIDIA hardware but was 47%
slower on AMD GPUs.

Finally, for the CBM experiment, a complete GPU-accelerated reconstruction chain for
the Silicon Tracking System was developed. The implementation achieved a 122x
speedup compared to the existing CPU-based reconstruction through several key opti-
mizations. A custom merge sort implementation outperforms both NVIDIA’s CUB and
AMD’s hipCUB libraries by 10% on NVIDIA hardware and up to 38% on AMD GPUs
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when processing the full detector configuration. Cluster finding was parallelized us-
ing atomic operations on 32bit values that encode both cluster membership and pre-
decessor flags, enabling lock-free updates when thousands of threads process digis
simultaneously. Even before GPU acceleration, the optimized data structures and al-
gorithms developed for the port provided over a 2x speedup in single-threaded CPU
execution. The online reconstruction chain was successfully deployed in production
at the May 2024 mCBM beamtime, processing data rates up to 2.4GB/s in real-time
over the duration of four days.

Several ongoing development efforts are building on these contributions. In CBM,
work continues to extend GPU processing capabilities ahead of the planned 2028 data
taking. A prototype GPU implementation of the STS unpacker has been developed by
S. Heinemann [42], while G. Kozlov is working on a port of the track reconstruction to
GPUs [46]. Both implementations use the xpu library. Additionally, the MUCH group
is investigating a GPU implementation of their hitfinder [62]. Integration of the online
processing with CBM’s simulation framework remains an important goal. This will
enable validation with Monte Carlo data and testing of the full detector configuration
before hardware deployment. Development of raw data simulation capabilities will
furthermore allow synthetic data runs as a critical step towards processing live data.

Development in ALICE also focuses on expanding the scope of GPU processing. Work
is underway to extend the current TPC tracking to full barrel tracking [56], moving to-
ward complete global track reconstruction on GPUs. Additionally, research by C. Sonn-
abend intomachine learning approaches for TPC clustering is ongoing [63]. This could
replace the current TPC clusterizer, touched upon in Chapter 3, providing a higher
level of noise suppression and furthermore predict particle momentum to aid in track-
ing, which is not possible with the current clusterizer.

While the xpu library provides the core functionality for accelerator programming, it
offers several directions for enhancement. Support for more advanced features like
CUDA graphs would enable more sophisticated execution patterns. Emulation of GPU-
blocks on the CPU-side via coroutines could allow for easier debugging of device code
and elimination of special cases, similar to hipCPU [72]. Integration of vectorization
support through std::simd [26] on CPUs and corresponding block- or warp-wide
operations on GPUs would further close the gap for efficient code between CPU archi-
tectures and GPUs.

These software developments occur against a backdrop of evolving hardware capabil-
ities. Modern CPU architectures, particularly with AVX-512 vector instructions, could
present a viable alternative to GPU processing for certain workloads. The emergence
of cost-effectiveARM-based processors adds another dimension to hardware choices.

As experiments evolve and data rates increase, efficient processing becomes evermore
critical. The achievements in both ALICE and CBM demonstrate that careful algorith-
mic optimization combined with GPU acceleration can yield order-of-magnitude per-
formance improvements. The real-time processing capabilities demonstrated through

84



production deployments in both experiments not only validate this approach but es-
tablish a foundation formeeting future computational demands in high-energy physics
experiments.
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Appendix A

xpu Examples

A.1 Vector Add

This section presents a complete example program demonstrating vector addition us-
ing xpu. The example shows how to:

• Define and implement a GPU kernel

• Manage device memory allocation and transfers

• Launch kernels and synchronize execution

• Set up a CMake build for multiple GPU backends

First, let’s look at the kernel declaration in vector_add.h:
1 #pragma once
2 #include <xpu/device.h>
3

4 // Dummy type to identify the device library
5 struct DeviceLib {};
6

7 struct VectorAdd : xpu::kernel<DeviceLib> {
8 using block_size = xpu::block_size<256>; // Set block size to 256 threads
9 using context = xpu::kernel_context<>; // Shorthand for context type

10

11 XPU_D void operator()(
12 context& ctx,
13 xpu::buffer<const float> a,
14 xpu::buffer<const float> b,
15 xpu::buffer<float> c,
16 size_t N);
17 };
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The kernel is implemented as a callable object inheriting from xpu::kernel. We
specify a block size of 256 threads through the block_size type. The kernel takes
three buffers as input: two for the source vectors (a and b) and one for the output
vector (c). The size parameter N specifies the length of the vectors.

The implementation in vector_add.cpp:

1 #include "vector_add.h"
2

3 XPU_IMAGE(DeviceLib);
4 XPU_EXPORT(VectorAdd);
5

6 XPU_D void VectorAdd::operator()(
7 context& ctx,
8 xpu::buffer<const float> a,
9 xpu::buffer<const float> b,

10 xpu::buffer<float> c,
11 size_t N)
12 {
13 // Calculate global thread index
14 int idx = ctx.block_idx_x() * ctx.block_dim_x() + ctx.thread_idx_x();
15 if (idx >= N) return;
16

17 // Perform vector addition
18 c[idx] = a[idx] + b[idx];
19 }

Each thread computes its global index using the block and thread indices from the
context. If the index exceeds the vector size, the thread returns early. Otherwise, it
performs the addition for its assigned element.
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A.1 Vector Add

The host code in main.cpp demonstrates memory management and kernel execu-
tion:

1 #include "vector_add.h"
2 #include <xpu/host.h>
3 #include <iostream>
4

5 int main() {
6 xpu::initialize(); // Initialize xpu runtime
7

8 constexpr size_t N = 1'000'000; // Problem size
9

10 // Allocate input/output buffers
11 xpu::buffer<float> a{N, xpu::buf_io};
12 xpu::buffer<float> b{N, xpu::buf_io};
13 xpu::buffer<float> c{N, xpu::buf_io};
14

15 // Initialize input data
16 xpu::h_view<float> ah{a}, bh{b};
17 for (size_t i = 0; i < N; i++) {
18 ah[i] = static_cast<float>(i);
19 bh[i] = static_cast<float>(i * 2);
20 }
21

22 xpu::queue queue; // Create command queue and execute kernel
23

24 queue.copy(a, xpu::h2d); // Copy input data to device
25 queue.copy(b, xpu::h2d);
26

27 // Launch kernel with N threads total
28 queue.launch<VectorAdd>(xpu::n_threads(N), a, b, c, N);
29

30 queue.copy(c, xpu::d2h); // Copy results back to host
31

32 queue.wait(); // Wait for all operations to complete
33

34 // Verify results
35 bool success = true;
36 xpu::h_view<float> ch{c};
37 for (size_t i = 0; i < N; i++) {
38 float expected = i + (i * 2);
39 success &= (ch[i] == expected);
40 }
41

42 std::cout << (success ? "Success!" : "Failed!") << std::endl;
43 return success ? 0 : 1;
44 }
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Finally, this is the CMake configuration to build the example with support for multiple
GPU backends:

1 cmake_minimum_required(VERSION 3.11)
2 project(xpu-vector-add)
3

4 # Enable desired backends
5 option(XPU_ENABLE_CUDA "Enable CUDA backend" ON)
6 option(XPU_ENABLE_HIP "Enable HIP backend" ON)
7 option(XPU_ENABLE_SYCL "Enable SYCL backend" OFF)
8

9 # Add xpu as a subdirectory or using FetchContent
10 include(FetchContent)
11 FetchContent_Declare(xpu
12 GIT_REPOSITORY https://github.com/fweig/xpu
13 GIT_TAG master
14 )
15 FetchContent_MakeAvailable(xpu)
16

17 # Create executable
18 add_executable(vector_add main.cpp vector_add.cpp)
19 target_link_libraries(vector_add PRIVATE xpu)
20

21 # Compile device code for enabled backends
22 xpu_attach(vector_add vector_add.cpp)

To build and run the example on the first available CUDA GPU:

1 cmake -S . -B build
2 cd build
3 make
4 XPU_DEVICE=cuda0 ./vector_add
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Appendix B

ALICE Zero Suppression Decoding
CPU Performance

B.1 Without Thread Pinning

Figure B.1 and Figure B.2 show the performance of the row-based and link-based de-
coder without thread affinity. This is analog to Figure 3.6 in Section 3.4.3 where the
performance of the dense-link based decoder is discussed.

Figures B.3, B.4 and B.5 show the performance for all three decoding algorithms with
the AMD EPYC 7552 CPU.
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Figure B.1: CPU - ZS Row based. (without thread affinity)
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Figure B.2: CPU - ZS Link based. (without thread affinity)

93



Appendix B ALICE Zero Suppression Decoding CPU Performance

1 2 4 8 16 32 72 96 108 192 216
Threads

0

10000

20000

30000

40000

Ru
nt

im
e 

[m
s]

0

20

40

60

80

Sp
ee

du
p

1.0 2.0 4.0
7.1

11.8
17.3

43.0

22.1

50.3

26.6

92.1

Figure B.3: CPU - ZS Row based. (without thread affinity)
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Figure B.5: CPU - ZS Row based. (without thread affinity)
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Figure B.6: CPU - ZS Row based. (with socket pinning)

B.2 With Socket Pinning

Figure B.6 and Figure B.7 show the performance of the row-based and link-based de-
coder without thread affinity. This is analog to Figure 3.7 in Section 3.4.3.

Futhermore Figure B.8, Figure B.9 and Figure B.10 show the performance of the row-
based, the link-based decoder and the dense-link-based decoder with socket pinning
on the AMD EPYC 7552 CPU used in MI100 nodes.
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Figure B.7: CPU - ZS Link based. (with socket pinning)

98



B.2 With Socket Pinning

1 2 4 8 16 32 72 96 108 192 216
Threads

0

10000

20000

30000

40000

Ru
nt

im
e 

[m
s]

0

20

40

60

80

100

Sp
ee

du
p

1.0 1.7 3.4
6.8

13.4
19.5

49.9 52.1

68.4 66.9

95.5
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Figure B.9: CPU - ZS Link based on EPYC 7552. (with socket pinning)
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Figure B.10: CPU - ZS Link based on EPYC 7552. (with socket pinning)
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Figure B.11: CPU - ZS Row based. (with per die pinning)

B.3 With Die Pinning

Figure B.11, Figure B.12 and Figure B.13 show the performance of the row-based, the
link-based decoder and the dense-link-based decoder when pinning threads to indi-
vidual dies of the EPYC 7452. Each die contains four physical cores and a L3 cache
shared by the four cores [66]. This approach improves performance in general for
lower thread counts, but slows down execution when the entire CPU is occupied.

Futhermore Figure B.14, Figure B.14 and Figure B.16 show the performance of the
row-based, the link-based decoder and the dense-link-based decoder with die pinning
on the AMD EPYC 7552 CPU used in MI100 nodes.
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Figure B.13: CPU - ZS Dense link based. (with per die pinning)
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Figure B.15: CPU - Link Based ZS on EPYC 7552. (with per die pinning)
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Figure B.16: CPU - Dense Link Based ZS on EPYC 7552. (with per die pinning)
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Appendix C

STS Hitfinder Substeps
Performance

C.1 Performance on CBM Data
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Figure C.1: Performance comparison of the offline and online STS sorting
stages.
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Figure C.2: Performance comparison of the offline and online STS clustering.
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Figure C.3: Performance comparison of the offline and online STS hit creation.
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C.2 Performance on mCBM Data
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Figure C.4: Performance comparison of the offline and online STS sorting on
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Figure C.5: Performance comparison of the offline and online STS cluster find-
ing stage on mCBM data.

1 2 4 8 16 32 64 2080Ti MI50
0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e 
[s

] (
Ba

rs
)

CPU Threads GPU Devices

0

25

50

75

100

125

150

175

200

Sp
ee

du
p 

(L
in

es
)

Offline
Online

2.65

2.19

1.84
1.67

1.50 1.49
1.60

2.02

1.33

1.16

0.84
0.70 0.68 0.73

0.014 0.015
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Zusammenfassung

Einleitung

ModerneHochenergiephysik-Experimente erzeugenDatenmengen in bisher ungekan-
ntem Ausmaß, was effiziente Verarbeitungslösungen in Echtzeit erfordert. Das ALICE-
Experiment am CERN und das geplante CBM-Experiment an der FAIR-Anlage stehen
vor der Herausforderung, Datenströme von mehr als 1 TB/s zu verarbeiten. Diese Dis-
sertation befasst sich mit der Entwicklung und Implementierung von GPU-beschleu-
nigten Algorithmen für eine Echtzeitverarbeitung solcher Datenmengen.

ImALICE-Experimentwurde für Run 3 ein kontinuierliches Auslesemodell eingeführt,
bei dem Daten von Schwerionenkollisionenmit bis zu 50 kHz ohne Hardware-Trigger
verarbeitet werden. Das CBM-Experiment plant einen ähnlichen triggerfreien Ansatz
mit Kollisionsraten bis zu 10MHz, was eine effiziente Softwaretriggerung und Echt-
zeitrekonstruktion erfordert.

In dieser Arbeit wurden drei Hauptbeiträge geleistet. Für das ALICE-Experiment wur-
den mehrere Komponenten der TPC-Rekonstruktionskette optimiert, darunter Zero-
Suppression-Dekodierung, eine parallelisierte Track-Merger-Implementation und ein
effizientes Cluster-Gathering. Diese Optimierungen ermöglichen dem O2 Framework
die Echtzeitrekonstruktion bei den erforderlichen hohen Kollisionsraten.

Als zweiter Beitrag wurde xpu entwickelt, eine schlanke C++-Bibliothek für portable
GPU-Programmierung über CUDA-, HIP- und SYCL-Backends. Durch separate Kom-
pilierung von Device-Code und dynamische Backend-Auswahl erreicht xpu nahezu
native Leistung auf verschiedenen Architekturen bei vernachlässigbarem Overhead,
ohne Kompromisse bei der Vorhersagbarkeit einzugehen.

Drittens wurde eine vollständige GPU-basierte Rekonstruktionskette für das Silicon
Tracking System des CBM-Experiments entwickelt. Die Implementierung erreicht eine
122-fache Beschleunigung gegenüber dem bisherigen CPU-Code durch parallele Al-
gorithmen für Cluster-Finding, Hit-Rekonstruktion und einen optimierten Merge-Sort.
Bei dermCBM-Strahlzeit imMai 2024 verarbeitete das Systemzuverlässig bis zu 2.4GB/s
und demonstrierte damit die Machbarkeit der Hochraten-Datenverarbeitung für den
zukünftigen CBM-Betrieb.
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Optimierung der TPC-Rekonstruktion in ALICE

Das ALICE Experiment

Das ALICE-Experiment (A Large Ion Collider Experiment) ist eines der vier Hauptex-
perimente am Large Hadron Collider (LHC) des CERN. Im Gegensatz zu den anderen
LHC-Experimenten wurde ALICE speziell für die Untersuchung von Schwerionenkol-
lisionen konzipiert. Das Hauptziel besteht darin, die Eigenschaften des Quark-Gluon-
Plasmas zu erforschen, eines Materiezustands, der Mikrosekunden nach dem Urknall
existierte und in dem sich Quarks und Gluonen frei bewegten, bevor sie sich zuHadro-
nen zusammenschlossen.

Mit dem Beginn von LHC Run 3 im Jahr 2022 wurde ALICE grundlegend aufgerüstet,
um Kollisionsraten von bis zu 50 kHz bei Blei-Blei-Kollisionen zu bewältigen. Ein zen-
traler Bestandteil dieses Upgrades war die Einführung einer kontinuierlichen Auslese
anstelle des bisherigen triggerbasierten Systems. Dies führt zu Datenraten von mehr
als 1 TB/s, die in Echtzeit verarbeitet werden müssen. Zur Bewältigung dieser enor-
men Datenmengen wurde ein neues Rechencluster, die Event Processing Node (EPN)
Farm, mit 2800 GPUs installiert.

Der TPC Detektor

Die TimeProjection Chamber (TPC) ist der zentrale Spurdetektor des ALICE-Experiments.
Es handelt sich um eine große zylindrische Kammer mit einer Länge von 5m und
einem Durchmesser von 5m, die mit einem Gasgemisch gefüllt ist. Wenn geladene
Teilchen die TPC durchqueren, ionisieren sie das Gas entlang ihrer Bahn und erzeugen
Elektronenspuren, die unter demEinfluss eines elektrischen Feldes zu den Endkappen
driften. An den Endkappen werden diese Signale verstärkt und detektiert, wodurch
die Teilchenbahnen im dreidimensionalen Raum mit hoher Präzision rekonstruiert
werden können.

Die rekonstruierten Spuren aus der TPC liefernwichtige Informationen zur Teilcheniden-
tifikationund Impulsbestimmung,was sie zu einemwesentlichenBestandteil der ALICE-
Datenanalyse macht. Die Verarbeitung der TPC-Daten stellt jedoch die größte Heraus-
forderung für das Rekonstruktionssystem dar und beansprucht etwa 90% der verfüg-
baren GPU-Rechenleistung während der Datennahme.

Zero-Suppression-Dekodierung

Die TPC-Daten werden mittels Zero-Suppression-Kodierung übertragen, um die er-
forderliche Bandbreite zu reduzieren. Bei diesem Format werden nur Kanäle gespe-
ichert, die Ladungsablagerungen über einem Schwellenwert registriert haben, organ-
isiert in 8 kB großen Seiten. Die effiziente Dekodierung dieser Daten auf GPUs stellt
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Abbildung 1: Laufzeitvergleich der verschiedenen Zero-Suppression-Formate
auf der MI50-GPU, der MI100-GPU und der CPU. Die vertikalen
Balken zeigen die Gesamtzeit für die Dekodierung des gesamten
Timeframes, während die roten Markierungen die durchschnit-
tliche Zeit pro Seite darstellen. Trotz höherer Verarbeitungszeit
pro Seite erreicht das komprimierte Dense-Link-Format die beste
Gesamtleistung auf GPUs.
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mehrereHerausforderungendar, insbesondere hinsichtlich der Speicherzugriffsmuster
und der parallelen Verarbeitung.

Im Laufe der Zeit hat sich das TPC-Zero-Suppression-Format weiterentwickelt, um
die steigenden Datenraten in Run 3 besser bewältigen zu können. Das ursprüngliche
zeilenbasierte Format wurde 2022 durch eine linkbasierte Version ersetzt, die später
zum dichteren linkbasierten Format verfeinert wurde, um bessere Kompressionsrat-
en für Hochintensitäts-Blei-Blei-Kollisionen zu erreichen.

Die GPU-Implementierung des Dekoders nutzt eine zweistufige Parallelisierung: auf
Seitenebene durch Blockzuweisung und innerhalb jeder Seite auf Kanalebene durch
Thread-Zuweisung. Der Dekoder führt zunächst einen parallelen Scan über die Kanal-
bitmaske durch, um die Ausgabepositionen für die Daten jedes Kanals zu bestimmen.
Diese Scan-Operation wird unter Verwendung von Warp-Level-Primitiven effizient
implementiert, um den Synchronisationsaufwand zu minimieren.

Wie in Abbildung 1 dargestellt, zeigen die verschiedenen Formate unterschiedliche
Leistungscharakteristika auf GPUs und CPUs. Das dichter kodierte Format erfordert
weniger Speicherbandbreite und erzielt damit trotz höherer Verarbeitungszeit pro
Seite die beste Gesamtleistung auf GPUs. Interessanterweise ist das dichter kodierte
Format auf der CPU am langsamsten, aber auf GPUs am schnellsten, was die Unter-
schiede in den Optimierungszielen und Architekturmerkmalen zwischen CPU- und
GPU-Verarbeitung verdeutlicht.

Parallelisierung des Track-Mergers

Der Track-Merger-Kernel kombiniert Spurabschnitte zu vollständigen Spurenbasierend
auf einer Liste von Verbindungen. In der ursprünglichen sequentiellen Implemen-
tierung war dieser Prozess ein Engpass, der die Gesamtleistung der Rekonstruktions-
kette beeinträchtigte. Eine direkte Parallelisierung wäre aufgrund der potenziellen
Konflikte beim gleichzeitigen Schreiben in dieselben Spurabschnitte schwierig und
würde komplexe Synchronisationsmechanismen erfordern.

Statt zu versuchen, den Track-Merge-Prozess selbst zu parallelisieren, wurde ein alter-
nativer Ansatz gewählt, der unabhängige Mengen von Spurabschnitten identifiziert.
Zwischen diesenMengen sind keine Kollisionenmöglich, sodass sie parallel verarbeit-
et werden können. Spurabschnitte und Verbindungen können als Knoten und Kanten
eines Graphen interpretiert werden. Die zusammenhängenden Komponenten dieses
Graphen bilden die unabhängigen Mengen, die gesucht werden.

Zur Identifizierung dieser zusammenhängenden Komponenten wurde ein effizienter
GPU-Algorithmus implementiert. Jeder GPU-Block verarbeitet dann separate zusam-
menhängendeKomponenten, umSpurabschnitte zu vollständigen Spuren zu verschmel-
zen. Dieser Ansatz vermeidet die Notwendigkeit von Sperren oder komplexen Konflik-
tlösungsstrategien.
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Die Leistungsverbesserung dieser parallelen Implementierung ist bemerkenswert. Auf
der AMD MI50 GPU wurde eine Beschleunigung um das 30-fache erreicht, wobei die
Ausführungszeit von 6739ms auf 204.9ms reduziertwurde. Auf der leistungsfähigeren
MI100GPUwurde sogar eine 47-facheBeschleunigung erzielt, von 7607ms auf 159ms.

Cluster-Gathering-Optimierungen

Nach der Spurrekonstruktion müssen die TPC-Cluster vom GPU-Speicher zurück in
denHost-Speicher kopiertwerden. Die Cluster sind in einemStructure-of-Arrays (SoA)-
Format gespeichert und im Speicher entsprechend ihrer Spurzuordnung verstreut.
Ein naiver Ansatz zumKopieren dieser ClusterwürdeMillionen von kleinen Speicher-
transferoperationen erfordern, was äußerst ineffizient wäre.

Es wurden mehrere Strategien implementiert, um diese Datenbewegung effizient zu
gestalten. Der ursprüngliche Ansatz nutzte Direct Memory Access (DMA), um direkt
in gepinnten Host-Speicher zu schreiben. Um die Auswirkungen auf die gleichzeitige
Verarbeitung zuminimieren, verwendet dieser Kernel nur 1-2 Blöcke, die jeweils eine
einzelne Compute-Einheit belegen, wodurch der Datentransfer im Hintergrund aus-
geführt werden kann, während der nächste Timeframes verarbeitet wird.

Eine verbesserte Version führt Shared-Memory-Pufferung ein, um Speichertransaktio-
nen zu optimieren. Der Kernel sammelt zunächst Cluster in Shared-Memory-Puffern.
Sobald ein Puffer voll ist, wird er in einer einzigen Operation mit Schreibvorgän-
gen von 128B in den Host-Speicher geschrieben. Diese Pufferungsstrategie hilft, Spe-
icherschreibvorgänge zusammenzufassen und reduziert die Gesamtzahl der DMA-
Operationen.

Die aktuelle Implementierung, der multiBlock-Kernel, nutzt die gesamte GPU. Anstatt
direkt in den Host-Speicher zu schreiben, komprimiert dieser Kernel zunächst die ver-
streuten Cluster-Daten in zusammenhängenden Gerätespeicher. Die Arbeit wird zwis-
chen Cluster-Typen aufgeteilt: angehängte Cluster (die zu Spuren gehören) und nicht
angehängte Cluster. Blöckemit ungerader Nummer bearbeiten nicht angehängte Clus-
ter, während Blöcke mit gerader Nummer angehängte Cluster verarbeiten, was eine
bessere Lastverteilung ermöglicht.

Durch dieseOptimierungenwurde eine dramatische Leistungssteigerung erreicht. Der
naive Ansatz benötigte etwa 200 s pro Timeframe,während der optimiertemultiBlock-
Kernel die gleiche Aufgabe in nur etwa 220ms erledigt - eine Beschleunigung um
das 1000-fache. Diese Verbesserung ist für die Echtzeitverarbeitung der TPC-Daten in
ALICE entscheidend und ermöglicht es dem Rekonstruktionssystem, mit den hohen
Datenraten von Run 3 Schritt zu halten.
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xpu: Eine C++-Bibliothek für portablen GPU-Code

Motivation

Moderne Hochenergiephysik-Experimente nutzen zunehmend GPU-Beschleunigung,
um ihre anspruchsvollen Datenverarbeitungsanforderungen zu bewältigen. Die En-
twicklung GPU-beschleunigter Software für diese Experimente stellt jedoch einzigar-
tige Herausforderungen dar: Der Code muss portabel zwischen verschiedenen GPU-
Architekturen sein, über lange Zeiträume wartbar bleiben und hohe Leistung ohne
Einbußenbei der Flexibilität erzielen. Darüber hinausmuss der Code für Entwicklungs-
und Testzwecke effizient auf CPUs laufen und sich gleichzeitig in bestehende C++-
Codebasen integrieren lassen.

ImRahmendieserDissertationwurde xpu als leichtgewichtige C++-Bibliothek entwick-
elt, um diese Herausforderungen zu bewältigen. Ein besonderer Fokus lag auf den
Anforderungen des Online-Verarbeitungssystems des CBM-Experiments, das die En-
twicklung prägte und gleichzeitig als Testumgebung für die Bibliothek diente. Sie bietet
eine einheitliche Schnittstelle für CUDA, HIP und SYCL, ermöglicht die Ausführung von
Code auf CPUs und erlaubt Entwicklern, portablen GPU-Code zu schreiben, ohne Kom-
promisse bei der Leistung oder der Kontrolle über hardwarespezifische Optimierun-
gen einzugehen.

Architektur

Die Architektur von xpu basiert auf drei Schlüsselkomponenten: einem Laufzeitsys-
tem, Backend-TreibernundGerätebibliotheken. Das Laufzeitsystemverwaltet die Gerä-
teerkennung, SpeicherzuweisungundKernel-Ausführung,währenddie Backend-Trei-
ber für jede unterstützte Plattform (CUDA, HIP, SYCL, CPU) als separate Shared Library
kompiliert werden. Diese Treiber implementieren die vom Laufzeitsystem definierte
gemeinsame Schnittstelle und ermöglichen die dynamische Auswahl des Backends
zur Laufzeit.

Der Gerätecode in xpu wird in separaten Bibliotheken organisiert, die für jedes Back-
end unabhängig kompiliert werden können. Jede Gerätebibliothek durchläuft eine
duale Kompilierung: einmal als regulärer C++-Code für den Host, um Typenprüfung
und Symbolauflösung zu ermöglichen, und ein weiteres Mal als Gerätecode für jedes
verfügbare Backend mit dem jeweiligen Compiler. Dieser Ansatz ermöglicht es xpu,
den optimalen Compiler für jede Plattform zu verwenden (z.B. nvcc für CUDA und
hipcc für HIP), während regulärer C++-Code für die CPU-Ausführung ohne zusätzliche
Abhängigkeiten beibehalten wird.
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Abbildung 2: Laufzeit vergleich der verschiedenen Implementierungen des
STS Unpackers.

Kernfunktionalität

DieKernfunktionalität von xpuumfasst RAII-basierte Speicherverwaltung, die explizite
Kontrolle über Allokationen ermöglicht. Im Gegensatz zu SYCL, das Speicherverwal-
tung zu abstrahieren versucht und damit die Kontrolle über Speicheroperationen ein-
schränkt, bietet xpuBuffer-Klassen, diewie rohe Zeiger imGerätecode verwendetwer-
den können, ohne Overhead einzuführen. Verschiedene Speichertypen (Gerät, Host-
gepinnt, verwaltet, Ein-/Ausgabe) werden unterstützt, um unterschiedliche Zugriffs-
muster zu berücksichtigen.

Kernel werden als aufrufbare Objekte implementiert, die von der Klasse xpu::kernel
erben. Jeder Kernel erhält ein Context-Objekt, das Informationen über die Position des
Threads im Ausführungsgitter, Zugriff auf Shared Memory und Zugriff auf Constant
Memory bietet. Die Parallelitätsprimitiven auf Block- und Warp-Ebene wie Reduktio-
nen, Scans und Ballot-Operationen werden über alle Backends hinweg konsistent un-
terstützt.

Für die Integration nativer GPU-Funktionalität stellt xpu einenMechanismus für Host-
Funktionen bereit. Dies ermöglicht die Verwendung plattformspezifischer Implemen-
tierungen, die separat für jedes Backend kompiliert werden, während die Typsicher-
heit gewährleistet bleibt.

Performanz

Um den potenziellen Leistungsoverhead von xpu und SYCL zu untersuchen, wurde
der GPU-Port des STS-Unpackers als Benchmark verwendet. Der Unpacker ist der erste
Schritt in der Verarbeitungskette und dekontextualisiert den Strom der Rohdaten des
Detektors, was für das nachfolgende Cluster-Finding erforderlich ist. Der Benchmark
wurde auf einer NVIDIA RTX 2080 Ti und einer AMD MI50 durchgeführt, wobei 30
Timeslices aus der mCBM-Kampagne 2022 als Testdaten verwendet wurden.
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Wie in Abbildung 2 dargestellt, erreicht die xpu-Version imWesentlichen die Leistung
beider nativen Implementierungen,mit nur einemOverhead von 0.2% in der Laufzeit
im Vergleich zu den jeweiligen CUDA- und HIP-Varianten. Der generierte Assembler-
Code ist nahezu identisch; nur die Reihenfolge der Anweisungen unterscheidet sich
leicht.

Die Leistungsunterschiede zwischen SYCL-Implementierungen lassen sich auf ihre un-
terschiedlichen Compiler-Architekturen zurückführen. Intel oneAPI und AdaptiveCpp
bauen beide auf LLVM/Clang auf, verfolgen aber grundlegend unterschiedliche An-
sätze. Intel oneAPI verwendet einen stark angepassten Clang-Fork mit proprietären
Optimierungen, was seine konsistentere, aber langsamere Leistung über Plattformen
hinweg erklärt - etwa 36% langsamer auf CUDA mit einer ähnlichen Leistungslücke
auf ROCm. AdaptiveCpp, kompiliert mit Clang 18, verwendet eine Plugin-Architektur
zur Generierung von Backend-Code. Während dieser Ansatz eine bessereWartbarkeit
und einfachereUpdates auf neue Clang-Versionen verspricht, deuten die Leistungsergeb-
nisse darauf hin, dass die Übersetzungsschicht von SYCL zu nativem GPU-Code er-
heblichen Overhead einführt, insbesondere für AMD-Hardware, wo die Implemen-
tierung 47% langsamer als natives HIP läuft.

GPU-beschleunigte STS-Rekonstruktion für CBM

Das CBM-Experiment

Das CompressedBaryonicMatter (CBM) Experiment, derzeit imBau ander FAIR-Anlage
bei GSI, zielt darauf ab, die Eigenschaften stark wechselwirkender Materie unter ex-
tremen Bedingungen von Temperatur und Dichte durch Schwerionenkollisionen zu
erforschen. Die Silicon Tracking System (STS) Rekonstruktion in CBM steht vor erhe-
blichen rechnerischen Herausforderungen aufgrund des frei strömenden Datenerfas-
sungsansatzes. ImGegensatz zuherkömmlichen getriggerten Systemenmuss CBMden
kompletten Rohdatenstrom in Echtzeit bei Wechselwirkungsraten von bis zu 10MHz
verarbeiten. Als primärer Spurendetektor spielt das STS eine entscheidende Rolle bei
der Spurrekonstruktion,wodurch seine effizienteOnline-Verarbeitung für die Echtzeit-
Ereignisauswahl von kritischer Bedeutung ist.

Der STS-Detektor

Das Silicon Tracking System (STS) ist eine zentrale Komponente des CBM-Experiments.
Positioniert innerhalb des Magneten und stromaufwärts des Targets ist es der erste
Detektor nach dem Beam Monitor zusammen mit dem MVD. Das STS besteht aus
doppelseitigen Silizium-Streifensensoren, die auf 8 Ebenen (auch als Stationen beze-
ichnet) verteilt sind und die Spurrekonstruktion und Impulsbestimmung geladener
Teilchen ermöglichen. Die hohe zeitliche und räumliche Auflösung von 5ns und 25µm
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machen es zu einem Schlüsseldetektor für die Spurrekonstruktion und damit beson-
ders wichtig für die Online-Verarbeitung.

Die STS Rekonstruktion

Der STS-Hitfinder in seiner sequentiellen Form transformiert Rohdaten des Detek-
tors in vierdimensionale Raum-Zeit-Punkte für die Spurrekonstruktion. Der Cluster-
Finding-Algorithmus verarbeitet nach Zeit sortierte Digis, indem er jede Messung se-
quentiell untersucht. Bei einem neuen Digi wird geprüft, ob bereits ein Cluster auf be-
nachbarten Streifen innerhalb eines konfigurierbaren Zeitfensters gebildet wird. Ist
dies der Fall, wird das Digi zu diesem Cluster hinzugefügt; andernfalls wird ein neuer
Cluster begonnen. Die Implementierung teilt diesen Prozess in zwei Schritte: Zunächst
werden die zu einem Cluster gehörenden Digis identifiziert und deren Indizes gespe-
ichert, bevor in einem zweiten Durchlauf die Cluster-Eigenschaften berechnet wer-
den.

Der Hit-Finding-Algorithmus kombiniert Cluster von beiden Sensorseiten zu dreidi-
mensionalen Positionen. Für jede potenzielle Kombination von Front- und Back-Side-
Clustern prüft der Algorithmus zunächst, ob ihre Zeitmessungen innerhalb eines kon-
figurierbaren Fensters kompatibel sind. Bei zeitlich passenden Clustern berechnet der
Algorithmus die geometrischen Schnittpunkte entlang der überlappenden Streifen.
Die zeitliche Übereinstimmung reduziert signifikant die Anzahl der Cluster-Kombi-
nationen, die geometrisch ausgewertet werden müssen, was die Recheneffizienz ver-
bessert. Für jeden rekonstruierten Hit muss der Algorithmus auch die Positionsun-
sicherheiten von den Eingangs-Clustern auf die endgültigen Hit-Koordinaten über-
tragen, wobei sowohl die Unsicherheiten in den Cluster-Positionen als auch die ge-
ometrischen Effekte des Stereo-Winkels berücksichtigt werden.

Parallele STS Rekonstruktion

Die parallele STS-Rekonstruktion verwendet mehrere grundlegende Optimierungen,
die sich auf effiziente Datenstrukturen und Speicherverwaltung konzentrieren. Diese
Optimierungen sind besonders wichtig, da die Rekonstruktion zwischen 108 und 109
Hits pro Timeslice in Echtzeit während der Datenaufnahme verarbeiten muss.

Eine primäre Optimierung umfasst die vollständige Neugestaltung der für die Rekon-
struktion verwendeten Datenstrukturen. Die Offline-Rekonstruktion verwendet eine
hierarchischeKlassenstruktur, die tief in ROOT integriert ist. DieOnline-Rekonstruktion
implementiert stattdessen leichtgewichtige C++-Strukturen, die diese Abhängigkeit-
en eliminieren. Durch die Entfernung der ROOT-Integration und die Abflachung der
Vererbungshierarchie wird der Speicherbedarf der grundlegenden Datentypen erhe-
blich reduziert. So wurde beispielsweise die Größe eines Cluster-Objekts von 112 Byte
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in der Offline-Rekonstruktion auf nur 24 Byte in der Online-Version reduziert. Ähnlich
wurden Hit-Objekte von 136 Byte auf 48 Byte reduziert.

Eine weitere wesentliche Optimierung betrifft die Behandlung von Digi-Indizes wäh-
rend der Cluster-Erstellung. Die Offline-Rekonstruktion reserviert zusätzlichen Spe-
icher, um Indizes von beitragenden Digis für jeden Cluster zu speichern, was sowohl
den Speicher für ein std::vector-Objekt (24 Byte) als auch eine zusätzliche Heap-
Allokation erfordert. Die Online-Implementierung eliminiert diesen Overhead, indem
sie Cluster-Eigenschaften direkt während der Konstruktion berechnet.

Die Rekonstruktionskette nutzt auch Möglichkeiten für eine erhöhte Parallelisierung.
Während die Offline-Version typischerweise Daten auf Modulebene verarbeitet, kann
die Online-Implementierung stattdessen überModulseiten parallelisieren, wo dies an-
gemessen ist, was die verfügbare Parallelität für diese Operationen effektiv verdop-
pelt.

Der parallele Cluster-Finding-Algorithmus implementiert eine zweiphasige Strategie,
um eine effiziente parallele Verarbeitung auf GPUs zu ermöglichen. Anstatt zu ver-
suchen, vollständige Cluster in einem einzigen Schritt zu identifizieren, was eine kom-
plexe Synchronisierung zwischen Threads erfordernwürde, etabliert der Algorithmus
zunächst Verbindungen zwischen Digis, die zum selben Cluster gehören, und erstellt
dann die eigentlichen Cluster-Objekte in einer zweiten Phase.

Die primäre Änderung amHit-Finding-Algorithmus bestand darin, die parallele Arbeit
im Vergleich zur Offline-Implementierung zu erhöhen. Während die Offline-Version
Daten auf Modulebene mit einem CPU-Thread pro Modul verarbeitet, weist die GPU-
Implementierung jedem Front-Side-Cluster einen Thread zu, was eine vollständige
Parallelisierung über alle potenziellen Hits ermöglicht.

Performanz

Die Gesamtleistungsmerkmale der Hitfinder-Implementierungen sind in Abbildung 3
dargestellt. Bei der Offline-Implementierung unterscheidet die Abbildung zwischen
der parallelenRekonstruktionsphase (hellrot) undden sequentiellenOverhead-Phasen
(dunkelrot). Diese sequentiellen Phasen umfassen die anfängliche Verteilung vonDigis
auf Module und die abschließende Sammlung von Clustern und Hits in zusammen-
hängende Ausgabearrays.

Bei der Betrachtung der Single-Thread-Leistung benötigt die Offline-Implementierung
11.67 s Gesamtlaufzeit, wobei 9.4 s im parallelen Abschnitt und 2.3 s im sequentiellen
Overhead verbrachtwerden. Die Online-Implementierung erreichtmit 5.48 s eine bes-
sere Basisleistung, was einer 2,1-fachen Beschleunigung entspricht, bevor irgendeine
Parallelisierung angewendet wird.

Beide Implementierungen zeigen eine effektive Skalierungmit zunehmender Thread-
Anzahl. Der parallele Abschnitt derOffline-Version skaliertweiterhin bis zu 64 Threads,
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Abbildung 3: Laufzeitvergleich der offline und online Varianten des STS
Hitfinders.

was zeigt, dass der Rekonstruktionsalgorithmus selbst gut parallelisierbar ist. Die Ge-
samtleistung wird jedoch zunehmend vom sequentiellen Overhead dominiert. Dies
schafft einen Leistungsengpass, der die maximal erreichbare Beschleunigung für die
Offline-Implementierung begrenzt.

Die Online-Implementierung löst diese Einschränkung, indem sie sowohl die Rekon-
struktion als auch die Datenbewegungsphasen parallelisiert. Dieser Ansatz behält die
Skalierung über den gesamten Bereich der getesteten Thread-Anzahlen bei und erre-
icht 0.38 s bei 64 Threads, was einer 14,4-fachen Beschleunigung gegenüber der se-
quentiellen Baseline entspricht.

Die GPU-Ausführung bietet eine weitere erhebliche Beschleunigung. Beide getesteten
Geräte, die NVIDIA RTX 2080 Ti und AMD MI50, erreichen eine ähnliche Leistung
von etwa 0.095 s. Dies entspricht ungefähr einer 122-fachen Beschleunigung im Ver-
gleich zur sequentiellen Offline-Ausführung und ist 4,0-mal schneller als die beste
CPU-Leistung der Online-Version. Die konsistente Leistung über diese verschiedenen
GPU-Architekturen hinweg demonstriert die Fähigkeit des Algorithmus, verschiedene
Hardware-Plattformen effektiv zu nutzen.
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Einsatz in Produktionsumgebung

Die Entwicklungen der Online-Software gipfelten im ersten Produktionseinsatz wäh-
rend der mCBM-Strahlzeit im Mai 2024. Vier Tage lang lief die Online-Rekonstruktion
kontinuierlich parallel zur Aufzeichnung von Timeslices mit Detektorrohdaten auf
Festplatten. Dies stellte sicher, dass unverarbeitete Daten noch für spätere Offline-
Analysen verfügbar waren, während es gleichzeitig die erste Demonstration der On-
line-Verarbeitungsfähigkeiten in CBM darstellte.

Das System demonstrierte robuste Leistung bei der Verarbeitung kontinuierlicher Da-
tenströme. Die durchschnittliche Datenrate erreichte etwa 800MB/s, mit Spitzen bis
zu 2.4GB/s. Der STS-Detektor trug mit einem Durchschnitt von 310MB/s den größten
Anteil bei und erreichte Spitzen von 900MB/s.

Die erfolgreiche Einführung während der mCBM-Strahlzeit im Mai 2024 demonstri-
erte, dass die Rekonstruktionskette effektiv unter realen Bedingungen arbeiten kon-
nte, wobei Daten von tatsächlichen Detektoren anstelle von idealisierten Simulatio-
nen verarbeitet wurden. Das System behielt trotz variierender Strahlbedingungen,
einschließlich schwankender Datenraten entsprechend dem SIS18-Extraktionszyklus,
Detektorrauschen und sich entwickelnder Kalibrierungsparameter, eine stabile Leis-
tung bei. Diese betriebliche Validierung lieferte entscheidende Beweise dafür, dass die
Rekonstruktionsalgorithmen robust genug sind, um die unvorhersehbaren Aspekte
der experimentellen Datenerfassung zu bewältigen, die in Simulationen nicht voll-
ständig erfasst werden können. Der kontinuierliche Betrieb über vier Tage bestätigte
weiter die Zuverlässigkeit des Systems für längere Produktionsläufe und schuf eine
solide Grundlage für die zukünftige Online-Verarbeitungsinfrastruktur des CBM-Ex-
periments.

Fazit

Diese Dissertation präsentiert mehrere wesentliche Beiträge zur GPU-Beschleunigung
von Hochenergiephysik-Experimenten. Für ALICE wurden verschiedene Komponen-
ten der TPC-Rekonstruktionskette optimiert, was eine Echtzeitverarbeitung bei Kolli-
sionsraten von 50 kHz ermöglicht. Die entwickelte xpu-Bibliothek bietet eine portable
Lösung für GPU-Programmierung mit vernachlässigbarem Overhead und unterstützt
verschiedeneHardware-Architekturendurch separateKompilierung vonDevice-Code.
Für das CBM-Experimentwurde eine vollständigeGPU-beschleunigte Rekonstruktions-
kette implementiert, die eine 122-fache Beschleunigung gegenüber demCPU-basierten
Code erreicht und erfolgreich während der mCBM-Strahlzeit im Mai 2024 eingesetzt
wurde.

Diese Entwicklungenfinden in einemUmfeld statt, in dem sich dieHardware-Fähigkeit-
en kontinuierlich weiterentwickeln. Moderne CPU-Architekturen mit AVX-512-Vek-
toranweisungen könnten für bestimmte Workloads eine Alternative zur GPU-Verar-
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beitung darstellen. Die Ergebnisse in beidenExperimenten zeigen, dass eine sorgfältige
algorithmischeOptimierung inVerbindungmit GPU-BeschleunigungLeistungsverbesserun-
genumGrößenordnungen erzielen kann. Die in dieser Arbeit demonstrierten Echtzeit-
Verarbeitungsfähigkeiten etablieren eine Grundlage, um den zukünftigen Rechenan-
forderungen von Hochenergiephysik-Experimenten gerecht zu werden.
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