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Abstract

The novel method presented in this thesis demonstrates the potential of applying
modern deep learning techniques to implement an online trigger for selecting rare
events associated with the formation of quark-gluon plasma (QGP) in heavy-
ion collisions. The future CBM experiment, planned for the FAIR accelerator
complex, is aimed at studying the phase diagram of quantum chromodynamics
(QCD) under conditions of high baryon density, thereby opening new perspectives

for understanding the evolution of matter in extreme environments.

In this work, convolutional neural networks (CNNs) are developed and op-
timized, which not only classify events based on the presence of QGP but also
simultaneously reconstruct key physical parameters — such as the number of
particles participating in the phase transition, the impact parameter, and the
fraction of energy deposited in QGP. The models were trained and validated on
data generated by the PHSD and UrQMD transport models, ensuring that the

algorithms remain independent of any particular theoretical model.

Special emphasis is placed on interpreting the network’s outputs using the
Shapley Additive Explanations (SHAP) method. SHAP quantitatively dis-
tributes the contribution of each input feature to the model’s prediction, thereby
providing transparency to the network’s decision-making process and identify-
ing the key characteristics that influence event classification. The application
of SHAP not only confirms the correctness of the algorithm but also opens new
opportunities for a physical interpretation of the processes occurring during QGP

formation.

The developed algorithms have been integrated into the FLES system of the
CBM experiment. Although this integration has not yet been demonstrated with
real data, it is expected to enable real-time processing of large data streams and
to reduce the data volume by several orders of magnitude while preserving criti-

cal information once the accelerator becomes operational and real data analysis



is performed. The achieved classification accuracy of approximately 80-85% con-
firms the effectiveness of the approach even when transitioning from Monte Carlo
data to reconstructed data that account for detector limitations.

Thus, this thesis presents a comprehensive approach that combines the fun-
damental concepts of QGP physics with modern deep learning techniques and
interprets the results using SHAP, thereby opening new opportunities for study-
ing the QCD phase diagram and integrating machine learning into the analysis

of heavy-ion experimental data.



Kurzfassung

Die in dieser Dissertation vorgestellte neuartige Methode zeigt das Potenzial
der Anwendung moderner Deep-Learning-Techniken zur Implementierung eines
Online-Triggers zur Auswahl seltener Ereignisse, die mit der Bildung von Quark-
Gluon-Plasma (QGP) bei Schwerionenkollisionen in Zusammenhang stehen. Das
zukinftige CBM-Experiment, das am FAIR-Beschleunigerkomplex geplant ist,
zielt darauf ab, das Phasendiagramm der Quantenchromodynamik (QCD) unter
Bedingungen hoher Baryonendichte zu untersuchen und eréffnet somit neue Per-
spektiven fiir das Verstdndnis der Materieentwicklung unter extremen Bedingun-
gen.

In dieser Arbeit werden neuronale Faltungsnetze (CNNs) entwickelt und op-
timiert, die nicht nur Ereignisse anhand des Vorhandenseins von QGP klassi-
fizieren, sondern gleichzeitig wichtige physikalische Parameter rekonstruieren —
wie die Anzahl der am Phaseniibergang beteiligten Teilchen, den Stoparameter
und den Anteil der im QGP deponierten Energie. Die Modelle wurden auf Basis
von Daten aus den Transportmodellen PHSD und UrQMD trainiert und vali-
diert, wodurch sichergestellt wird, dass die Algorithmen unabhéngig von einem

bestimmten theoretischen Modell bleiben.

Besonderer Wert wird auf die Interpretation der Netzwerkausgaben mithilfe
der Shapley Additive Explanations (SHAP)-Methode gelegt. SHAP verteilt den
Beitrag jeder Eingabefunktion quantitativ zur Vorhersage des Modells und bi-
etet so Transparenz im Entscheidungsprozess des Netzwerks sowie die Identi-
fizierung der Schliisselmerkmale, die die Ereignisklassifizierung beeinflussen. Die
Anwendung von SHAP bestétigt nicht nur die Korrektheit des Algorithmus, son-
dern eroffnet auch neue Moglichkeiten fiir eine physikalische Interpretation der
wahrend der QGP-Bildung ablaufenden Prozesse.

Die entwickelten Algorithmen wurden in das FLES-System des CBM-

Experiments integriert. Obwohl diese Integration noch nicht mit realen Daten



demonstriert wurde, wird erwartet, dass sie eine Echtzeitverarbeitung grofier
Datenstrome ermoglicht und das Datenvolumen um mehrere Groflenordnungen
reduziert, wahrend kritische Informationen erhalten bleiben, sobald der Beschle-
uniger in Betrieb genommen wird und die reale Datenanalyse erfolgt. Die erre-
ichte Klassifikationsgenauigkeit von etwa 80-85 % bestatigt die Effektivitat des
Ansatzes auch beim Ubergang von Monte-Carlo-Daten zu rekonstruierten Daten,
die Detektorbeschrankungen berticksichtigen.

Diese Dissertation prasentiert somit einen umfassenden Ansatz, der die
grundlegenden Konzepte der QGP-Physik mit modernen Deep-Learning-
Techniken kombiniert und die Ergebnisse mit SHAP interpretiert und somit neue
Moéglichkeiten fiir die Untersuchung des QCD-Phasendiagramms und die Integra-
tion von maschinellem Lernen in die Analyse von Schwerionen-Experimentaldaten

erofinet.
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Chapter 1

Introduction

According to the Standard Model of elementary particles, which describes three
of the four fundamental interactions (electromagnetic, weak, and strong), all
the nuclear matter familiar to us is concentrated within atomic nuclei and in the
depths of neutron stars [1]. Atomic nuclei consist of protons and neutrons, collec-
tively referred to as nucleons, which, in turn, are composite particles (hadrons)
containing quarks that participate in strong, weak, and electromagnetic inter-
actions. The strong interaction ensures confinement: quarks remain “trapped”
inside hadrons and cannot be observed in isolation. This phenomenon occurs due
to the exchange of gluons, which carry the so-called “color” charge [2]. The study
of the strong interaction gave birth to quantum chromodynamics (QCD) — the
fundamental theory of quarks and gluons.

One of the most significant discoveries in QCD was the phenomenon of asymp-
totic freedom [3]: the smaller the distance between quarks, the weaker their inter-
action. However, at distances comparable to the size of a hadron, the strong force
increases and prevents quarks from escaping [4]. On the one hand, this explains
why quarks remain confined within a hadron; on the other, it suggests that at
extremely high densities or temperatures, quarks and gluons can “deconfine” and
form a new state of matter — quark-gluon plasma (QGP). Fig. 1.1 schematically
illustrates the transition from an ordinary nucleus to the quark-gluon plasma
phase under appropriate conditions.

In the present-day Universe, quarks are typically confined within hadrons due
to relatively low temperatures and pressures. However, during the early stages of
the Universe’s evolution, there was a period known as the quark epoch [6], when

the temperature was so high that quarks could not form hadrons and instead
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Figure 1.1: Left: a schematic representation of a nucleus composed of several
nucleons under normal conditions. Right: the transition to a high-temperature
(or high-density) state, in which quarks and gluons can exist as a “quark-gluon

mixture” [5].

existed in a state known as quark-gluon plasma. The search for, and experimental
verification of, QGP in laboratory conditions is one of the central challenges in
heavy-ion physics today.

The most effective way to recreate extreme conditions (similar to those that
existed in the early Universe) is through the collision of heavy nuclei at relativistic
energies. It is in the region of ion interactions, at sufficiently high temperatures
and densities, that a phase transition occurs from hadronic matter to quark-
gluon plasma. This topic is being actively explored, for example, at the ALICE
facility at CERN [7] and the STAR experiment at the RHIC [8] collider, where
the conditions for QGP formation and the signatures accompanying this process
are studied.

Questions of considerable interest include how exactly the transition from the
hadronic phase to quark-gluon plasma and back occurs, whether this transition
is abrupt (first-order) or “smooth” (critical point and second-order transition),
and which rare particles and collective effects are most sensitive to the phase
transition. The relevance of this topic is driven not only by the desire to exper-
imentally recreate the early Universe but also by the need to understand under
what conditions the free phase of matter can exist in nature. Particularly impor-
tant are studies of strange and charmed particles, as well as lepton pairs produced
in heavy-ion collisions. Their characteristics provide direct insight into the state
of the medium at the moment of their formation.

Thus, the search for and study of quark-gluon plasma remains a major focus in

high-energy nuclear physics. Investigating deconfinement and phase transitions



in QCD helps improve the understanding of matter’s structure and the evolution
of various astronomical objects.

The aim of this work is to develop and implement algorithms for online trigger-
ing of quark-gluon plasma events in the FLES package using convolutional neural
networks, while considering the specifics of the CBM experiment. To achieve this,
various transport models (PHSD, UrQMD) have been analyzed for event classi-
fication tasks; a multi-output CNN classifier capable of simultaneously detecting
the presence of QGP and estimating several key parameters (impact parameter,
number of QGP particles, etc.) has been developed; neural network algorithms
have been optimized for high collision rates and large data volumes; and the pro-
posed method has been tested on PHSD and UrQMD data and validated using
reconstructed CBM data.

Scientific novelty of the work: For the first time, a method for online trigger-
ing of QGP events based on convolutional neural networks has been proposed;
a universal CNN architecture capable of processing data from different models
without retraining has been developed; a multi-output classifier that simultane-
ously reconstructs several event parameters has been implemented; and it has
been demonstrated that even when transitioning to reconstructed data, the effi-
ciency (about 80 %) remains acceptable for online selection.

The practical value of this work lies in the integration of the developed algo-
rithms into the FLES infrastructure of the CBM experiment. This will enable the
processing of massive data streams, significantly reduce the volume of stored in-
formation, and enhance sensitivity to rare processes associated with quark-gluon
plasma formation.

The research methods include heavy-ion collision modeling (PHSD, UrQMD),
track reconstruction in FLES (CA Track Finder, KF Particle Finder), modern
deep learning techniques (convolutional neural networks, OpenMP parallel com-
puting, SIMD, GPU), and comparative analysis using PyTorch and ANN4FLES.
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Chapter 2

Foundations of Quark-Gluon Plasma
Formation

Quark-gluon plasma is a unique state of strongly interacting matter in which
quarks and gluons are no longer confined within hadrons and exist in a relatively
free state [2, 9]. Under normal conditions — low temperatures and densities
— quarks are securely confined within hadrons due to the phenomenon of con-
finement. However, at extreme conditions, such as temperatures on the order
of 10210 K and/or baryon densities significantly exceeding normal nuclear
density, the strong interaction weakens sufficiently to allow quarks and gluons to
form a high-temperature phase known as quark-gluon plasma.

It was initially assumed that such a state of matter existed in the very early
Universe (on time scales of the order of 107 s after the Big Bang) and could
also occur in the interior of neutron stars or in more exotic astronomical objects.
Experimental reproduction of QGP is attempted in heavy-ion collisions at high-
energy accelerators such as RHIC (BNL, USA) and LHC (CERN, Europe), as
well as at future facilities like FAIR and NICA [5, 10].

2.1 Confinement and Asymptotic Freedom

Quarks and gluons interact according to the laws of quantum chromodynam-
ics (QCD) — the theory describing strong interactions. One of the key properties
of QCD is confinement, which means that isolated quarks cannot be observed in a
free state under “normal” conditions [4]. The second important feature is asymp-

totic freedom [3], according to which the effective coupling constant of the strong
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............

...........................

Figure 2.1: Schematic representation of quark confinement: as the distance
between quarks (¢) increases, the energy of the gluon field grows, leading to the

creation of new quark-antiquark pairs (¢g) instead of free quarks [11].

interaction decreases as the distance between quarks decreases. As a result, at
small distances (comparable to the scale of point-like interactions), quarks in-
teract weakly, whereas at large distances, the force increases, “trapping” quarks
inside hadrons (Fig. 2.1).

Nevertheless, at very high temperatures (or baryon densities), quarks can
“melt” and transition into a quasi-free state. It is believed that this is how

quark-gluon plasma forms.

2.2 The QCD Phase Diagram

The phase diagram of quantum chromodynamics (QCD) illustrates different
states of nuclear matter as a function of temperature T" and baryon chemical
potential p g, which characterizes the baryon density of the system. In the region
of low pup and high temperatures, matter exists in the quark-gluon plasma state,
where quarks and gluons are not confined within hadrons. As the temperature
decreases, a phase transition occurs to a hadronic gas consisting of individual
hadrons such as pions, protons, and neutrons.

Fig. 2.2 presents a simplified QCD phase diagram, highlighting several key
regions. The left part of the diagram (up ~ 0) represents the vacuum region,
which corresponds to the absence of dense nuclear matter. As up and temperature

increase, a transition occurs through the hadronic gas phase to the hotter quark-
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Figure 2.2: Simplified QCD phase diagram in the coordinates “temperature —
baryon chemical potential”, including the regions of quark-gluon plasma, hadronic
gas, and color superconductor [12].

gluon plasma. In the lower part of the diagram, at high values of ug, the existence
of a color superconducting state is hypothesized, which may occur at extreme
densities, for example, in the cores of neutron stars.

Experimental points corresponding to the collision energies of heavy ions in
the RHIC BES-II experiments are marked on the diagram. A possible critical
point of the phase transition between the hadronic gas and quark-gluon plasma
is also highlighted. If it exists, then at lower values of up, the transition occurs
smoothly, whereas at higher values of up, the phase transition becomes first-
order, accompanied by abrupt changes in the thermodynamic parameters of the
system [13, 14].

Thus, the phase diagram of the QCD gives an idea of the different phases of
nuclear matter, their properties and the conditions under which they exist. This
is very important for understanding the evolution of the Universe, the dynamics

of neutron stars and the behavior of matter in heavy ion collisions.
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2.3 Key Signatures and Properties of the Quark-

Gluon Plasma

2.3.1 Collective Flows and Fluctuations

One of the key methods for studying QGP involves the analysis of collective flows,
in particular, elliptic and directed flow, which arise due to anisotropy in the initial
conditions of heavy-ion collisions [15, 16]. Measurements of particle distributions
as a function of the azimuthal angle provide insights into the equation of state of
the produced matter and the presence of a phase transition.

Fluctuations, such as hadron multiplicity or strangeness, are also considered
potential signals of critical phenomena: as the system approaches the critical
point, the correlation length may increase, leading to anomalously large fluctu-

ations [17]. Such studies are planned to be conducted in experiments at RHIC,
FAIR, and NICA.

2.3.2 Enhanced Production of Strange and Multi-Strange Par-

ticles

The production of A- and Z-hyperons, as well as kaons (K™, K ), is traditionally
considered one of the key indicators of QGP formation, since strange quarks
(s) are more efficiently produced in a deconfined medium due to lower energy
barriers [18, 19]. The observed enhancement in the yield of strange particles
compared to hadronic models serves as evidence of a transition to quark-gluon

plasma.

2.3.3 Dileptons and Photons

Electromagnetic probes (direct photons, dileptons ete™ or u* ™) interact weakly
with the surrounding medium and carry information about the conditions inside
the system at the moment of their production. Measuring the spectra and masses
of such particles helps reconstruct the thermodynamic parameters of the medium
at different stages of evolution. Particularly interesting is the modification of
vector meson masses in a dense nuclear medium and the role of chiral symmetry

restoration [20)].
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2.4 Experimental Study of the QGP

2.4.1 Accelerator Complexes and Detectors

At present, the study of QGP is being conducted at the following facilities:
e RHIC (Relativistic Heavy Ion Collider) at BNL, USA [§],

e LHC (Large Hadron Collider) at CERN, experiment ALICE (A Large Ion
Collider Experiment) [7],

e FAIR (Facility for Antiproton and Ion Research) — a facility under
construction in Darmstadt, Germany, where the CBM experiment is
planned [21],

e NICA (Nuclotron-based Ion Collider fAcility) at JINR (Dubna), experiment
MPD (MultiPurpose Detector) [14].

For each experiment, specialized detectors are being developed with high preci-
sion in track reconstruction, momentum measurement, and particle identification.

Thus, quark-gluon plasma remains one of the most fundamental subjects of
study in modern high-energy physics. Theoretical calculations suggest the pos-
sibility of quark and gluon deconfinement under extreme conditions, while long-
term experiments aim to confirm and thoroughly investigate this state — ana-
lyzing strangeness enhancement, electromagnetic probes, and various collective
phenomena. A powerful detection system is required to obtain sufficient statis-
tics, as up to tens of millions of collisions occur every second, each generating
thousands of particle tracks. Therefore, deep learning and neural network meth-
ods capable of automatically identifying QGP events within a vast background
are particularly in demand. The following chapters will demonstrate how these
methods are integrated into the FLES package for the CBM experiment and what
results CNN classifiers achieve on PHSD and UrQMD models.
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Chapter 3

The Compressed Baryonic Matter
(CBM) Experiment

3.1 The Facility for Antiproton and lon Research
(FAIR)

The Facility for Antiproton and Ion Research (FAIR), located in Darmstadt, Ger-
many, is an international accelerator complex that will provide unique research
opportunities in nuclear, hadron, atomic, and plasma physics [22]. The FAIR
research program will enable studies of compressed baryonic matter using beams
from the SIS100 synchrotron, which will accelerate protons up to 29 GeV and
heavy ions such as gold (Au) up to 11A GeV [23]. These capabilities make FAIR
one of the most advanced facilities for investigating the QCD phase diagram at
high baryon densities.

The Modularized Start Version (MSV) of FAIR will initially provide beams
from SIS100, accelerating nuclei with Z/A = 0.5 up to 14A GeV. The facility
may later be expanded with a higher rigidity synchrotron as part of a future
upgrade [24]. The layout of FAIR is shown in Figure 3.1. The beam extracted
to the CBM cave can reach intensities of up to 10! protons and 10° Au ions per

second, meeting strict quality requirements. Specifically:

e At a distance greater than 5 mm from the beam axis, the beam halo remains

below 107° of the total beam intensity.

e The intensity fluctuations of the spill structure are kept below 50% (average
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Figure 3.1: Layout of the Facility for Antiproton and Ion Research (FAIR) [22].

value normalized to the maximum value), ensuring precise timing control

down to nanosecond scales [25].

The FAIR civil construction has been completed, and the SIS100 experimental
hall, which will house the CBM experiment, has been finalized. CBM will be
one of the first users of SIS100 beams and is prioritizing the completion of the
Day-1 experimental setup by the end of 2028. Infrastructure development for
the experiment continues, with significant progress on the dipole foundation and
upstream platform design [26].

The CBM Collaboration is actively involved in the broader scientific planning
efforts for nuclear physics in Europe. The NuPECC initiative has launched a
process to define a new Long Range Plan, and the CBM Collaboration has con-
tributed its input on the importance of systematic measurements of excitation
functions, system size dependencies, and multi-differential phase-space distribu-
tions of various observables in exploring the high-density region of the QCD phase
diagram [27].
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3.2 The CBM experiment

The Compressed Baryonic Matter (CBM) experiment is designed to explore prop-
erties of strongly interacting matter at high net-baryon densities, with conditions
resembling those found in neutron star mergers and the early universe. CBM
will investigate the equation of state of nuclear matter, phase transitions from
hadronic to partonic matter, and in-medium properties of hadrons and charm

production [28].
The scientific motivation behind CBM lies in its ability to explore the QCD

phase diagram at high baryon densities, where theoretical models predict the
existence of a first-order phase transition and possibly a critical endpoint. The
experiment will focus on measuring key observables that characterize the behavior
of matter under such conditions, including the production and collective behavior
of hadrons, fluctuations of conserved quantities, and electromagnetic probes such

as dileptons [29].

The experiment will conduct high-precision measurements of heavy-ion colli-
sions at SIS100 energies. These include studies of collective hadron flow, hyperon
production, and lepton-pair decays of vector mesons to probe hadronic modifica-
tions in dense matter. Event-by-event fluctuations in conserved quantities such
as baryon number and strangeness will provide insight into phase transitions.
By systematically varying the beam energy and system size, CBM will map out
the phase structure of QCD matter and test theoretical predictions regarding the

nature of deconfinement and chiral symmetry restoration [30].

CBM requires real-time data processing due to high interaction rates. Instead
of a conventional trigger-based system, CBM employs a free-streaming readout
combined with real-time event reconstruction, allowing efficient selection of rare
physics signals [31]. The high-intensity environment poses significant technologi-
cal challenges, requiring advanced detector systems and sophisticated algorithms
for online data processing. Innovative computing techniques, including machine
learning-based event classification, are being developed to maximize the scientific

output of the experiment [32].

The SIS100 accelerator is well suited for generating high net-baryon densities.
Figure 3.2 shows transport model calculations for central Au+Au collisions, indi-
cating that densities exceeding five times nuclear saturation density (0.17 fm~3)

can be reached at 10A GeV. Under these conditions, nucleons overlap, and theo-
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Figure 3.2: Baryon density as a function of elapsed time for central Au+Au

collisions calculated with different transport models [33].

retical predictions suggest a transition to a mixed phase of baryons and quarks.
The ability to explore such extreme conditions makes CBM a crucial experiment
for advancing our understanding of QQCD matter and the fundamental interac-

tions governing the strong force [34].

3.3 The CBM detectors setup

The CBM experimental strategy is designed to perform both integral and differ-
ential measurements of nearly all particles produced in nuclear collisions. These
include yields, phase-space distributions, correlations, and fluctuations with un-
precedented precision and statistics. The experiment will study nucleus-nucleus,
proton-nucleus, and proton-proton collisions at various beam energies. To select
events containing rare observables, the detector system must efficiently suppress
background while ensuring high interaction rates [23].

Unlike conventional fixed-target experiments, CBM implements a data-driven
readout system that operates without a hierarchical trigger. This innovative
approach enables continuous readout of all detector signals, allowing for real-

time reconstruction and filtering of physics events. The self-triggered electronics
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Figure 3.3: Drawing of the experimental setup of CBM, showing the arrange-

ment of subdetectors [23].

and high-speed computing infrastructure are critical for managing the enormous
data flow generated by the experiment [35].

The CBM detector system consists of multiple subdetectors aligned along the
beam axis, each specialized for different tasks, including vertex reconstruction,
momentum determination, particle identification, and event characterization.
Figure 3.3 presents a schematic view of the full detector arrangement.

The CBM detector system relies on a strong magnetic field to achieve precise
momentum resolution for charged particles. The dipole magnet plays a crucial
role in this setup.

3.3.1 Dipole Magnet

The CBM dipole provides a magnetic field integral of 1 Tm, essential for achieving
a momentum resolution of Ap/p < 2% for track reconstruction at beam energies
of the SIS100 synchrotron or its possible upgrade. The magnet is an H-type
design with a warm iron yoke/pole and cylindrical superconducting coils. The
wire consists of Nb-Ti filaments embedded in a copper matrix, ensuring high
stability and efficiency [36].

Figure 3.4 illustrates the CBM dipole magnet and its integration with the STS
and MVD detectors within the magnet gap.
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Figure 3.4: CBM dipole magnet, showing the integration of STS and MVD
detectors inside the magnet gap [36].

The operating current and maximal magnetic field in the coils are 686 A and
3.25 T, respectively. The magnet gap is designed to accommodate CBM tracking
detectors, allowing a vertical acceptance of +25° and a horizontal acceptance
of £30°. Further details can be found in the corresponding Technical Design
Report (TDR) [37].

The dipole magnet is a key component of the CBM detector setup, ensur-
ing precise tracking and momentum reconstruction. Its installation involves a
dedicated rail system for alignment, allowing fine-tuning of its position relative
to other detector components. With all major engineering activities successfully
addressed, the project is in the final stages of preparation for full-scale produc-
tion [38].

3.3.2 Micro-Vertex Detector (MVD)

The Micro-Vertex Detector (MVD) provides excellent spatial precision and a low
material budget, crucial for identifying open charm particles and weakly decaying
hyperons. It consists of four planar stations equipped with thin and large-area
Monolithic Active Pixel Sensor (MAPS) chips [39].

Figure 3.5 illustrates the detailed CAD design of the MVD setup, including

sensor placements and read-out integration.
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Figure 3.5: Left: Side view of the MVD setup, vacuum flange with feedthroughs
and read-out boards, currently implemented in CAD. Right: Close-up of a quad-
rant with sensors, FPCs, heat sink, and FEB [39].

The MVD layout is adaptable to different physics needs, allowing optimization
for vertexing (VX) or tracking (TR) applications. In the VX mode, the detector
operates in a vacuum at distances ranging from 5 cm to 20 cm downstream of
the target. The system is designed to achieve vertex resolutions of 50 — 100 um
along the beam axis.

Recent developments in the MVD project include sensor R&D efforts, par-
ticularly in the evaluation of the MIMOSIS-1 prototype and the finalization of
MIMOSIS-2. Key engineering efforts focus on optimizing mechanical integration,
improving readout electronics, and refining alignment procedures to enhance de-

tector performance [40].

3.3.3 Silicon Tracking System (STS)

The Silicon Tracking System (STS) is the main tracking device of the CBM exper-
iment, providing track reconstruction and precise momentum determination of

charged particles. It consists of eight detection layers equipped with double-sided



20 3. THE COMPRESSED BARYONIC MATTER (CBM) EXPERIMENT

Tracking stations Power boards
and readout electronics

mechanical support

4
©
S
58
g
o)
1
X
Modtges ][né)unlt%ddon
carbon fiber ladders
@ (b)

Figure 3.6: Left: STS detector modules and mechanical structures for the
detector ladders. Right: High-bandwidth front-end electronics board for the STS
readout [41].

silicon micro-strip sensors. These sensors are mounted on lightweight mechanical
support ladders and read out via multi-line micro-cables with fast self-triggering
electronics. The infrastructure around the stations includes cooling lines and
support structures [41].

Figure 3.6 presents the structural design of the STS detector modules and its
high-bandwidth readout electronics.

The MVD and STS together reconstruct the tracks of charged particles inside
the magnetic field within a region extending up to 1 meter downstream of the
target. The STS detector design ensures high tracking efficiency and momentum
resolution essential for heavy-ion collision studies.

Recent advancements in the STS include the finalization of mechanical struc-
tures, assembly of the first detector ladders, and validation of thermal manage-
ment solutions. The procurement of all essential mechanical components has
been completed, and integration procedures are currently being refined to ensure

smooth operation in the CBM experimental environment [42].

3.3.4 Ring Imaging Cherenkov Detector (RICH)

The Ring Imaging Cherenkov (RICH) detector is designed to identify electrons

via the measurement of their Cherenkov radiation. This is achieved using a
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Figure 3.7: Schematic 3D CAD view of the CBM RICH detector, showing a cut
through the radiator vessel (gray), upper and lower MAPMT photon-camera with

magnetic shielding box (blue), and the segmented focusing mirror (brown) [43].

gaseous RICH detector constructed in a projective geometry with focusing mirror
elements and a photon detector [43].

Figure 3.7 illustrates the schematic 3D CAD view of the CBM RICH detec-
tor, including a cut through the radiator vessel, photon-camera, and segmented
focusing mirror.

Positioned behind the dipole magnet, approximately 1.6 meters downstream
of the target, the RICH detector features a 1.7-meter-long gas radiator (total
length around 2 meters), two arrays of mirrors, and a photon detection plane.
The photon detection system is based on Multi-Anode Photomultiplier Tubes
(MAPMTS), ensuring high granularity, large geometrical acceptance, and high
detection efficiency of photons, particularly in the near UV region [44].

Recent advancements in the RICH project include the successful installation
of the first photodetector plane, cooling tests, and front-end electronics (FEE)
production. Improvements in mirror design and first prototype tests have also
been completed. A significant milestone has been achieved with the successful
sealing of the RICH gas volume, ensuring minimal leakage [45].

To enhance the electron identification efficiency, future R&D efforts focus on
integrating Silicon Photomultipliers (SiPMs) for single-photon detection, as well

as optimizing the reconstruction performance in a free-streaming readout envi-
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ronment. These developments are crucial for maximizing the physics potential of
the CBM experiment [46].

3.3.5 Muon Chamber System (MUCH)

Front side of a trapezoidal module
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Figure 3.8: Left: The setup of the CBM experiment with the MUCH detector
system as implemented in the simulation. Right: Schematic representation of the

trapezoidal module in the detector layers [47].

The Muon Chamber System (MUCH) is designed to identify muons by track-
ing their passage through hadron absorbers, allowing for momentum-dependent
muon identification [47]. The system is placed downstream of the STS, which
determines the particle momentum before entering the MUCH.

Figure 3.8 presents the setup of the CBM experiment, showing the MUCH
detector system as implemented in simulation and a schematic representation of
the trapezoidal module in the detector layers.

To minimize background from meson decays into muons, the absorber/detector
system is designed to be as compact as possible. It consists of four hadron
absorbers made of iron and 12 layers of gaseous tracking chambers arranged in
triplets behind each absorber slab. An additional fifth absorber can be placed
between the last triplet and the Transition Radiation Detector (TRD). This setup
facilitates efficient event selection by measuring short track segments in the last
tracking station triplet and extrapolating these tracks to the target [48].

For J /1) measurements at SIS100, a reduced version of MUCH with three cham-
ber triplets is sufficient. The integration of Resistive Plate Chambers (RPCs) into
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the system provides high-rate capabilities required for efficient muon detection
at high interaction rates.

Recent advancements include extensive testing of the MUCH prototype with
RPC detectors at the Gamma Irradiation Facility (GIF++-), CERN. These tests
investigated the detector’s resilience to high particle rates, cluster size behav-
ior, and correlation with radiation exposure. The results demonstrated a muon
detection efficiency exceeding 90% at optimal voltage settings [49].

Future developments will focus on optimizing detector geometry, improving
front-end electronics, and enhancing gas handling systems to ensure stable oper-

ation in the high-rate CBM environment.

3.3.6 Transition Radiation Detector (TRD)

Figure 3.9: CBM-TRD geometry for SIS100, consisting of one station with four
detector layers. The front view (left) shows the radiator boxes, while the rear

view (right) displays the backplanes and front-end electronics [50].

The Transition Radiation Detector (TRD) is designed to identify electrons and
positrons based on their emission of transition radiation when passing through
a radiator. It also provides precise tracking capabilities for charged particles.
The detector consists of four layers arranged within a single tracking station, as
shown in Figure 3.9. These layers are located 4.1 to 6.2 meters downstream of

the target and cover a total active area of approximately 114 m? [50].
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Figure 3.10: Schematic illustration of the working principle of the CBM TRD,

showing electron and pion interactions with the radiator and drift chamber [50].

The readout system of the TRD employs rectangular pads, achieving a res-
olution of approximately 300 pum across and 3 mm to 30 mm along the pad.
To enhance spatial resolution, every second layer is rotated by 90°. A novel
2D spatial resolution approach for the inner part of the TRD is currently under

development [51].
The working principle of the TRD, illustrated in Figure 3.10, is based on

the detection of transition radiation (TR) photons. These photons are emitted
when relativistic electrons pass through a multilayer radiator. Upon entering
the detector, the photons interact with the xenon-based gas mixture, producing
electron-ion pairs that generate an amplified signal. In addition to detecting tran-
sition radiation, the TRD also measures ionization energy loss (dE/dx), which

helps to further distinguish electrons from hadrons [52].

The detector layout of the TRD, depicted in Figure 3.9, consists of four mod-
ular layers, ensuring full coverage of the active area. The layers are arranged in
a quadrature pattern, with every second layer rotated by 90° to optimize track
reconstruction. The modular design allows for easy maintenance and upgrades,
improving the long-term performance of the detector [53].

Recent developments in the TRD include extensive prototype testing, evalua-
tion of production readiness, and integration of advanced gas handling systems.
The multi-wire proportional chamber (MWPC) design, coupled with the active

radiator, ensures effective electron identification. Current measurements show a
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pion suppression factor between 10 and 20 at an electron efficiency of 90% [54].
Future research and development will focus on optimizing detector geometry,

refining front-end electronics, and improving reconstruction algorithms. These ef-

forts aim to enhance the TRD’s performance in high-rate environments, ensuring

reliable electron identification in the CBM experiment.

3.3.7 Time-Of-Flight System (TOF)

The CBM TOF system has achieved significant progress in 2023, focusing on
the finalization of counter designs for mass production of all MRPC types. The
first counter PRRs are expected in mid-2024. The MRPC4 counter will feature
fishing line spacers, while all other types will use pad spacers, as illustrated in
Figure 3.11 [55].

Extensive testing of MRPC prototypes was conducted in Bucharest, Beijing,
and Hefei, confirming stability improvements using pad spacers. However, due to
accelerator constraints, high-intensity aging tests were postponed. In 2023, pre-
production of MRPC counters included 10 MRPC4, 15 MRPC3, and 20 MRPC2
units, with final integration ongoing in Heidelberg [56].

The engineering design of the TOF system progressed substantially, leading to
the realization of the benchmark structural goals. The modules for the outer wall
reached their final design, with a PRR scheduled for late 2024. The first full-size
module of the inner wall, known as MO, is under production in Bucharest and
will contain 30 MRPCs of types MRPCla, MRPC1b, and MRPClc. Figure 3.12

presents a finite element simulation of the main frame [57].

MRPC2 MRPC3

. TR
| s i

Figure 3.11: Counter of
type MRPC2 and MRPC3
with pad spacers [55].
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structure [57].

Significant progress has been made in TOF calibration, particularly for the
eTOF at STAR. Clever algorithms were developed to mitigate TDC dropouts,
successfully applying them to 99% of the collected data. Figure 3.13 illustrates

the time resolution of all 108 counters arranged in the end-cap wheel and the 1/

vs. momentum correlation [58].

These developments demonstrate the CBM TOF system’s capability to operate

at high interaction rates while maintaining precision in particle identification.

Further research will focus on refining TOF algorithms and improving MRPC

performance for future experimental runs.

EToF Time-Resolution

1/ vs. momentum

9al* p (GeVic)

Figure 3.13:
Left: time
resolution of all
108 counters
arranged in the
end-cap wheel.
Right: 1/5
Vs. momen-
tum [58].
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3.3.8 Projectile Spectator Detector (PSD)

The Projectile Spectator Detector (PSD) is a key component of CBM designed
to determine the centrality of nucleus-nucleus collisions and the orientation of
the reaction plane. The PSD measures the number of non-interacting projectile
nucleons (spectators) that do not participate in the collision and are deflected
at small angles relative to the beam axis. These measurements are crucial for
determining the impact parameter of the collision and studying event-by-event
fluctuations of the initial energy density [59].

The PSD is a fully compensating lead-scintillator calorimeter, consisting of 44
independent modules. Each module comprises alternating layers of lead absorbers
and plastic scintillators, optimized to achieve uniform energy resolution. The
readout of the scintillator signals is performed using wavelength-shifting (WLS)
fibers coupled to silicon photomultipliers (SiPMs), which offer high photon de-
tection efficiency and fast response time.

Monte-Carlo simulations of gold-gold (Au+Au) collisions using event genera-
tors such as UrQMD, DCM-QGSM, LA-QGSM, and HSD have been performed
to evaluate the detector’s performance. The reaction plane resolution provided
by the PSD is below 40 degrees for beam energies exceeding 4 AGeV. These
results confirm the essential role of the PSD in providing precise event charac-
terization [60].

A prototype PSD supermodule, illustrated in Figure 3.14, was assembled and
tested to validate the detector performance. The supermodule consists of 9 indi-
vidual PSD modules arranged in a 3 x 3 matrix and is mounted on a dedicated

support platform.

Figure 3.14: Design of the PSD with a support platform (left). PSD super-
module assembly (center). PSD module during installation (right) [59].



28 3. THE COMPRESSED BARYONIC MATTER (CBM) EXPERIMENT

Au+Au @ 10 AGeV, 108 Au/s Negfcm?/2 months
Gy / 2 months 10

" ‘ Au+Au@10AGeV  Au+Au@4 AGeV
10 quadrétlc shape D D

. : 20%x20 cm?
1072 [t diamondshape &

10° *u, i —  R=3cm

'.‘w safe level
100 ek 1.1 D _

lonizing energy loss

hfeight ,cm

PPN ISR S SRR NN WU SO

. :
60 -40 -20 O 20 40 60 width,cm . 0 10 20 30 40 50 R,cm

Figure 3.15: (Left) Distribution of ionizing energy loss in the transverse plane
at 20 cm depth from the PSD module front. (Right) Non-ionizing energy loss vs.

radius in the transverse plane, where MPPCs are located [59].

To verify its response under experimental conditions, the supermodule was
tested at the CERN Proton Synchrotron (PS) using proton beams with momenta
between 2 and 10 GeV/c. The PSD achieved an energy resolution of approxi-
mately 54%/1/E(GeV), with a deviation from linearity below 1%, which satisfies
the experimental requirements of CBM. The energy resolution and response lin-
earity were calibrated using minimum ionizing particles (MIPs), such as beam
muons [61].

To assess the effects of radiation damage on the PSD, extensive FLUKA sim-
ulations were carried out to estimate the absorbed dose during Au+Au collisions
at 10 AGeV beam energy. The calculations indicated that the total absorbed
dose in the PSD remains below 1 kGy, which is acceptable for long-term opera-
tion. However, non-ionizing energy losses due to neutron fluence pose a greater
challenge.

To mitigate these effects, various configurations of the beam-hole region were
investigated. The simulations considered different hole geometries, including a
circular beam hole (3 cm radius) and diamond/quadratic-shaped holes of size
20 x 20 ecm?. Figure 3.15 presents the distribution of ionizing and non-ionizing
energy loss in the PSD region. A dedicated neutron shielding layer consisting of
polyethylene with 3% boron content was introduced to reduce the neutron fluence
by a factor of five [62].

In addition, the radiation hardness of the SiPMs used in the PSD readout

system was tested under neutron irradiation at the NPI cyclotron in Prague.
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The results showed that neutron fluences exceeding 2 x 10Mn,/cm? significantly
increased the SiPM dark current, leading to a deterioration in the signal-to-noise
ratio. Based on these findings, alternative photodetector technologies are being
considered for high-radiation areas of the PSD.

The PSD remains an essential detector in the CBM experiment, providing
crucial information on collision centrality and reaction plane orientation. The
results from simulations and beam tests confirm that the PSD meets the experi-
mental requirements in terms of energy resolution, radiation hardness, and time
response. Further improvements are focused on optimizing the detector geome-
try, upgrading the SiPM readout system, and integrating real-time calibration
methods to enhance performance in high-luminosity heavy-ion collisions.

Future studies will explore advanced reconstruction techniques for event-by-
event fluctuation analyses, as well as improvements in shielding materials to miti-
gate radiation damage. The continued development of the PSD ensures its readi-

ness for operation in the upcoming CBM physics program.

3.3.9 Data acquisition (DAQ) and online event processing

CBM Experiment Area CBM Server Room GSI Green IT Cube
~100 m ~ 1,000 m
[ S —-Y r—:
FEE optical fibres FLES Entry Cluster Infiniband Processing Nodes
Data generation data »/ Timeslice building data > Online
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Figure 3.16: Schematic layout of the CBM readout system, illustrating data

flow from the front-end electronics (FEE) to the online compute farm [63].

The CBM experiment at FAIR is designed to operate at extremely high inter-
action rates — up to 10 MHz. This imposes stringent requirements on the data

acquisition (DAQ) system, which must handle large volumes of data while en-
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suring efficient event selection and processing. Unlike conventional trigger-based
experiments, CBM employs a self-triggered readout system that continuously
streams all detector signals, enabling real-time event reconstruction and filtering
before data is stored for further analysis.

The data flow in the DAQ system follows a well-defined path. The front-
end electronics (FEE) read out signals from the detectors and transmit them
via optical links to the data processing units. Data concentrators then aggregate
these signals and forward them to the online compute farm, where real-time event
selection algorithms identify and store the relevant events. The overall schematic
layout of the DAQ system is shown in Figure 3.16.

GERI-based Readout Chain

Figure 3.17: Setup for testing the synchronization
in the GERI-based readout chain [63].

A key development in the DAQ system is the enhancement of the GERI-based
readout chain [64]. In the latest version, a flexible clock selection mechanism
has been introduced, allowing operation at either 160 MHz or 80 MHz without
requiring FPGA reprogramming. This feature improves debugging and testing
capabilities while maintaining system stability. Furthermore, the number of avail-
able E-Links has been increased to fully utilize the bandwidth of the GBT optical
links.

The integration of GERI with the GBT-based reference clock and time system
has been successfully tested. A dedicated test setup was constructed to evalu-
ate the synchronization precision, ensuring that all readout components operate
within the required timing constraints. The setup used for testing the synchro-

nization process is illustrated in Figure 3.17.
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CRI-based Data Concentrator

The Common Readout Interface (CRI) has also undergone modifications to meet
the specific needs of the mCBM experiment [65]. The number of Readout Boards
(ROB-3) that can be supported by a single CRI board has been increased to eight,
thereby enabling higher data throughput. In addition, firmware optimizations
now allow dynamic reordering of GBT links to maximize the efficiency of optical
component utilization.

A special firmware version has been developed that supports selectable down-
link speeds for compatibility with different generations of readout electronics.
This feature is particularly useful for testing early FEBB-5 boards prior to full
deployment. Moreover, the CRI system includes a scalable data concentrator
based on a high-speed interconnection network, ensuring optimal bandwidth uti-

lization across multiple data channels.

DAQ Performance and Future Developments

The DAQ system is continuously evolving to meet the demands of high-rate data
processing. Future upgrades will focus on increasing data compression efficiency
and enhancing real-time event selection capabilities. Advanced machine learning
techniques are currently being explored to improve event classification and to
reduce background noise at an early stage of data acquisition.

As new detector subsystems are integrated into CBM, the DAQ infrastructure
will be adapted to accommodate their specific readout requirements. Ongoing
tests aim to validate the performance of all components under realistic experi-

mental conditions, ensuring seamless operation once full data-taking commences.

3.3.10 Green IT Cube

To handle the vast data volume generated by the CBM experiment, a dedicated
computing facility known as the Green I'T Cube has been established. This facility
provides the computational resources necessary for real-time event selection and
data processing. Located at GSI, the Green I'T Cube is designed to maximize
energy efficiency while delivering high-performance computing power.

The Green I'T Cube consists of processing nodes interconnected via high-speed
InfiniBand links. These nodes execute the online event reconstruction algorithms

and perform initial data filtering before transferring the results to long-term stor-
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Figure 3.18: The Green I'T Cube at GSI, which serves as the primary computing

facility for online event selection and data processing [66].

age. The facility is integrated into the DAQ system, allowing seamless commu-
nication between data acquisition and processing components.

As shown in Figure 3.18, the Green IT Cube is physically separated from the
experimental hall, ensuring that computing resources remain isolated from beam-
induced background noise. The system’s scalability allows additional compute
nodes to be deployed as needed, maintaining high efficiency as data rates increase.

The CBM DAQ system and the Green I'T Cube together form a highly sophis-
ticated infrastructure capable of handling extreme interaction rates. Continu-
ous improvements in the GERI-based readout chain and CRI data concentrators
ensure that the system remains at the forefront of high-rate data acquisition
technology. With further optimizations planned, CBM will be well-equipped to

achieve its physics goals while maintaining efficient and reliable data handling.

3.3.11 First-level Event Selector (FLES)

The First-level Event Selector (FLES) is the core data processing and event se-
lection system in the CBM experiment. It is responsible for real-time reconstruc-

tion and filtering of physics events from the continuous data stream of the self-
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triggered detector system. Unlike traditional high-energy physics experiments
that rely on hardware-based triggers, CBM employs a fully software-driven selec-
tion process. This approach ensures efficient data handling at interaction rates
exceeding 10 MHz [67].

FLES Architecture

The FLES is designed as a high-performance computing (HPC) cluster, composed

of two main subsystems:

e Entry node cluster — located near the detector system, responsible for

initial data handling and preprocessing.

e Processing node cluster — hosted in the Green I'T Cube at GSI, where

full event reconstruction and selection take place.

Figure 3.19 provides a schematic overview of the FLES architecture.

The entry nodes receive raw data from the detector subsystems via custom
readout links and perform initial data formatting. This data is then transferred
via InfiniBand to the processing nodes, where real-time event reconstruction and
physics analysis occur. The processing nodes use many-core architectures, in-

cluding GPUs, to achieve the necessary computing power [68].
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Timeslice Building in FLES

To efficiently handle high data rates, the FLES processes data in timeslices. A

timeslice aggregates data from all detector subsystems over a fixed time window,
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allowing for full event reconstruction in parallel on different processing nodes.
Figure 3.20 illustrates the timeslice building process.

Each processing node reconstructs a complete physics event from its assigned
timeslice. Since the CBM experiment operates without a traditional hardware
trigger, this method ensures that event selection is based on fully reconstructed

data rather than predefined trigger conditions.

FLES Interface Module (FLIM)

The FLES Interface Module (FLIM) acts as an intermediary between the detector
readout and the FLES computing infrastructure. It is implemented in hardware
description language (HDL) and integrates with the CRI card system. Figure 3.21
shows the updated FLIM architecture.

The FLIM optimizes bandwidth usage by multiplexing multiple input channels
onto a single PCle interface. It incorporates a backpressure management system
to ensure smooth data handling under high load conditions. Additionally, FLIM
supports scalable expansion to accommodate future increases in data rates and

detector upgrades [70].
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Data Transport and Processing

The connection between the entry node cluster and the processing node cluster
is facilitated by a high-bandwidth InfiniBand network, enabling efficient data
transfer over a distance of approximately 1 km between the CBM experimental
area and the Green I'T Cube. The processing nodes execute complex real-time
algorithms to filter background events and select relevant physics interactions.
The FLES system is a critical component of the CBM experiment, ensuring
that only meaningful data is stored for further analysis while maintaining the full

physics potential of the experiment.

3.4 PHSD: Quark-Gluon Plasma

Quark-Gluon Plasma (QGP) is a state of matter that emerges at extreme tem-
peratures and densities, such as those achieved in relativistic heavy-ion collisions
at RHIC or LHC. In this state, hadrons dissolve, and their constituent quarks
and gluons move freely, no longer confined within individual particles.

QGP is characterized by a local energy density exceeding a critical threshold of
g. = 0.5GeV/ fm®, determined from lattice QCD calculations. When the energy
density drops below this value, the system transitions back to the hadronic phase,
where interactions occur between baryons and mesons. PHSD (Parton-Hadron-
String Dynamics) provides a microscopic framework to describe this transition
dynamically [83].

In the hadronic phase, interactions involve baryons and mesons, following con-
ventional hadronic models. In contrast, the QGP phase is dominated by quasi-
particle interactions described by the Dynamical QuasiParticle Model (DQPM).
The system evolves as follows. Quasiparticle interactions govern the QGP phase,
where dynamically generated massive quasiparticles influence transport coeffi-
cients. Hadronization occurs as the energy density falls below ., leading to the
recombination of quarks and gluons into hadrons through a dynamical transi-
tion. Jet quenching becomes significant due to the high density of color charges,
intensifying energy loss mechanisms such as gluon radiation.

The transition between these two phases can be understood by examining the
local energy density, as illustrated in Figure 3.22.

PHSD distinguishes itself from conventional hydrodynamics by treating QGP

as a system of dynamically evolving quasiparticles. The framework consists
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of DQPM-based interactions, where QGP constituents are quasiparticles with
temperature-dependent masses and widths, fitted to lattice QCD results. The
hadronization process ensures a smooth transition from QGP to hadrons as the
system cools. Real-time evolution allows tracking of observables such as particle
spectra, elliptic flow vy, and strangeness production.

The evolution of QGP within PHSD significantly affects experimental observ-
ables, including strangeness production, energy loss mechanisms, and elliptic flow.
Dilepton and photon signals serve as electromagnetic probes, allowing experimen-
tal validation of theoretical models.

PHSD captures the full cycle of a relativistic heavy-ion collision. Initial condi-
tions are modeled by string excitation mechanisms. QGP formation occurs when
local energy density exceeds .. Expansion and evolution are governed by trans-
port coefficients. Hadronization takes place as energy density drops, followed
by final hadronic interactions and freeze-out. The numerical realization of QGP
dynamics in PHSD employs off-shell transport equations and Kadanoff-Baym
dynamics, ensuring a self-consistent treatment of partonic interactions.

PHSD provides a comprehensive theoretical framework for studying QGP for-
mation, properties, and observables in heavy-ion collisions. By integrating lat-
tice QCD constraints via DQPM and simulating the entire collision evolution,
PHSD enables direct comparisons with experimental data, offering insight into

the strong interaction at extreme conditions.



Chapter 4

Neural Networks and Deep Learning

Event classification is a fundamental challenge in high-energy physics, partic-
ularly in the detection of quark-gluon plasma (QGP) formation. Identifying
QGP events among the vast number of recorded collisions requires advanced
analysis techniques capable of distinguishing subtle patterns in among complex
data. Traditional methods based on predefined criteria often struggle with high-
dimensional datasets and nonlinear dependencies, limiting their ability to capture
intricate event signatures. Deep neural networks offer a powerful alternative by
automatically extracting relevant features and learning to recognize patterns di-
rectly from raw experimental data.

Neural networks are computational models inspired by biological neurons.
Each artificial neuron computes a weighted sum of its inputs followed by a non-

linear activation function. Mathematically, this process is described by:

where x; represents the input features, w; are the weights, b is the bias, and ¢
denotes the activation function.

Through an iterative training process, these networks adjust internal parame-
ters (weights) to minimize classification errors and improve predictive accuracy.
The effectiveness of a neural network in event classification depends on several
key factors, including the representation of input data, the choice of a loss func-
tion to measure prediction errors, and the optimization algorithms used to refine
model parameters. Additionally, the network architecture plays a crucial role in

determining how features are extracted and combined, ranging from simple fully
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connected layers to deep convolutional networks capable of capturing spatial cor-
relations in detector signals.

This chapter introduces the fundamental principles of neural networks as ap-
plied to event classification in high-energy physics. It provides the theoretical
background necessary to understand their learning mechanisms, with a focus on
their ability to process collision data effectively. The following chapters will build
on this foundation, leading to the development of a specialized neural network
designed for QGP event selection and its integration into modern data analysis

pipelines.

4.1 Learning Algorithm

A machine learning algorithm is defined by its ability to adapt and improve per-
formance through iterative data processing. In this context, Mitchell (1997) [84]
precisely defines learning as: “A computer program is said to learn from experi-
ence E with respect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with experience E.”

A fundamental aspect of machine learning involves processing structured ex-
amples, each composed of a set of quantitative features representing specific ob-
jects or events. Typically, an example is represented as a vector x € R", where
each element x; corresponds to an individual feature. In classification tasks,
these features encode attributes that enable the algorithm to distinguish between
different categories.

Classification is one of the fundamental tasks in machine learning, where inputs
are assigned to predefined categories or classes. This approach is widely used in
various domains, including image and speech recognition, medical diagnostics,
and high-energy physics experiments [85].

Supervised learning is the primary paradigm for classification tasks, where
algorithms are trained on labeled datasets consisting of input-output pairs. The
objective is to learn a mapping from inputs to outputs, typically by modeling the
conditional probability p(y|x), allowing the system to predict the class y given
a new input x. The effectiveness of a classification algorithm is evaluated by its

accuracy and generalization ability to unseen data.
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4.1.1 Loss Function

The performance of a machine learning model is fundamentally determined by
the choice of an appropriate loss function [86]. This mathematical construct
quantifies the difference between the model’s predictions and the actual target
values, guiding the optimization process to minimize this discrepancy. By pro-
viding a measure of error, the loss function plays a crucial role in adjusting model
parameters during training, ultimately improving predictive accuracy.

The selection of a loss function depends on the nature of the task. In regression
problems, the mean squared error (MSE) is commonly used [87], as it calculates
the average squared difference between predicted and actual values, penalizing
larger errors more heavily. In classification tasks, where the goal is to correctly
assign inputs to predefined categories, cross-entropy loss is widely applied [88].
This function measures the difference between the predicted probability distribu-
tion and the true class distribution, making it particularly effective for multi-class

classification problems. The equation for CE loss can be written as:

L(y,5) = — Z yi log (i) (4.2)

where y; represents the true labels, and 1; denotes the predicted probabilities.

It is important to note that there is no single universal loss function suitable
for all tasks. The choice of a loss function is often empirical and depends on
the characteristics of the data, the nature of the task, and the architecture of
the model [89]. The negative log-likelihood (NLL) loss function, for instance, is
widely used due to its probabilistic interpretation and smooth gradients, which
facilitate efficient optimization.

Generalization refers to a model’s ability to perform well on new, unseen data,
making it a key measure of its effectiveness. A common method for assessing
generalization is to split the available data into separate training and test sets.
The model learns patterns from the training set and is then evaluated on the test
set to provide an unbiased estimate of its performance on unseen data.

This division of data highlights two fundamental challenges in machine learn-
ing: underfitting and overfitting. Underfitting occurs when a model fails to
capture the underlying patterns in the training data, leading to poor perfor-
mance [90]. This is often caused by an overly simplistic model or insufficient

training.
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Figure 4.1: The sequence of diagrams illustrates the progression of model train-
ing. As model complexity increases from left to right, the fit to the training data
improves, reducing training error. However, excessive complexity leads to over-
fitting, where the model becomes too specialized in the training data and fails to
generalize to new, unseen examples. This results in increased prediction error, as

shown in the lower right graph [91].

Conversely, overfitting arises when a model, in an attempt to minimize training
loss, learns not only the true data patterns but also noise present in the dataset.
As a result, the model becomes too specialized in the training data and fails to
generalize to new, unseen examples. A significant gap between training and test
performance is a key indicator of overfitting (Fig. 4.1).

Different techniques help address these challenges, such as regularization to
prevent models from becoming too complex and cross-validation to ensure ac-
curate evaluation. Finding the right balance between model complexity and

generalization is a key challenge in applying machine learning effectively.

4.1.2 Backpropagation

Backpropagation is a fundamental algorithm in machine learning, particularly for
training neural networks [92]. It optimizes the network’s weights by iteratively
reducing the error between predicted and actual outputs, enabling the model to

learn from data.
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The term “backpropagation” is short for “backward propagation of errors” and
refers to the process of computing the gradient of the loss function with respect
to each weight in the network [93]. This is done using the chain rule of calcu-
lus, which allows the computation of partial derivatives and the propagation of
changes in each weight to the previous layer’s weights to determine how changes
in each weight affect the overall error. The process works backward from the
output layer to the input layer, ensuring efficient gradient calculation. Unlike di-
rect computation methods, backpropagation efficiently computes these gradients

layer by layer, making it feasible for deep networks.

oC

(3wl-j

where 0, represents the error term of neuron j, and a; denotes the activation
of neuron .

The primary goal of backpropagation is to minimize the loss function by iter-
atively adjusting the network’s weights and biases based on the computed gra-
dients. Formally, if C(x1,xs, ..., x,,) represents the loss function, its gradient at

point x is given by:
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These gradients indicate how sensitive the loss function is to small changes in
the weights and biases, providing a direction for minimizing the error.

Backpropagation is widely used due to its efficiency and simplicity. It elimi-
nates the need for manually tuning most parameters aside from initial network
configuration. Additionally, it does not require prior knowledge of the function
being learned, making it adaptable across various tasks and domains.

In summary, backpropagation is a key method for training neural networks. It
efficiently calculates gradients and adjusts network weights, making it a crucial

part of modern machine learning and deep learning.

4.2 Optimization Algorithms

Now that we have calculated the loss function, the next step is to utilize it for

training the model by minimizing it through gradient-based optimization. One
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of the most commonly used methods is Stochastic Gradient Descent (SGD), par-
ticularly effective for large datasets [103]. Unlike batch gradient descent, which
computes the gradient using the entire dataset, SGD updates the model pa-
rameters using gradients computed from randomly selected data samples. This
stochasticity introduces noise, helping the model escape local minima and often
leading to faster convergence.

In SGD, the dataset is shuffled at the start of each iteration to avoid bias.
The model updates its parameters after computing the gradient on each random

training example or minibatch:

001 = 0, — aV L0y, 2Dy, (4.5)

where 6; are the parameters at iteration ¢, « is the learning rate, and
VL0, 2™, y®) is the gradient computed for the training sample (2, 3@).

SGD efficiently updates parameters for large datasets but introduces fluctua-
tions in the loss, leading to non-smooth convergence. Despite this, its speed and

efficiency make it a staple in deep learning [104].

4.2.1 SGD with Momentum

Momentum [110] enhances SGD by accelerating convergence and reducing os-
cillations. It achieves this by incorporating information from previous updates,

effectively smoothing the optimization path:

Vi1 = UV + &VJ(Q,:), (46)

9t+1 = Qt — Ut41, (47)

where v represents velocity, and p is the momentum coefficient. By accumulat-
ing past gradients, momentum helps models traverse flat regions more efficiently

and reduces sensitivity to noisy updates.

4.2.2 RMSProp (Root Mean Square Propagation)

RMSProp [111] adapts the learning rate dynamically by normalizing parameter

updates using an exponentially decaying average of squared gradients:
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Si1 = B+ (L= B)(VJ(0,))?, (4.8)
B aV.J(6;)
VS + €

Here, S represents the accumulated squared gradients, [ is the decay rate, and

0t+1 - Ht (49)

€ is a small constant added for numerical stability. By scaling updates based on
past gradients, RMSProp prevents vanishing learning rates and is particularly

effective in non-stationary environments.

4.2.3 ADAM (Adaptive Moment Estimation)

ADAM [112] combines the advantages of Momentum and RMSProp, making
it one of the most widely used optimization algorithms in deep learning. It
maintains both first-moment (mean) and second-moment (variance) estimates of

gradients:

M1 = 61mt + (]_ - 51)v<]<0t>, (410)
Sip1 = BoSt + (1 = B2)(VJ(6:))?, (4.11)
Opsr = 0, — —ItH1 (4.12)

- VSt e

Here, m and S are the first and second moment estimates, while 8; and [,
control their respective decay rates. ADAM adapts the learning rate for each
parameter, leading to faster convergence and improved performance in complex

optimization landscapes.

4.2.4 AdaGrad (Adaptive Gradient Algorithm)

AdaGrad [113] adjusts the learning rate for each parameter based on the historical
sum of squared gradients, allowing parameters with infrequent updates to have

larger adjustments:

Gt+1 = Gt + Vj(et) @ VJ(@t), (413)

Ori1 =60 — ———.
t+1 t \/m—i—e

(4.14)
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Here, G accumulates the squared gradients, and ® denotes element-wise mul-
tiplication. While AdaGrad improves learning for sparse data, it suffers from
aggressive learning rate decay, which can hinder convergence in long training

runs.

4.2.5 Choosing an Optimization Algorithm

The choice of an optimization algorithm depends on the specific problem and
dataset characteristics. While SGD is a popular baseline method due to its
simplicity, SGD with momentum helps stabilize training and accelerate conver-
gence. Adaptive methods like RMSProp, ADAM, and AdaGrad dynamically
adjust learning rates to improve performance. Among them, ADAM is often pre-
ferred for its balance between stability and adaptability, making it a standard

choice for training deep neural networks.

4.3 Types of Neural Networks

This section provides an overview of two fundamental deep learning archi-
tectures: Multilayer Perceptrons (MLPs) [93] and Convolutional Neural Net-
works (CNNs) [94].

MLPs are one of the most basic yet powerful types of neural networks. They
consist of multiple layers of artificial neurons, where each neuron in one layer is
fully connected to every neuron in the next layer. The learning process in MLPs
is driven by backpropagation and gradient-based optimization techniques, allow-
ing the network to adjust its weights iteratively to minimize prediction errors.
MLPs are highly effective in capturing complex, non-linear relationships in data,
making them suitable for tasks such as classification, regression, and function ap-
proximation. However, since MLPs treat input features independently without
considering spatial or local relationships, they are not the best choice for tasks
involving structured data, such as images.

CNNs are specifically designed for processing grid-structured data, such as
images and videos. Unlike MLPs, which rely on fully connected layers, CNNs
utilize convolutional layers that apply small, learnable filters to detect patterns
in local regions of the input. This hierarchical approach allows CNNs to capture
spatial relationships and progressively learn more complex features, from edges

and textures in early layers to high-level structures in deeper layers. Pooling
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Figure 4.2: MLP architecture with three hidden layers, each containing eight
neurons with a Leaky-ReLU activation function. The output layer consists of

two neurons with a Softmax activation and cross-entropy loss [95].

layers further reduce dimensionality, improving computational efficiency while
preserving important information.

MLPs and CNNs are designed for different types of deep learning tasks. MLPs
are flexible and well suited for learning complex features from numerical data,
while CNNs are highly effective for tasks based on spatial hierarchies and pattern
extraction from structured data. The choice between these architectures depends

on the nature of the problem and the structure of the input data.

4.3.1 Multilayer Perceptrons (MLPs)

MLP is a fundamental model in deep learning, capable of learning complex, non-
linear relationships in data [86]. It consists of an input layer, multiple hidden
layers, and an output layer, where each neuron is fully connected to those in
adjacent layers (Fig. 4.2).

Each neuron in an MLP computes a weighted sum of its inputs, followed by a
non-linear activation function. Mathematically, the output of the i-th neuron in

@

the [-th layer, denoted as a;’, is given by:

N
Z wg.)ag.l_l) + bgl) (4.15)
=1
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)
ij
(I — 1)-th layer, and ¢ is the activation function.

where w;.” are the weights, bgl) is the bias, IV is the number of neurons in the

According to Cybenko’s universal approximation theorem, an MLP with at
least one hidden layer can approximate any continuous function, provided it
has a sufficient number of neurons and an appropriate activation function [96].
However, in practice, deeper networks with multiple hidden layers often perform
better at capturing complex data patterns and high-level abstractions.

For a given input vector x, the output of the network can be expressed as:

y = f(x; W,b) (4.16)

where W represents the set of weights, b denotes the biases, and f is the
function determined by the network’s architecture and parameters.

Training an MLP involves adjusting the weights and biases to minimize a
loss function L(y,y), where y is the predicted output. This optimization is typ-
ically performed using backpropagation combined with gradient descent or its

variants [92].

4.3.2 Convolutional Neural Networks (CNNs)

CNNs are a class of deep neural networks specifically designed for processing
grid-like structured data, such as images [93]. Their layered architecture enables
automatic and adaptive learning of spatial hierarchies of features, making them

particularly effective for computer vision tasks.

Convolution Operation

The convolution operation is the fundamental building block of CNNs, allowing

the network to extract spatial patterns from input data. It is mathematically

defined as:

Ej = Z Z Kmn : Iifm,jfn (417>

where Fj; represents elements of the feature map, K, are the elements of the
convolutional kernel (or filter), and I;_,, ;_, are the input data values.
Two important techniques, padding and striding, control the spatial dimen-

sions of the feature maps and enhance computational efficiency [86]. Padding
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adds extra pixels around the input image to preserve spatial dimensions after
convolution, while striding defines the step size of the kernel as it moves across
the input. These techniques allow CNNs to manage spatial hierarchies effectively

and maintain relevant features.

Activation Function

To introduce non-linearity after each convolution, activation functions are ap-
plied. The Rectified Linear Unit (ReLU) [97] is widely used due to its simplicity

and effectiveness in preventing vanishing gradients. It is defined as:

A(z) = max(0, x) (4.18)

ReLU ensures that only positive values propagate forward, accelerating con-

vergence and improving network stability.

Pooling Layer

Pooling layers downsample feature maps to reduce spatial dimensions, minimize
computational complexity, and enhance feature invariance to translation and

scaling. A commonly used pooling technique, max pooling, is defined as:

-Pij = max Fi—i—m,j—‘rn (419)

By selecting the maximum value in a local region, max pooling helps pre-
serve dominant features while reducing redundant information, improving model

efficiency and robustness.

CNN Architecture

A typical CNN consists of multiple convolutional layers, each followed by an
activation function and often a pooling layer (Fig. 4.3). The extracted high-
level features are passed through fully connected layers, which generate the final
classification output.

The hierarchical structure of CNNs allows them to learn progressively com-
plex representations — from low-level edge detection in initial layers to high-level
object recognition in deeper layers. This ability to capture spatial dependencies
makes CNNs highly effective for tasks such as image classification, object detec-

tion, and image segmentation.
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Figure 4.3: Overview of a Convolutional Neural Network (CNN) architecture
and the training process. A CNN consists of multiple convolutional layers, pool-
ing layers (e.g., max pooling), and fully connected (FC) layers. The model’s
performance is evaluated using a loss function, and learnable parameters, such

as kernels and weights, are updated through backpropagation with gradient de-
scent [98].

4.3.3 The Softmax Function

The softmax function, denoted as o, is widely used in machine learning, partic-
ularly for normalizing model outputs into probability distributions suitable for
multi-class classification tasks [86]. It ensures that the network’s predictions are
interpretable as probabilities, making it a key component in classification prob-
lems.

Given an input vector z € R¥, the softmax function transforms each element
into a value in the interval (0, 1) while ensuring that the sum of all outputs equals
one. This transformation is defined as:

exp(z;)

==
Zj:l exp(z;)

The exponential function in the numerator amplifies differences between the

o(z); = i=1,... K (4.20)

input values, increasing the influence of the highest values while suppressing
smaller ones. As a result, the softmax function tends to assign higher probabilities
to dominant classes, making classification decisions more distinct.

A temperature parameter 5 can be introduced to control the sharpness of the
probability distribution:
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o(z); = —P10%) i=1,... K. (4.21)

ZJK:1 exp(6z;) 7

In statistical mechanics, [ is analogous to the inverse temperature, where

higher values of 8 result in more peaked distributions, emphasizing dominant
classes, while lower values produce more uniform probabilities.

Neural networks commonly use the softmax function in the output layer for
multi-class classification. It converts raw network outputs into probability scores,
allowing for a probabilistic interpretation of predictions. The function also facil-
itates the application of cross-entropy loss, a widely used objective function in
classification problems.

For optimization purposes, the gradient of the softmax function is essential
in training neural networks. It is typically expressed in terms of the Kronecker
delta and the softmax outputs, which simplifies the computation of parameter
updates.

To improve numerical stability, a constant is often subtracted from each el-
ement of the input vector before applying the softmax function. This does not
affect the final probabilities but prevents issues related to large exponentials,

which can cause computational overflow.

4.4 Generalization and Regularization

Generalization is a fundamental objective in machine learning, ensuring that a
model performs well not only on training data but also on unseen examples.
However, achieving strong generalization requires addressing two major chal-
lenges: underfitting and overfitting. These issues arise when the model either
fails to learn sufficiently from the data or learns too intricately, capturing noise
rather than meaningful patterns. Regularization techniques play a crucial role in
mitigating overfitting and improving generalization by constraining model com-

plexity.

4.4.1 Underfitting and Overfitting

Underfitting occurs when a model lacks the capacity to capture the underlying
structure of the data, leading to high errors on both training and test datasets.

This problem often stems from an overly simplistic model with high bias, which
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makes incorrect assumptions about the data. Such models fail to learn meaningful
relationships and exhibit poor predictive performance across different datasets.

In contrast, overfitting arises when a model learns not only the true pat-
terns in the training data but also noise and outliers. This results in a model
that performs exceptionally well on training data but generalizes poorly to new
examples. Overfitting is characterized by high variance, meaning the model’s
predictions fluctuate significantly with small changes in the input data. While
training error remains low, test performance suffers due to an excessive reliance
on specific details of the training set.

Balancing bias and variance is key to constructing models that generalize ef-
fectively. A model with high bias oversimplifies the problem and underfits the
data, while a model with high variance overfits by memorizing training data in-
stead of identifying broader patterns. Learning curves and validation curves are
commonly used to visualize and diagnose these issues, helping practitioners tune

model complexity appropriately.

4.4.2 Regularization and Its Role in Generalization

Regularization techniques are widely used to address overfitting by limiting the
model’s complexity and preventing it from capturing noise. This is typically
achieved by modifying the loss function to include a penalty term that discourages
excessive parameter growth.

A common approach is parameter norm penalties, where an additional term
is introduced into the objective function to control the magnitude of the model

parameters:

J(0; X,y) = J(0; X,y) + af2(6), (4.22)

where « is a hyperparameter controlling the strength of regularization, and
Q(0) represents the penalty applied to the model parameters, such as L1 or 1.2

norms. Choosing the right « is crucial and is often done via cross-validation.

4.4.3 L1 and L2 Regularization

Two primary forms of regularization, L1 and L2, apply different penalties to the

model’s parameters to encourage generalization.
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L1 regularization, also known as Lasso regression, penalizes the absolute values
of the parameters, promoting sparsity by forcing some weights to zero [106]. This
is particularly useful for feature selection in high-dimensional datasets and is

beneficial when many features are irrelevant:

L(0) = 5= S (ha®) =y + X716 (4.23)

L2 regularization, or Ridge regression, penalizes the squared values of the
parameters, discouraging extreme weight values without eliminating them en-
tirely [107]. It works well when all features contribute to predictions and helps
prevent large coefficients that may lead to overfitting:

1 m ‘ ‘ n
L(0) = =—> (ho(x) =y @)+ 1) 62, (4.24)
j=1

2m 4
=1

Unlike L1 regularization, L2 encourages smooth parameter distributions, mak-

ing it more suitable for models where all features contribute meaningfully to
predictions.

4.4.4 Elastic Net Regularization

Elastic Net combines L1 and L2 regularization, balancing feature selection and
weight decay (Fig. 4.4). This hybrid approach is especially effective when dealing
with multiple correlated features, where Lasso may select only one feature from
a group. Elastic Net uses two hyperparameters, \; and Ay, which are often

selected via cross-validation to achieve the desired balance between sparsity and

generalization:
1 & . A " n
- () _ 4,(1))2 ) 2
L) = 5 ;Zl(he(a: )=y A ;:1 16,1 + A2 J§:1:9j. (4.25)

4.4.5 Choosing the Right Regularization Technique

Selecting the appropriate regularization technique depends on the nature of the
dataset and the problem at hand. L1 regularization is beneficial when feature
selection is a priority, as it forces some weights to zero, effectively removing

irrelevant features. L2 regularization is preferable when all features contain useful
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Figure 4.4: This figure illustrates the differences between Ordinary Regression
methods: Lasso, Ridge, and Elastic Net. The left plot demonstrates Lasso (L1
norm), which applies an L1 penalty resulting in some coefficients being exactly
zero due to its diamond-shaped constraint that intersects the level curves along
the axes. The middle plot presents Ridge (L2 norm), which employs an L2
penalty to shrink all coefficients continuously without forcing them to zero due to
its circular constraint. The right plot shows Elastic Net, which combines L1 and
L2 penalties, striking a balance between sparsity (some coefficients set to zero)
and coefficient shrinkage (reducing the magnitude of the remaining coefficients).
The contour lines represent the loss function landscape, while the green points

denote the optimal solutions found under each regularization method [108].

information but should be prevented from dominating the model. Elastic Net

offers a balanced approach, mitigating the limitations of both methods.

4.4.6 Capacity and Hypothesis Space

A model’s ability to generalize effectively is closely tied to its capacity, which de-
fines the range of functions it can represent. The hypothesis space, encompassing
all possible functions the model can learn, must be carefully chosen to align with
the complexity of the task and the available data.

For instance, in polynomial regression, the degree of the polynomial dictates
the model’s capacity. A low-degree polynomial may underfit the data, failing
to capture important relationships. Conversely, a high-degree polynomial can
overfit by adapting too closely to training examples, losing the ability to gener-
alize. Cross-validation techniques are commonly employed to select an optimal

polynomial degree, ensuring a balance between flexibility and robustness.



Chapter 5

ANN Package — ANNA4FLES

The study of quark-gluon plasma is one of the main goals in modern nuclear
physics. To create quark-gluon plasma, scientists investigate the collision of rela-
tivistic heavy ions. At certain collision energies, matter can become compressed
and heated enough to undergo a phase transition.

One of the biggest challenges in studying quark-gluon plasma is that this phase
lasts for only a very short time compared to the full evolution of the nuclear
system. Because of this, detected events do not have clear signs of whether QGP
was present or not. Additionally, indirect signals, such as direct photon emission,
are often hidden in background noise. This makes it necessary to search for hidden
patterns that can help distinguish events that contain quark-gluon plasma from
those that do not.

Neural networks are widely used because they can process different types of
input data and be adjusted by adding parameters or changing input formats. This
makes them effective for studying process classification in heavy ion collisions in
the CBM experiment.

The following sections examine how a neural network classifier can be used
to recognize events generated by two different versions of the PHSD transport

model: events that contain quark-gluon plasma and those that do not.

5.1 The ANN package for QGP detection

The neural network package is built upon previous applications of neural networks
in the CBM [114] experiment and is designed to classify simulated raw detector

data to identify the presence of quark-gluon plasma. The package includes the



54 5. ANN PACKAGE — ANN4FLES

following features:

e developed in C++ without third-party libraries;

e based on PyTorch neural network mathematics;

e operates with or without a graphical user interface (GUI);

e independent of the input data type;

e allows new neural network architectures to be added separately;

e implemented with single precision;

e supports multithreading (OpenMP) and is partially SIMD optimized (CNN

part);

The neural network package is based on the mathematical foundations of the
nn module from the deep learning framework PyTorch [115]. This approach
enables benchmarking and provides full access to internal processes and settings,
which are typically hidden when using third-party libraries.

The package is designed to allow the addition of new neural network archi-
tectures independently, ensuring that functionality can be expanded without
reducing efficiency in existing architectures. It also supports integration with
third-party graphical user interfaces (GUIs), such as the Qt framework [116], as
illustrated in Fig. 5.1.

To enhance performance on multithreaded systems, OpenMP support is im-
plemented. Certain classes, such as the convolutional neural network implemen-
tation, include both scalar and vectorized versions, allowing for performance op-
timizations in specific architectures. Additionally, the package supports multiple

input data types, making it adaptable for various tasks.

5.2 Functionality of ANN package

The neural network package offers a wide range of features, including:

e using prebuilt neural network architectures;

e creating custom architectures;

e adjusting the size of the dataset used for training and validation;
e saving and loading initial weights for the neural network;

e modifying the number of training and validation epochs;

e setting the batch size for training;

e selecting different weight optimizers, such as Adam;
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Figure 5.1: Graphical interface for performance analysis and hyperparameter

tuning during neural network training.

e choosing different activation functions, such as LReLU;
e adjusting the dropout rate for hidden layers;
e saving neural network outputs;

e analyzing the performance of different neural network architectures.

A graphical interface for performance analysis and hyperparameter tuning
during neural network training is shown in Fig. 5.1. The figure illustrates the
training process of a single-layer fully connected neural network over 10 epochs
using a dataset of 4000 files per class for training and 1000 files for validation.
An epoch represents a complete pass through all files in the dataset.

Training was performed using the Adam optimizer with a batch size of 80
files. During training, the accuracy on the training dataset reaches 100% (dashed
line), while the accuracy on the validation dataset eventually starts to decline
or stagnate (solid line). This phenomenon is known as overfitting. In this case,
overfitting occurred after the second epoch.

The auxiliary loss function graph, updated after each epoch, helps monitor
the stability and correctness of the neural network. The example shows a smooth
decrease in the loss function for the training dataset (dashed line) and a gradual

decline for the validation dataset (solid line).
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Figure 5.2: Program interface using the Qt framework. The screenshot shows
the result analysis mode, which allows comparing different neural network con-

figurations and saving results to a file.

The intuitive interface allows specifying, modifying, and saving different neural
network architectures used for specific tasks. For fine-tuning, hyperparameters
such as batch size and dropout rate for hidden layers can be adjusted. Graphical
visualization during training enables tracking of the neural network’s behavior,
including accuracy and the loss or cost function value after each epoch. Addi-
tionally, it is possible to save and load the final network weights, as well as store
accuracy data after each epoch for analyzing different neural network architec-
tures.

The graphical interface for result analysis is shown in Fig. 5.2. The figure
displays the results of a single-layer fully connected neural network trained for
10 epochs. The interface allows comparing results from different neural network
architectures to determine the most efficient one for a given task. The comparison
results can be saved to an output file.

This mode of the neural network package will be used later to compare the
performance of PyTorch-based neural networks with the results obtained using

this package.
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5.3 Development of ANN package

The development of the neural network package consists of several stages: prepa-
ration and analysis of input data, design of neural network architectures and
regularization methods, and creation of a graphical interface for visualizing the
neural network’s operation and processing the obtained results.

The implementation of input data reading ensures compatibility with various
data types. Information about the structure and volume of data is automatically
stored and used to maintain the correct operation of the neural network package.
An example of working with simulated raw data from the CBM detector will be
discussed in the following sections.

The development of neural network architectures and regularization methods
was carried out in multiple stages. Initially, fully connected neural networks
were implemented, followed by the addition of regularization methods and con-
volutional neural networks. A detailed analysis of the development process and
a comparison with the PyTorch library will be presented later.

The Qt framework [116] was used to create the graphical interface for cross-
platform software development in C++4-. The use of a third-party library simplifies
visualization and result analysis, though the neural network package can also
function without a GUI. In the future, alternative open-source solutions such as
the cross-platform GTK library [117] may be considered. The program interface
using Qt is shown in Figs. 5.1 and 5.2.

5.3.1 Input data

Various models are used to simulate the QCD phase transition in heavy-ion col-
lisions. This chapter explores the application of neural networks to study the
equation of state and properties of matter based on hadron momenta modeled
using a microscopic transport approach known as Parton-Hadron-String Dynam-
ics (PHSD) [118]. This approach is used solely as a data generation tool, and all
neural networks described in this chapter can also be applied to data from other
models.

The Parton-Hadron-String Dynamics (PHSD) model is a microscopic trans-
port framework designed to describe strongly interacting hadronic and partonic
matter [119]. It is based on solving the Kadanoff-Baym equations in a first-order

gradient expansion in phase space, enabling the description of the complete evo-
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lution of relativistic heavy-ion collisions. This includes the initial hard scattering
and string formation, the deconfinement process leading to a phase transition
into quark-gluon plasma, as well as hadronization and subsequent interactions in
the hadronic phase [120].

At lower energies, the PHSD approach is equivalent to the Hadron-String-
Dynamics (HSD) transport model [121]. The PHSD model has been applied to
nuclear collisions across a wide energy range, from the low-energy Super Proton
Synchrotron (SPS) to the Large Hadron Collider (LHC). It has also been success-
fully used for analyzing dilepton production in pA and AA heavy-ion collisions
from SIS to LHC energies [122].

The dataset generated using the PHSD model contains 10,000 events, with half
including information about quark-gluon plasma (QGPF,,) and the other half not
(QGP,fy). Simulations were performed for central Au + Au collisions at a fixed
energy of 31.2A GeV. The dataset is divided into two groups: the first consists
of 8,000 randomly selected events, while the remaining 2,000 form the second
group. The first group is used for training the neural network, and the second
for validation.

Each simulated event contains physical information about approximately 1,500
particles, most of which appear very rarely. Therefore, using all particle data is
unnecessary, as it would introduce excessive noise. To reduce this, 28 particle
types are selected, ensuring that only those appearing at least once in 1,000 events
are included. For these particles, the absolute momentum [p|, the inclination
angle ©, and the azimuthal angle ¢ are calculated.

The extracted data is then stored in an array by dividing it into 20 bins. The
angular information is split into equal intervals, while the absolute momentum is
distributed across 20 logarithmically scaled bins. Since most particles have rela-
tively small momentum, this approach results in a denser and more informative
representation.

As a result, each event is represented as an array where each element is a vector,
with the ith component indicating the number of particles of type ¢ within a given
momentum bin. The final 4D array has a size of 28 x 20 x 20 x 20 and is used as
input for neural networks.

When using fully connected neural networks, the data from the described
array are passed without any modifications. Since the original array has a 4D
structure while the input layer of a fully connected network is 1D, the data must

be transformed by flattening. As a result, a data array with 224,000 input neurons
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is obtained.

At this stage, it is important to note that even after such transformations, a
significant number of zero-valued cells remain in the input data. This issue will be
discussed in more detail when examining the working principles of convolutional
neural networks.

After defining how the input layer of a fully connected neural network is struc-

tured, the next step is to analyze how the network processes this information.

5.3.2 Fully-connected neural networks (FC NN)

To enable the flexible creation of fully connected neural network architectures, the
neural network package includes classes responsible for neurons, neuron layers,
and the overall network structure. This design allows new architectures to be cre-
ated and the package’s functionality to be extended without affecting previously
developed and tested architectures.

The neuron class provides functions for managing weights, gradients, output
values, and parameters required for the Adam optimizer. The neuron layer class
includes functions that manage all neurons within a layer, including initialization,
data processing, activation, and clearing operations. The neural network class
handles the overall architecture and provides functions for passing input data
and hyperparameters from the GUI to the network, performing forward propa-
gation, computing the loss function, executing backpropagation, saving results,
and transferring them back to the GUI.

Neural network architectures

Figure 5.3 schematically illustrates the architectures of fully connected neural
networks, which will be discussed in detail later.

To begin with, the structure and characteristics of a single-layer fully connected
neural network, shown on the left in Fig. 5.3, are examined. This configuration
includes only an input and an output layer. Since there are only two possible
outcomes — either an event contains QGP or it does not — the Softmax activa-
tion function is a convenient choice for the output layer. This function converts
a vector of numbers into a probability distribution, where each probability is
proportional to the corresponding value’s relative contribution in the vector. As

a result, the sum of all output neuron values equals 1, which directly corresponds
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Figure 5.3: Left to right: the structure of a single-layer, two-layer, and three-
layer fully connected neural network used for detecting QGP. [114]

to the physical meaning of the task — the probability of QGP presence in an
event.

Other hyperparameters, such as the number of training epochs and batch size,
are selected empirically and may vary across different configurations. For fully
connected architectures, training and validation were performed over 10 epochs,
with a batch size of 80. When setting this parameter, it is important to ensure
that the batch size is a divisor of the total dataset size, so that the number of
batches remains an integer. Additionally, if vectorization is used, the batch size
should be a multiple of the number of elements in the SIMD vector. This aspect
will be further analyzed in the section on neural network training.

For all neural network models, the cross-entropy loss function is applied, along
with the Adam optimizer, using a learning rate of 0.001.

Next, a hidden layer with 64 neurons is added. This number was chosen
empirically and fixed to allow for comparisons of the efficiency of neural networks
with different numbers of hidden layers. The structure of this two-layer fully-
connected neural network is shown in Fig. 5.3 (middle). For this configuration,
the Softmax activation function is applied to the output layer, while the hidden
layer uses the Leaky Rectified Linear Unit (LReLU) with a slope of 0.01.

The use of Leaky ReLLU has several advantages. First, due to its linearity, it
is computationally less expensive than sigmoid or hyperbolic tangent functions.
Second, Leaky ReLU does not suffer from saturation, and its use significantly

accelerates the convergence of stochastic gradient descent. Third, unlike the
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commonly used ReLU, it prevents the “dying neuron” problem, as it returns small
values in the negative region instead of zero. Additionally, batch normalization
(BN) and dropout with a rate of 0.5 are applied to the hidden layer. These
techniques help speed up the training process and, more importantly, reduce
overfitting, thereby improving event classification accuracy.

To construct a three-layer fully-connected neural network, another hidden layer
identical to the previous one is added. The structure of this configuration is
shown in Fig. 5.3 (right). This results in an architecture with an input layer,
two identical hidden layers, and an output layer with two neurons. Using this
method, an unlimited number of hidden layers can be added. However, as will be
shown later, increasing the number of layers significantly slows down training and

validation times while providing little improvement in classification efficiency.

Learning process

Once the neural network architecture is assembled, it must be trained before it
can be used as a classifier.

The training process consists of several stages: initialization of neural network
parameters, forward propagation, calculation of the loss function, and backprop-
agation. This process is iterative: during each complete pass, the neuron weights
are updated, and the error function is expected to decrease. Due to the cyclical
nature of training, certain issues may arise, such as overfitting — when the model
performs well on the training set but fails to generalize to validation data. The
goal of training is to find optimal weight values for all neurons, and the effec-
tiveness of training is typically evaluated using performance graphs. The overall
training process is schematically represented in Fig. 5.4. The following sections
will discuss each training stage in detail, beginning with parameter initialization.

The choice of initial weights has a significant impact on the learning efficiency
of the neural network. If all weights are initialized to zero, the network will
struggle to learn, as all neurons will remain inactive. A common approach is
to initialize weights randomly using a standard normal distribution. However,
this can cause problems with gradient calculations, leading to either vanishing
gradients (when values are too small) or exploding gradients (when values are
too large). Both issues result in incorrect weight updates, potentially preventing
the network from learning effectively. The best initialization method depends on

the activation functions used in the given neural network architecture. In this
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Figure 5.4: Neural network training process: forward propagation is shown in

blue, and backpropagation is shown in red. [123]

case, Xavier initialization will be used for all layers, as it ensures balanced weight
distribution across the network.
Xavier initialization [124] is a method designed to maintain the variance of

activations across layers to improve training stability. Consider a linear neuron:

Nin

Y= Zwi:v,- (5.1)
i=1

Its variance can be expressed as:

Varly;] = Varfwz;] = E[w}a;] — (Ew;z;])”

! 2 (5.2)
= E[z;)*Var|w;] + E[w;]*Var|x;] + Var[w;|Var[z;]

Assuming that weights w; and input values x; are uncorrelated and have zero

mean, we obtain:

Varly;| = Var[w;|Var|z;] (5.3)

Varly|] = Var

i=1

Z yi] = Z Var|[w;x;] = neu Varjw;|Var|z;] (5.4)
i=1
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Thus, the output variance is proportional to the input variance with a propor-
tionality factor ng,: Var[w;].

Before Xavier initialization, a common method for weight initialization was:

w; ~ U [—% %} (5.5)

where U [—a, a] represents a uniform distribution in the interval (—a,a), and

n is the size of the previous layer.

The variance in this case is given by:

Varfu = £ (o L) (5.6)
= 12 vV Nout vV Nout B 3nout .
1
Nout Varfw;] = 3 (5.7)

Where n,; is the size of the hidden layer (assuming all layers have the same
size). After multiple layers, the signal weakens during forward propagation, and
a similar effect occurs during training — the variance depends on the layer and
decreases.

To preserve variance as data passes through hidden layers, the following con-

ditions must be met:
e Varfw;] = - for forward propagation,
e Var|w;| = ﬁ for backpropagation.

As a compromise, an averaged value is taken, leading to the normalized Xavier

initialization:

2

V6 V6

\/nin + Nout ’ \/nm + Nout

(5.9)

After initializing all layers with initial weights, the next step is forward prop-
agation.
The forward propagation process consists of the sequential activation of all

neurons layer by layer: starting with the input layer, passing through all hidden
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layers, and finally activating the two output neurons, whose values are stored for
further analysis.

Due to the nature of the input data — where most of the values are zero —
and considering that each activation function involves the product of the previous

layer’s neuron output and the weight of the connection between neurons:

S; — Z hjwji, (510)
j=1

it is possible to skip computations for these zero neurons. This reduces com-

putational complexity and accelerates the training process.

/* Fill in the input neurons */
#pragma omp parallel for
for (int n = 0; n != net_layers[0].size(); n++) {
Neuron &neuron = net_layers[0] [n];

neuron.set_value(batch[index*net_layers[0].size() + n]);

if( use_batch ) {
/* Calculation activation function for the input layer */
#pragma omp parallel for
for (int n = 0; n != net_layers[i].size(); n++) {
net_layers[i] [n] .analizeB(net_layers[i-1], batch, n_active);
}
} else {
/* Calculation activation function for hidden layers */
#pragma omp parallel for
for (int n = 0; n != net_layers[i].size(); n++)

net_layers[i] [n].analize(net_layers[i - 1]);

Listing 5.1: The parallel implementation of Forward Propagation algorithm
with OpenMP.

Additionally, since the activation function for each neuron in the current layer

is computed independently and only depends on neurons from the previous layer,
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OpenMP can be used to parallelize these calculations, enabling the use of multiple
threads on multiprocessor systems.

A parallel OpenMP implementation of the forward propagation algorithm is
presented in Listing 5.1. The #pragma omp parallel directive defines the start
of a parallel block, while the #pragma omp parallel for directive distributes
loop iterations among multiple threads, ensuring parallel execution.

Thus, the process of forward propagation can be broken down into the following

steps:

1. Store the indices of non-zero input neurons to optimize computations.
2. Compute s; = Z;;l hjwj; for each neuron in the hidden layer.

3. Activate the hidden layer neurons and repeat the previous step for the

subsequent layers.
4. Compute s; = Z;;l hjwj; for each neuron in the output layer.

5. Activate the output layer neurons and store the information for the loss

function calculation.

The next step after forward propagation is computing the loss function. This

study uses the cross-entropy loss function, which is defined as:

Tout

E=— Z(tz log(yi) + (1 —t;) log(1 — v;)) (5.11)

i=1
where ¢ represents the target vector and y is the output vector [125]. The
output layer applies the Softmax activation function, which produces a discrete
set of probabilities for QGP presence in an event for two neurons. In general, it

is expressed as:

Si

. €
>

The cross-entropy loss function for this case takes the form:

(5.12)

E=-— Zt log(ys) (5.13)
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Now the global and local gradients can be computed, which will be used for
updating the weights. The calculation starts with partial derivatives, applying

the chain rule for differentiation:

OE  t

Dy B _;

Oy _ | sren — (Srem)® i=k

a%_{ — s i#k (5.14)
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Thus, the gradient for the weights in the output layer is:

8wﬂ 882‘ 8wﬂ-

= (yi —t;)h;

(5.16)

For hidden layer neurons, applying the chain rule allows computing local gra-

dients considering the derivative of the Leaky ReLU activation function:

OB _ i OF 05 Ol
8Sj N - 88,- 8h»8sj

Z negative slope, s; <0
_= w Z .
’ 1, 5; >0

(5.17)

After computing all local gradients, the final stage of neural network training
— weight update — can be performed. There are several different methods for

updating weights, but this work focuses on the Adaptive Moment Estimation
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(Adam) optimizer [126]. This algorithm combines elements of previously devel-
oped methods, namely RMSProp [127] and the momentum optimizer [128]. The
differences between Adam and other optimization algorithms will be discussed,
along with a brief overview of the evolution of adaptive gradient descent methods.

The classical stochastic gradient descent (SGD) [129] is given by:

O = 0,1 — NV E(xt,0:-1, ys)
(5.18)

S~

t _
77:770(1—?); n = 1€

This algorithm has two main weaknesses. The first issue is that the learning
rate 1 remains constant throughout the entire training process. To address this,
techniques such as linear or exponential decay over time (equation 5.18) are
commonly applied.

The second, and more significant issue, is that the loss function E' is not taken
into account, which may result in convergence to local minima where the loss
function flattens, causing the gradient to approach zero. This, in turn, slows
down or even halts the learning process. Furthermore, even when gradients are
nonzero, they may exhibit significant noise (varying in magnitude and direction
across different input samples), leading to slower convergence.

To mitigate these issues, an ideal optimization algorithm should be adaptive. A
notable improvement over standard stochastic gradient descent is the momentum-

based stochastic gradient descent method:

up = yup—1 +nVeE(0)

5.19
0:9—ut ( )

In this algorithm, momentum ~u,_; is introduced, which helps maintain veloc-
ity during training. Intuitively, this can be interpreted as the inertia of a moving
object. This momentum enables the model to overcome local minima more ef-
fectively since the step size toward the global minimum depends not only on the
gradient of the loss function at the current point but also on the accumulated
velocity over the course of training. In other words, movement is influenced more
by velocity direction than by the gradient at a specific point.

Another limitation of previous methods is that the learning rate remains uni-
form across all directions. The AdaGrad method [130] addresses this by dy-
namically adjusting the learning rate for each parameter. The core idea of this

optimization algorithm is to increase updates for parameters that change slowly
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while reducing updates for rapidly changing parameters. Instead of using momen-
tum, this method maintains ¢, the sum of squared gradients. When updating a
weight parameter, the current gradient is divided by the square root of g. As a
result, the algorithm adjusts updates in all directions proportionally, leading to
accelerated updates along axes with small gradients and slowed updates along

axes with large gradients.

go=0,e=10""
G = g1+ VoE(0) (5.20)
0=0—n VoE(0)

N

There is also a significant weakness in this algorithm: the learning rate con-
tinuously decreases, but at different rates for different . Over time, the sum of
squared gradients g grows indefinitely, causing weight update steps to approach
zero, ultimately stopping the learning process. A variation of this algorithm
addresses this issue. This approach, known as RMSProp, modifies the sum of

gradients so that instead of growing unbounded, it decays over time:

go = O)O{ ~ 0.9,6 == 10_8

G =a-g1+(1— 04>V9E(9)2 (5.21)
VQE(H)

n\/gﬁ%- €

Thus, the adaptive moment estimation method (Adam optimizer) is intro-

0=0—

duced, which is used in this work. Adam is a refinement of AdaGrad that incor-

porates smoothed versions of the mean and root-mean-square (RMS) gradients:

moy = 0, Vg = 0
my = [ -my_1 + (1 — 1)V E(0)

v =P vi1 + (1 — 52)V0E(9)2
—~ my

=T g (5.22)
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A look at these equations shows that the equations with m; resemble the
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stochastic gradient descent method with momentum. In the case of Adam, the
velocity is referred to as the first moment (; and serves as a hyperparameter.
Similarly, the equations with v, resemble RMSProp, which maintains the running
sum of squared gradients. Here, the coefficient is called the second moment [,
and is also a hyperparameter. Consequently, the weight update process can be
viewed as a combination of RMSProp and SGD with Momentum.

However, there is a slight difference related to the first iteration: due to the
zero initialization of mg and vy, the first and second momentum terms are ini-
tially zero, leading to division by a very small value when updating the weights.
This results in an excessively large initial update step. To mitigate this issue,
a correction (Bias Correction) is introduced, which adjusts the first and second
moment estimates at the start of training. This leads to the final version of the
Adam optimizer.

The recommended hyperparameter values are: o = 0.001, 5; = 0.9, 85 = 0.999,
and € = 1078, The main advantages of this algorithm include its simplicity of
implementation, computational efficiency, low memory requirements, invariance
to diagonal gradient rescaling, and suitability for large-scale problems in terms
of both data and parameters.

Thus, the backpropagation algorithm can be structured into the following

steps:

1. Compute the loss function using the information obtained after forward
propagation.

2. Calculate the global gradient on the output layer based on the loss function.

3. Use the chain rule to compute local gradients in the hidden layers.

4. Update all neuron weights in the hidden and output layers using the Adam

optimizer.

Thus, the general algorithm of the neural network training procedure has been
considered, and it can now be applied to a single-layer fully connected neural
network, the structure of which is shown in Fig. 5.3 (left). This architecture
consists of only an input layer (224,000 neurons) and an output layer (2 neurons),
which meet the problem requirements.

Training is performed on mini-batches of 80 files. This number was chosen
empirically but must satisfy two conditions: it must be a multiple of the number

of elements in the SIMD vector to fully utilize vectorization and accelerate the
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Figure 5.5: Efficiency graph of single-layer fully connected neural networks
for training and validation modes. The architecture using the external PyTorch
library is shown in red, while the architecture from the neural network package

is shown in blue.

training process, and it must be a divisor of the input dataset, ensuring that
the number of batches remains an integer. The dataset consists of 8000 files for

training and 2000 files for validation, with training conducted over 10 epochs.

To verify the neural network package, a comparison was conducted between
two variations of a single-layer fully connected neural network: one implemented
using the third-party PyTorch library and the other using the custom neural
network package. The efficiency comparison of these two models is shown in
Fig. 5.5.

At early epochs (before the second epoch), differences in training and vali-
dation performance appear between the two networks despite having seemingly
identical architectures and hyperparameters. This discrepancy arises due to sev-

eral factors. First, weight initialization follows a uniform distribution as described
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Figure 5.6: Efficiency graph of single-layer fully connected neural networks for
training and validation modes over 1000 runs. The training efficiency is shown

in red, while the validation efficiency is shown in blue.

by Eq. (5.8), leading to different initial conditions and, consequently, convergence
to different local minima during training. Second, training is conducted on a ran-
domly shuffled sequence of dataset files, which also affects the learning trajectory.
The Adam optimizer, as defined in Eq. (5.22), incorporates batch number ¢ and
adjusts step sizes accordingly, meaning that the order of training samples influ-
ences the sequence of local minima encountered during learning.

Thus, both the order of training samples and the initial weight values impact
the final results of neural network training. To confirm this effect, the model
was run 1000 times, and the efficiency of the PyTorch-based single-layer fully
connected neural network was analyzed. The comparison results are presented in
Fig. 5.6. From this figure, it can be concluded that efficiency variations are more
pronounced in the early epochs and decrease as training progresses.

To further analyze the variation patterns, the variance of the validation effi-
ciency over 1000 runs was plotted as a function of epoch. This variance graph is

shown in Fig. 5.7.
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Figure 5.7: Variance graph of single-layer fully connected neural network effi-

ciency in validation mode over 1000 runs.

These graphs ( 5.5 — 5.7) confirm the correctness of the neural network pack-
age when using a single-layer fully connected neural network to classify simulated
raw detector data for the presence of quark-gluon plasma.

After reviewing the general algorithm of the neural network training proce-
dure and fine-tuning the architecture of the single-layer fully connected neural
network, it is also important to address regularization. Since this neural network
has a very large number of parameters, it is prone to overfitting — a situation
where the model performs well on the training data but produces inaccurate
results during validation. Various regularization techniques can be applied to
mitigate overfitting. In this work, dropout and batch normalization are used.
Let’s examine these methods in more detail.

Dropout is a technique that randomly deactivates neurons during training with
a probability of p = 0.5 [131]. This effectively trains multiple different neural net-
works simultaneously, where each neuron receives an averaged activation from
various network architectures. To apply the trained neural network, the output

is multiplied by 1/p to maintain the expected value of the activations. The pri-
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mary motivation behind dropout is to prevent neurons from co-adapting during
training. Instead of relying on the behavior of neighboring neurons, each neu-
ron must learn independently, improving generalization. Additionally, dropout
increases sparsity in the network, which can enhance overall performance.

The use of batch normalization is motivated by the issue of internal covariate
shift [132]. Covariate shift occurs when the distribution of certain features —
such as whether an event corresponds to QGP — differs between the training
and validation datasets in terms of statistical properties like mean and variance.
For the input layer, this issue can be mitigated by randomly shuffling the input
data. However, the situation is more complex for hidden layers.

When weights are updated in the input layer, the distribution of its outputs
changes accordingly. As a result, the hidden layer receives input data with sta-
tistical properties that may differ significantly from those seen during earlier
training iterations. This forces the hidden layer to adapt repeatedly, slowing
down learning and potentially leading to saturation of neurons. A solution to
this problem is to normalize each input of the hidden layer based on a small
dataset — this approach is known as batch normalization [133].

After applying mini-batch normalization, the transformation takes the form:

7, = T Elnl (5.23)

Var[zg]
where the statistics are computed based on the current mini-batch. However,
a potential drawback of this approach is that it removes some of the non-linearity
from the network. To address this, additional parameters are introduced to re-
store flexibility during training. These parameters, known as scale and shift,

adjust the normalized values dynamically:

T — E[ZL‘k]

Varlty] + B (5.24)

Yr = Wk + Br =

where v, and i are trainable variables, learned through gradient descent in

the same way as weights, which will be discussed later. Additionally, a small
parameter € is introduced to prevent division by zero.

As a result, the following sequence of operations is performed for a given mini-

batch B = {x1,...,x,,}: the batch statistics, including the mean and variance,

are computed as:
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1 & 1 )
B = — ;Iu OB = — Z(% — iB) (5.25)
Next, the inputs are normalized:

~ X, — UB
By = ——— .
VoL +e (5.26)

Finally, the outputs are scaled and shifted:

yi =i+ p (5.27)

Now, the process of parameter training is examined [134]. The gradient for

the parameter § is computed first:

OFE O0FE 0 OF Oy,
_ OBy . OE dyn

B oy B T Oy, OB
_O0E 0B
- ayl 5ym (5.28)
_ 0E
i—1 ayi

Next, the gradient for the parameter v is calculated:

OF _0EOy . OF Oym
oy Oy Oy T Oym Oy
OB OF
— a—ylxl + ...+ @l‘m (5.29)
N 0E
=2,

The computation of gradients for the normalized inputs Z; follows:

OE  OF y,
OF (5.30)
B y; K

To compute the gradients %, the values of agEQ and g—E must first be deter-
7 B “B

mined:
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Note that the second term in equation (5.32) is zero since Y ;" (z; — up) = 0.

Now the gradlent can be calculated:

OF aE L OE 2Axi—pp)  OE 1

o, Nz 803 m oup m

After all gradients have been calculated, the standard backpropagation algo-

(5.33)

rithm can be applied, and batch normalization can be considered as the “activa-
tion” of an additional hidden layer. During forward propagation, the values of
the hidden layer’s neurons x; are “activated” and transformed into y;. During
backpropagation, using the local gradients 2 —k and applying the chain rule, the
local gradients can be calculated, taking into account the derivative of the “ac-
tivation” function — gTE;
for the activation function Leaky ReLU — equation (5.17).

. This procedure is similar to the one described earlier

The architecture of a two-layer fully connected neural network can now be
constructed, as shown in Fig. 5.3 (middle). This architecture consists of an
input layer (224000 neurons), a hidden layer (64 neurons), and an output layer
(2 neurons). Training is performed on mini-batches of 80 files. The dataset
consists of 8000 files for training and 2000 files for validation, with training carried

out over 10 epochs. To validate the neural network package, the efficiencies
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Figure 5.8: Graph of the efficiencies of two-layer fully connected neural networks
for training and validation. The red line represents the architecture using the
third-party PyTorch library, while the blue line represents the architecture from
the neural network package.

of two variations of a two-layer fully connected neural network were compared:
the first was created using the third-party PyTorch library, while the second
was implemented using the custom neural network package. The results of this

comparison are shown in Fig. 5.8.

A similar approach is used to construct the architecture of a three-layer fully
connected neural network, the structure of which is shown in Fig. 5.3 (right).
This architecture consists of an input layer (224,000 neurons), two hidden layers
(64 neurons each), and an output layer (2 neurons). Training is performed using
mini-batches of 80 files. The dataset includes 8,000 files for training and 2,000
files for validation, with the training process running for 10 epochs. To evaluate
the neural network package, the efficiencies of two variations of a three-layer fully

connected neural network were compared: one implemented using the third-party
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Figure 5.9: Graph of the efficiencies of three-layer fully connected neural net-
works for training and validation mode. The red line represents the architecture
using the third-party PyTorch library, while the blue line represents the archi-
tecture from the custom neural network package.

PyTorch library and the other using the custom neural network package. The
results of this comparison are shown in Fig. 5.9.

The efficiency graphs of fully connected neural networks indicate that overfit-
ting occurs within the first two to three epochs. Additionally, it can be observed
that adding hidden layers does not improve the performance of fully connected
networks and significantly slows down the training process. This is attributed
to the number of input neurons in these architectures. Fully connected neural
networks process 224,000 input data cells, with a substantial portion of the data

being zero. This suggests the necessity of an input data preprocessing procedure.

Such a procedure was applied to the architecture of a single-layer fully con-
nected neural network: by leveraging rotation invariance, the number of input

cells was reduced from 224,000 to 11,200. During input data processing, values
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corresponding to the same circle on the sphere were aggregated. As a result,
a significant amount of information was lost, leading to a less distinct decision
boundary. Therefore, achieving 100 percent accuracy on the training dataset
cannot be expected.

Revisiting the efficiency of the single-layer fully connected neural network:
without input neuron reduction, the training accuracy reached 100 percent, while
validation accuracy was approximately 80 percent. After reducing the number
of input neurons, training accuracy decreased to 93 percent, while validation
accuracy improved to 90 percent.

This observation confirms that improving the performance of a classifier based
on a fully connected neural network requires an input data preprocessing proce-
dure or, alternatively, modifications to the data fed into the input layer of the
network within this architecture. The next section explores such modifications

in the context of convolutional neural networks.

5.3.3 Convolutional neural networks (CNN)

For the universal creation of convolutional neural network architectures, a set of
classes has been developed in the neural network package. These classes manage
the functionality of channels, filters, convolutional, and pooling layers, allowing
for the construction of new architectures while extending the package’s function-
ality without affecting previously implemented and tested architectures.

The channel class provides functions for processing input and output values
after convolution and pooling, as well as for updating gradients during network
training. The filter class contains functions responsible for weight updates in
kernels, gradient management, and handling parameters for the Adam optimizer.
The convolutional and pooling layer classes manage channels and filters within
the convolution and pooling operations, respectively. These classes also facili-
tate forward and backward propagation of information in convolutional neural
networks.

Additionally, these classes are integrated with the neural network class, which
governs the overall architecture and facilitates communication with the graphical
user interface (GUI), similar to the approach used for fully connected neural

network architectures.
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Now, the construction of the convolutional neural network is considered. The
structure of this CNN is presented in Fig. 5.10. The network consists of two three-
dimensional convolutional layers (Conv3D), each followed by a max pooling layer
(MaxPool3D), and two fully connected layers. The architecture of these fully
connected layers corresponds to the previously discussed two-layer fully connected
network shown in Fig. 5.3(middle).

CNN is a class of deep neural networks most commonly used for analyzing
visual images. This makes its application suitable for the given input data. In-
deed, an analogy can be drawn between a 3D color image (I x J x K x 3) and the
given 4D input array (20 x 20 x 20 x 28), where instead of spatial coordinates,
the absolute value of momentum |p|, the tilt angle ©, and the azimuthal angle ¢
are used. Instead of RGB channels, the number of particle types is represented.

In this convolutional neural network architecture, the first convolutional layer
consists of 32 filters with a kernel size of 3 x 3 x 3, using 1 X 1 X 1 zero-padding

and a stride of 1 x 1 x 1, preserving the spatial dimensions of the input data.
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Next, all cells of the resulting 32 x 20 x 20 x 20 array are activated using the
Leaky Rectified Linear Unit (LReLU) activation function with a slope of 0.01.
The convolution is followed by a max pooling operation with a 2 x 2 x 2 filter and
a stride of 2 x 2 x 2, which reduces the spatial dimensions by half, transforming
20 x 20 x 20 into 10 x 10 x 10.

The second convolutional layer consists of 64 filters of the same kernel size,
using the same padding and stride as the previous convolutional layer. The
activation function for all cells remains LReLLU with the same settings. This is
followed by another max pooling layer with the same filter size and stride as
before. As a result, a 4D array of size 64 x 5 x 5 x 5 is obtained. This array is
then flattened and used as the input to a fully connected neural network. The
hidden layer consists of 64 neurons with the LReLU activation function (slope
= 0.01), and the output layer consists of 2 neurons with the SoftMax activation
function.

A detailed description of fully connected neural networks is provided in Sec-
tion 5.3.2, so this section focuses only on convolution and pooling operations in
the convolutional neural network architecture. For this architecture, training and
validation were conducted over 20 epochs, with a batch size of 80. During train-
ing, the cross-entropy loss function and the adaptive moment estimation method

(Adam optimizer) with a learning rate of 0.001 were used.

Learning process

Once the neural network architecture is built, training is required for its use as a
classifier.

The training process of a neural network can be divided into several stages:
initialization of network parameters, forward propagation, computation of the
loss or cost function, and backpropagation. The schematic representation of the
training process is shown in Fig. 5.11. This figure illustrates the architecture of
a convolutional neural network without the fully connected part.

The input data, represented as a 4D array, is divided into 28 channels and
reshaped into three-dimensional arrays (cubes) of size 20, labeled as L0 in the
figure. Then, using 32 convolutional filters (F0), 3D convolution is applied, trans-
forming the input into L1, where the spatial dimensions remain the same, but
the number of channels increases to 32 (corresponding to the number of applied
filters).
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Figure 5.11: The structure of the convolutional neural network used to detect
QGP. Blue represents forward propagation, while red indicates backpropaga-
tion. [135]

Next, three-dimensional max pooling is applied to L1, resulting in L2, which
maintains the same number of channels but reduces spatial dimensions by half.
Subsequently, convolution with 64 filters (F1) transforms L2 into L3, where the
spatial dimensions remain unchanged, but the number of channels increases to
64. Another three-dimensional max pooling operation then transforms L3 into
L4, producing a 4D array of size 64 x 5 x 5 x 5, which is passed to the fully
connected part of the convolutional neural network.

This transformation of the input data, represented as L0 — L1 — L2 — L3 —
L4, corresponds to forward propagation. Conversely, the sequence L0 <— L1 <
L2 < L3 < L4 represents backpropagation. Each stage of the training process
will be examined in detail, starting with the initialization of network parameters.

The convolutional neural network uses Xavier initialization, as given by equa-
tion (5.8). A parallel implementation of OpenMP for filter initialization is shown
in listing 5.2. In addition to parallelization, vectorization is applied. Since the
operation of filters during convolution is independent of each other, SIMD vectors
are used.

For instance, during the first convolution, which transforms 28 input channels
into 32 output channels (L0 — L1), the filters are grouped into 8 SIMD vectors,
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each containing 4 filters. Similarly, in the second convolution, which transforms
32 input channels into 64 output channels (L2 — L3), the filters are grouped
into 16 SIMD vectors.

Filter3D(int dimension, int nInputChannel, int nOutputChannel)
{ /* Xavier Initialisation for all Kernels in Filters */
#pragma omp parallel for collapse(4)
for (int x = 0; x < dimension; x++) {
for (int y = 0; y < dimension; y++) {
for (int z = 0; z < dimension; z++) {
for (int v = 0; v < ; v++) {/* Loop over SIMD */
weight [x] [y] [z] [v] = XavierInitialisation();
gradient [x] [y] [z] [v] = 0.0f;

Listing 5.2: The parallel implementation of Filter Initialization for 3D
Convolution with OpenMP.

A schematic illustration in Figure 5.12 demonstrates the process of 3D convo-
lution (Conv3D) applied to input data with 28 channels using a single filter that
also consists of 28 kernels. The filter moves across the input volume, summing
the products of input channel values with their corresponding weights, followed
by the addition of a bias term. The result is then activated using the Leaky ReLLU
function.

Three-dimensional pooling (MaxPool3D) is used to reduce spatial dimensions
after convolution. Its principle is schematically shown in Fig. 5.13. Here, each
block (2 x 2 x 2) of input data is compressed by selecting the maximum value,
reducing the cube size from 20 x 20 x 20 to 10 x 10 x 10 along each axis. The
original number of channels is preserved, ensuring that feature depth information
accumulated in the previous convolution step is retained.

After initializing all filters with initial weights, the forward propagation process

can be analyzed in detail for two sequentially applied convolutional blocks:
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Figure 5.12: Illustration of the operation of 3D convolution for the input layer
using a single filter consisting of 28 kernels, which transforms 28 input channels
into a single output channel. The number of output channels corresponds to the

number of filters applied during the convolution process. [136]

First block (Conv3D + MaxPool3D). The input data (a 4D array of size
28 x 20 x 20 x 20) is passed through the first convolutional layer, where 32 three-
dimensional filters perform the transformation (see Fig. 5.12). For each spatial
position (x,y, z) and each input channel, a weighted sum is computed with an
added bias term; the result is then passed through the Leaky ReLU activation
function. The output is a tensor of size (32 x 20 x 20 x 20). Next, a three-
dimensional max pooling operation (MaxPool3D) with a (2 x 2 x 2) window is
applied, reducing the spatial dimensions to (32 x 10 x 10 x 10) as illustrated in
Fig. 5.13.

Second block (Conv3D + MaxPool3D). The resulting tensor (32 x 10 x
10 x 10) is then fed into the second convolutional layer, where 64 filters generate
an output of size (64 x 10 x 10 x 10) following the same procedure. After applying
MaxPool3D again, the final tensor (64 X H X H X 5) is obtained.

For each pooling operation (MaxPool3D), the indices of the maximum ele-
ments (trace) are additionally stored to ensure that, during backpropagation, the
gradient is passed only to the “winning” elements. This allows both convolu-

tional blocks to sequentially extract local patterns (via convolutions) and reduce
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the data volume (via pooling), preparing them for further processing in the fully
connected (FC) part. The convolved and pooled data are then flattened into a

one-dimensional vector and classified by two output neurons (QGP or non-QGP).

Architecture and Principle of Operation

As mentioned earlier, the convolutional neural network (CNN) in this package
consists of two convolutional blocks (Conv3D) with the LReLU activation func-
tion and pooling (MaxPool3D), followed by a fully connected layer. Each convo-
lutional block contains a set of three-dimensional filters (convolutional kernels)
that slide over the input volume, computing a linear combination of values within
the neighborhood of each voxel, forming the output feature maps. Since the in-
put data is represented as a four-dimensional array (28 x 20 x 20 x 20), instead
of a classical RGB image (H x W x 3), there are 28 “channels”. Accordingly, the
Conv3D convolution accounts for a third spatial dimension (in addition to © and
¢), which is related to the absolute value of momentum |p|.

In each convolutional layer, filters (with dimensions Cj, x K, x K, x K)
transform a set of input channels into a set of output channels. For example,
in the first convolutional layer (Conv3D), the filters have a size of 28 x 3 x 3 x
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3, and their total number is 32, meaning the output consists of 32 channels.
The LReLU activation function with a small negative slope prevents the “dead
neurons” problem, which is typical for standard ReLU. After convolution, a max
pooling operation (MaxPool3D) with a 2 x 2 x 2 window and a stride of 2 is
applied, reducing the spatial dimensions by half. A similar block is repeated in
the second convolutional layer, which contains 64 filters, resulting in an output
size of 64 x5 x5 x 5. The resulting tensor is then flattened and passed to the input
of the fully connected part of the network, which consists of two fully connected
layers (FC) with LReLU activation and a Softmax output layer with two neurons
(QGP or non-QGP).

The advantage of this architecture is that convolutional filters learn to rec-
ognize “local patterns” in the 3D input data (based on momentum and angular
coordinates), and these features are subsequently passed to deeper layers. Pool-
ing reduces dimensionality, mitigating overfitting. This combination of Conv3D —
Pool3D — FC enables more effective generalization of the data compared to a clas-
sical fully connected network, particularly given the large number of zero-valued

cells.

Learning process

The training algorithm for the convolutional network follows the same funda-
mental steps as those described earlier for fully connected neural networks (see
Fig. 5.11), with the consideration that weights are now distributed across volu-
metric filters (3 x 3 x 3), and activation/pooling operations are applied to three-

dimensional feature arrays.

Forward Propagation. During the forward propagation step, each convolu-
tional layer filter is convolved with all input channels:

Cin Kzfl Ky_l Kzfl

Zkigr — bk + Z Z Z Z Wk,c,Ar,Ay,Az Xc,i+Ax,j+Ay,r+Az> (534)

=1 Az=0 Ay=0 Az=0
where 2y, ; » is the pre-activation value for the k-th output channel at coordinates
(i, 7, r), Wi e.az,ay,0- TEPresents the convolutional weights, and by is the bias.
After applying the LReLU activation function, the output is given as ys; ;. The
MaxPool3D layer subsequently selects the maximum value in each (2 x 2 x 2)
block, reducing spatial dimensions while preserving the number of channels. The

pooled output is then propagated further through the network.
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Backpropagation. Asin the case of fully connected networks, the loss function

E (e.g., cross-entropy) is computed at the network output. The gradients of the

convolutional layer output 5 are obtained using the chain rule, taking into
account the LReLLU derlvatwe. To update the filter weights, the gradients must

be summed over all positions (i, 7, r) and across all input channels (c):

while the gradient with respect to the bias term b, is computed as the sum of

Elo)
0z i j,r

ent is propagated only through the element that was the “winner” (maximum)

aWk c,Ax,Ay,Az

over all coordinates. During the backward pass in MaxPool3D, the gradi-

during the forward pass.

Updating the weights . Based on the calculated gradients 2 W and %E, the
weights are updated using the Adam [126] method (see formulas (5.22)). The
filter and bias parameters are adjusted to minimize the loss function.

Thus, training a convolutional neural network in this package follows the same
principles as training a fully connected network, but incorporates convolution
and pooling in the three-dimensional input data space. This approach effectively
extracts and generalizes local patterns related to the distribution of momentum
and angles ¢, ©, thereby enhancing the ability to classify events for the presence
of quark-gluon plasma.

Similar to the section comparing fully connected neural networks implemented
in PyTorch and the custom implementation, a series of convolutional neural net-
work (CNN) runs were conducted. Fig. 5.14 presents a comparison of accuracy
during training and validation for two CNN configurations: red curve — imple-
mented using the PyTorch framework, and blue curve — implemented in the
ANN4FLES neural network package. Both network versions share the same ar-
chitecture: two convolutional layers (Conv3D), two pooling layers (MaxPool3D),
and a fully connected part with two output neurons (SoftMax). The hyperpa-
rameters (number of epochs, batch size, loss function, and Adam optimizer) are
also identical.

As in the case of fully connected networks, some discrepancies at early epochs

can be attributed to:

1. Different initial weights, generated using Xavier initialization (5.8) but

with different random seeds;
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Figure 5.14: Efficiency graph of convolutional neural networks for training and
validation modes. The red line represents the architecture using the third-party
PyTorch library, while the blue line represents the architecture from the neural

network package.

2. Randomized order of dataset files fed into the training process;

3. Early convergence to different local minima, affecting the training dy-

namics, particularly during the first epochs.

Nevertheless, starting from the second or third epoch, the performance on
the training dataset converges, and the subsequent learning dynamics are quite
similar. To analyze statistical fluctuations, a series of 1000 independent runs
of the same CNN architectures (both PyTorch and the ANN4FLES package)
were conducted, with results summarized in Fig. 5.15. The red curve represents
training set accuracy, while the blue curve represents validation set accuracy. It is
evident that the variance of values is quite large in the early epochs but stabilizes

as the networks continue training.
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Figure 5.15: Performance graph of convolutional neural networks during train-
ing and validation across 1000 runs. The red curve represents training accuracy,

while the blue curve represents validation accuracy.

To further characterize the variation in the results (especially on the validation
set), a plot of the variance of the efficiencies can be analyzed (see Fig. 5.16).
Similar to fully connected neural networks, the variance is large at the beginning
of training, when the network tends to different local minima and the values
of the weights vary significantly from run to run. Gradually, as the number of
epochs increases, the variance decreases, indicating that the network consistently
reaches similar accuracy values on validation.

Thus, this experiment confirms the correctness of the convolutional neural net-
work implementation in the ANN4FLES package when compared to the PyTorch
library. The differences observed at the initial stages of training are attributed
to stochastic factors and do not affect the final classification performance, which

remains comparable for both implementations.
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Figure 5.16: Variance graph of convolutional neural network performance dur-

ing validation for 1000 runs.

This chapter describes the software that, by applying neural networks, en-
ables the analysis of simulated data obtained using the PHSD model. These
data contain information about events, where in half of the cases, quark-gluon
plasma formation occurred, while in the other half, it did not. Based on this,
classifiers using fully connected neural networks were developed. The archi-
tecture of three classifiers was a fully connected neural network with varying
numbers of identical hidden layers (to evaluate the efficiency of adding more
layers), while the fourth classifier was a convolutional neural network.

The performance results of all classifiers demonstrated that the raw data
contain hidden patterns that allow distinguishing between events with and
without QGP. The classifier performance graph indicates that the convolu-

tional network-based classifier is the most effective.
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Chapter 6

Interpreting Neural Networks

Understanding why a neural network makes a particular decision is just as impor-
tant as ensuring the correctness of these decisions. Using the knowledge of neural
network structure and training gained in Chapter 4, Neural Networks and Deep
Learning, this chapter describes various methods for interpreting the output of a
neural network.

The decisions made by a neural network are directly influenced by the input
data it processes. Therefore, understanding the mechanisms by which a neural
network performs event classification helps to identify key features in the input
data. This information is crucial for the physical interpretation of classification
results for events containing QGP and enhances confidence in machine learning

methods.

6.1 Introduction

With the advancement of computing technologies, neural networks have become
a key tool in physical research. Their ability to process and analyze complex
data makes them indispensable in both experiments and theoretical modeling.
However, due to their “black box” nature, where the internal mechanisms remain
hidden, significant challenges arise in interpreting the obtained results.

The interpretability of neural networks offers numerous advantages. It helps in
choosing between models with comparable accuracy, favoring the one that aligns
better with physically grounded assumptions. This enables the transformation
of an inconclusive model into a reliable one through refinement and adaptation

based on comprehensible physical interpretations. Furthermore, analyzing the
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contributions of different input features to neural network predictions can un-
cover errors and reveal new correlations, paving the way for novel discoveries and

improving the quality of experimental data.

This chapter reviews various methods for interpreting neural networks, in-
cluding the AAUC [137] method, Layer-wise Relevance Propagation (LRP) [138],
Neural Activation Pattern (NAP) Diagrams [139], and, crucially for further anal-
ysis, Shapley Additive Explanations (SHAP) [140]. SHAP, based on cooperative
game theory concepts, provides a transparent approach to interpreting machine
learning models by quantifying the contribution of each feature to the model’s
prediction. This method not only enables the local explanation of individual

event predictions but also offers insights into the model’s global behavior.

As a practical application of interpretable models, this chapter presents a clas-
sifier for Quark-Gluon Plasma (QGP) events. The SHAP analysis not only con-
firmed the crucial role of light particles and antibaryons in QGP detection, which
aligns with theoretical expectations regarding its formation, but also revealed a
more detailed understanding of the processes underlying the neural network’s
decision-making.

These findings are significant for understanding how the model perceives dif-
ferent types of events and which data features are critical for distinguishing the
presence or absence of QGP. Consequently, interpreting neural networks using
SHAP analysis unlocks new opportunities for comprehending physical processes
and could facilitate further scientific breakthroughs in high-energy and heavy-ion

physics.

6.2 Classification: ROC Curve and AUC

The receiver operating characteristic (ROC) curve and the area under the curve
(AUC) are key metrics used to assess classification performance. The ROC curve
illustrates the trade-off between the true positive rate ( True Positive Rate, TPR)
and the false positive rate (False Positive Rate, FPR) as the classification thresh-
old varies. The AUC (area under the curve) quantifies this relationship, providing
a comprehensive measure of model performance. The value AUC = 0.99, depicted

in Figure 6.1, confirms the classifier’s high effectiveness.

For each classification threshold, the Precision and Recall metrics are calcu-
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Figure 6.1: ROC curve and event classification accuracy analysis for QGP de-
tection. The left plot shows Precision and Recall as a function of the classification
threshold, while the right plot presents the ROC curve with AUC = 0.99.

lated:

TP TP FP
Precision = —————, Recall (TPR) = ———, FPR = P LTN (

_ 6.1
TP + FP’ TP + FN’ )

The left plot in Fig. 6.1 demonstrates that as the classification threshold in-
creases, Precision rises while Recall decreases, reflecting the trade-off between
these metrics. The right plot presents the ROC curve, illustrating the classifier’s
strong ability to distinguish between events with and without QGP.

6.2.1 QGP Trigger Decision Process

The QGP trigger decision process is based on probabilistic event classification
using a neural network. The input data passes through the network, which pro-
duces two outputs: the probability of QGP presence and the probability of QGP
absence. Based on the selected threshold, a decision is made — whether the event
is classified as containing QGP or as background.

The key aspects of the process are:

e Objective: Minimize the number of missed QGP events (Fualse Negatives,

FN) while maintaining a low false positive rate (False Positives, FP).

e Threshold Effect: Lower thresholds increase sensitivity but also raise the
probability of false positives. Higher thresholds reduce FP but increase the
risk of missing QGP events.
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6.2.2 Event Selection in the QGP Trigger
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Figure 6.2: Event selection in the QGP trigger. The left graph shows the
distribution of classifier outputs for events with and without QGP. The right
graph presents the dependencies of the False Negative Rate (FNR) and False
Positive Rate (FPR) on the classification threshold.

Figure 6.2 presents the event selection results. The left graph displays the
distribution of classifier outputs for events with and without QGP. The separation
between classes enables optimal selection of the classification threshold. The right
graph illustrates the dependencies of the False Negative Rate (FNR) and False
Positive Rate (FPR) on the threshold.

The metrics used for analysis:

FN FP TP + FP

— "  FPR=- . Selection Rate = ——
TP + FN’ P+ TN’ JoeeHon Rt =] Events

(6.2)

The analysis indicates that low classification thresholds enhance sensitivity

FNR

but increase the FPR, whereas high thresholds minimize false positives at the
cost of increasing the FNR. The optimal classification threshold should minimize

both metrics while maintaining high accuracy.

6.3 Layer-wise Relevance Propagation (LRP)

The Layer-wise Relevance Propagation (LRP) method is an interpretability ap-
proach used to analyze the decisions of neural networks. The primary goal of

LRP is to determine the contribution of each input feature to the final classi-
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fier decision. This allows for the visualization and understanding of which data

characteristics have the most significant impact on the model’s predictions.

6.3.1 Principles of the LRP Method

The LRP method operates by distributing the output value of the neural network
(e.g., the probability of an event belonging to the QGP class) across all input
features. This is achieved using a relevance conservation rule at each layer of the
network. The rule states that the sum of relevance at the output of a layer equals
the sum of relevance at its input. Consequently, relevance is propagated step by
step from the output layer to the input layer.

For each layer [ in the network, the relevance for the neurons in the previous
layer [ — 1 is computed as follows:

RV =3 S RY, 6.3
DY e (6.3)

where R;l) represents the relevance of neuron j at the current layer, z;; denotes
the contribution of neuron ¢ from the previous layer to the activation of neuron
J, and >, z is the sum of contributions from all neurons in the previous layer.

In the context of QGP event classification, the LRP method is used to identify
key features that have the most significant influence on the network’s decision.
For instance, analyzing events with different energy levels and collision param-
eters helps determine which features (such as momentum, energy, or centrality)
contribute most to predicting the presence of QGP.

A key advantage of the LRP method is its capability to interpret complex
models such as deep neural networks. This is particularly useful in applications
where understanding crucial data characteristics is essential, for example, in high-

energy physics data analysis.

However, the LRP method has certain limitations. It can be sensitive to
the choice of activation function and network weights and requires substantial
computational resources to propagate relevance throughout the network. Despite
these constraints, LRP remains a valuable tool for analyzing machine learning

model decisions.
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6.4 Neural Activation Pattern (NAP) Diagrams

Neural Activation Pattern (NAP) diagrams are a visual tool for analyzing and in-
terpreting the behavior of neural networks. They are used to display and examine
the activation patterns of neurons at different layers of the network. This ap-
proach helps understand how the network processes input data and what internal

representations are formed during classification.

6.4.1 Principles of NAP Diagram Construction

NAP diagrams visualize the activations of neurons at each layer of the network as
a function of the input data. Each point on the diagram represents the activation
of a specific neuron, while its color or size can indicate the relative activation
magnitude. This visualization provides insights into which neurons are activated
for different event classes.

The following steps are used to construct NAP diagrams:

e Input data is fed into the network, and neuron activations are computed

for each layer.
e Activations are normalized to enhance visualization clarity.

e For each layer, a diagram is generated, displaying the activations of all

neurons for a given set of input data.

6.4.2 Advantages and Limitations of NAP Diagrams

The primary advantage of NAP diagrams is their intuitive visualization. They
enable researchers to quickly grasp how the network processes input data and
identify key activation patterns at each layer. This is particularly valuable for
classification tasks in high-energy physics, where complex data structures must
be analyzed.

However, NAP diagrams also have limitations. They can become challenging
to interpret in deep networks with a large number of layers and neurons, as the
amount of displayed information increases significantly. To address this issue,
aggregation and simplification techniques are employed, such as grouping neurons

based on the significance of their activation.
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6.5 Shapley Additive Explanations (SHAP)

This section introduces cooperative game theory and the concept of distributing
rewards among players, known as classical Shapley values. These values form
the foundation for all subsequent SHAP methods. Next, we discuss adaptations
of these values in the context of regression models, introducing the so-called
Shapley regression values. The discussion continues with an analysis of SHAP
values, which directly apply Shapley’s concepts to interpreting complex machine
learning models. Finally, we explore the practical application of SHAP value

analysis using the PyTorch Deep Explainer library for an event classifier detecting

QGP.

6.5.1 Classical Shapley Values and Cooperative Games

To understand classical Shapley values, some key terms must first be introduced.

A cooperative game is a type of game where a group of players (a coalition)
works together toward a common goal. An example of a cooperative game and
various player coalitions is illustrated in Fig. 6.3. The grand coalition consists of
all players participating in the game. Each player contributes individually to the
overall success, which is referred to as their marginal contribution. Additionally,
there exists a characteristic function v, which assigns a numerical value to each
subset of players, representing the effectiveness of that coalition. By conven-
tion, the characteristic function is zero for an empty coalition. In this context,
the characteristic function determines the reward allocated to each coalition of
players.

Shapley values, proposed by Lloyd Shapley in 1953 [142], provide a fair method
for distributing rewards among players in a large coalition based on their indi-
vidual contributions to overall success.

The definition of classical Shapley values [143] illustrates the principle that
each player’s contribution is assessed as the average of their marginal contribu-
tions across all possible coalitions. The marginal contribution A, (z, S) of a player
1 with respect to a coalition S is given by the difference between the characteristic

function v evaluated for the coalition with and without that player:
Aui, S) = o(S U {i}) — v(S) (6.4)

The cooperative game illustrated in Fig. 6.3 is analyzed by considering the
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Figure 6.3: Visualization of Shapley value calculations in a cooperative game
scenario. The figure illustrates different player coalitions (represented as red,
blue, and green robots) and the corresponding rewards (coins) for each possible
coalition (rectangles). Shapley values fairly distribute the total reward of the

grand coalition (bottom-right corner) among the players [141].

characteristic function v(.S), which represents the reward assigned to each coali-

tion of players. Suppose that:

v()
v({1,2})

The large coalition {1, 2,3} receives a total reward of 25 coins, leading to the

0 v({1H)=7 ({2} =1L v({3}) = 14
18: v({1,3}) =21; v({2,3}) =23: v({1,2,3}) = 25.

question of how this reward should be distributed among the players.

Although the total reward allocated to the large coalition remains fixed at 25,
the marginal contribution of each individual player varies depending on the order
in which players join the game.

The Shapley approach involves generating all possible permutations of players
and averaging the marginal contribution of each player across all permutations.
The number of permutations for n players is n!, which in this case equals 6.

One of these six permutations, for example, {1, 3,2}, can be obtained by first
adding player 3 to player 1, followed by adding player 2 to the existing coalition
of players 1 and 3:

(1,3,2) v(@) —v({1}) = v({1,3}) = v({1,3,2}) (6.6)

For this coalition, the marginal contributions of the players are determined as

follows:
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Table 6.1: The permutations of the player set, marginal contributions of the

players in each permutation and the Shapley values [141].

Marginal Contribution

Permutation Player 1 Player 2 Player 3

(1,2, 3) 7 11 7
(1, 3, 2) 7 4 14
(2, 1, 3) 7 11 7
(2,3, 1) 2 11 12
(3,1, 2) 7 4 14
(3,2, 1) P 9 14
Shapley value 32/6 50/6 68/6

Player 1: (v({1}) —v(@))=7—-0=7

Player 3: (v({1,3}) —v({1})) =21 -7=14 (6.7)

Player 2: (v({1,3,2}) —v({1,3})) =25 —-21 =14
The calculation of the marginal contributions of players for all permutations
is presented in Table 6.1. The Shapley values are obtained by summing the
contributions for each player and dividing by the total number of permutations.

Thus, the Shapley values can be interpreted as a weighted average of a player’s
contributions across all possible coalitions.

Let there be IV players in total. Consider the set II of all possible permutations
of integers up to N, and let S;» = {j : m(j) < 7(7)} represent the set of players
preceding player ¢ in 7. Here, 7(i) denotes the position of player i in the coalition
of players within 7. For instance, in the permutation {1,3,2}, the predecessor
set for the first player is Sy, = 0 (since this player appears first), for the second
player Sy, = {1,3}, and for the third player S; . = {1}.

The efficiency gain from adding player i to the coalition of preceding players is
then computed as the marginal contribution of player i, using equation (6.4). An
example calculation for the permutation {1,3,2} is provided in equation (6.7).
The marginal contributions are then summed and averaged, where the number of
terms in the sum corresponds to the total number of permutations, |N|! (where
modulus notation represents the cardinality, or the number of elements in the
set).

The Shapley value ¢, (i) for player i is defined as follows:
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bu(i) = —— 3" A0, S1) (6.8)

Since A,(i,S;,) is computed using equation (6.4) and depends only on the
value of the characteristic function v(S), it remains independent of the order of
players in S. This allows for the grouping of identical terms and reformulation
of the equation in terms of unique subsets S C {1,2,..., N} and the number of
permutations where a specific ordering of S directly precedes player .

Table 6.1 highlights that marginal contributions for players occupying the last
position in different coalitions remain identical. For instance, in the coalitions
{1,3,2} and {3, 1,2}, the marginal contribution of the second player equals 4, as
v({1,3}) =v({3,1}) = 21.

The Shapley value ¢,(i) for player i is then given by:

buli) = = 3 ISIIN| = IS] = 116, ) (6.9)

[N|!
5C{1,2,....N}

The coefficient preceding A, (7, S) assigns weight to each marginal contribution:

e |S|! — the number of ways in which players in S can be arranged before

player ¢ joins.

e (|N|—|S|—1)! — the number of ways the remaining players can be arranged

after ¢ and the players from S have already joined the game.

An illustration of the coefficient calculation in equation (6.9) is shown in
Fig. 6.4. For a cooperative game with three players, these coefficients can
be computed as follows: if a player is chosen first, the coefficient is given by
0!/(3—0—1)! =2. Indeed, Table 6.1 shows that for each player, there are two
coalitions where they are positioned first, and their marginal contribution always
equals their characteristic function v({i}). The same principle applies to other
player positions.

(Classical Shapley values satisfy four fundamental axioms:

e Efficiency: The sum of the Shapley values for all players equals the total

benefit obtained from the coalition of all players.

e Symmetry: If two players contribute equally to any coalition, their Shap-

ley values must be identical.
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Figure 6.4: Illustration of the Shapley value weighting factor: [S|!(|N|—]S|—1)!,
where S is the subset of players, N is the total player set, and ¢ is the player

being evaluated.

e Dummy Player: If a player’s contribution to any coalition is always zero,

their Shapley value is also zero.

e Additivity: For any two independent games, the Shapley value of a player
in the combined game is equal to the sum of their Shapley values in each

individual game.

Shapley values (¢,) provide a method in cooperative game theory for eq-
uitably distributing the total payoff among participants. These values are
computed as the weighted average of each participant’s contributions across
all possible coalitions. The formula for the Shapley value of a participant ¢,
considering the set of all participants N and the characteristic payoff function
v, is given by:
. 1 .
¢u(i) = I > ISINT = 18] = D(S U {i}) = o(S)] (6.10)
SCN\{i}

Shapley values not only facilitate a fair evaluation of each participant’s contri-

bution to collective success but also offer valuable insights into the dynamics

of interaction and interdependence in cooperative scenarios.
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Figure 6.5: Illustration of Shapley values for a CNN trained on the MNIST
dataset. The figure presents three input images representing the digits 9, 0, and
5. For each input, the Shapley values are visualized for output neurons, indicating
the importance of each pixel for the network’s prediction. Output neurons are
ordered from left to right, corresponding to the classes 0 through 9, with the
highest Shapley values highlighting the most influential pixels in determining the
predicted class [147].

6.5.2 The Shapley Value in Machine Learning

After describing the classical Shapley values for cooperative games, it is now
possible to explore their application in analyzing neural network performance.

Shapley values can be used in machine learning by interpreting the presence
of individual model features as players and considering the model’s response to a
specific input z as the outcome of the game. This adaptation of classical Shapley
values is referred to as Shapley regression values [144].

To illustrate the application of Shapley regression values, consider a convo-
lutional neural network trained on the MNIST dataset. The visualization in
Fig. 6.5 demonstrates how these values highlight the contribution of individual
pixels to the model’s prediction.

Shapley regression values provide insights into the relative importance of in-
dividual features in model predictions, particularly in cases where strong feature
correlations exist.

This method examines how the model prediction changes when a specific fea-
ture is included or excluded. To achieve this, two models are trained: one in-
corporating the selected feature and another without it. The predictions of both
models are then compared to assess the impact of the presence or absence of the
feature.

The contribution of each feature can be determined by considering all possible
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feature combinations and computing the weighted average of their contributions:

¢ = Z |S|!(|F||;||,S| — [fsupi (@sugy) — fs(zs)] - (6.11)
SCF\{i}

Here ¢; represents the importance of feature i, I’ denotes the complete set of
all features, and S is the subset of features excluding . It can be observed that
this formula is identical to the classical Shapley value formula when applying
the following approach: a specific test instance x and a training dataset for the
model are fixed, while the characteristic function of a feature set is defined as the
prediction of a model trained exclusively on these features: v(S) = fs(zg).

In this case, A,(i,S) corresponds to the change in prediction for x be-
tween a model trained on features S U {i} and a model trained on features S:
Ay (i, S) = fsuriy(@sugy) — fs(xs).

Thus, the contribution of individual features to the model’s prediction can be
assessed using formula (6.9).

It is important to note that this approach does not assess the contribution
of each feature to the overall accuracy of the model but rather evaluates its
impact on the magnitude of the model’s prediction for a specific test instance,
aiding in the interpretation of that prediction. Shapley regression values compare
the current value of a feature in an example x with its complete absence during
training and testing. A major drawback of this approach is its high computational
complexity: calculating Shapley regression values requires training the model on
all possible subsets of features, which is infeasible in most cases. However, an
approximate estimation of Shapley values can be obtained much more efficiently
by considering only a subset of elements in the summation from formula (6.11),
prioritizing those with higher weights. This is achieved by comparing model
predictions with and without a specific feature, averaging the results over multiple
samples drawn from background data — an approach known as Shapley sampling
values [145].

Additionally, in the context of classifying events with and without QGP, each
input neuron represents an individual feature. The input consists of a 4D matrix
28 x 20 x 20 x 20, where each element contains a natural number indicating the
number of particles detected in a given bin. To compute Shapley regression
values, a specific input neuron can be removed, followed by training the network
without it (by replacing its value with 0). The network is then trained with

this neuron included, and the difference in predictions between the two cases is
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evaluated. This process would need to be repeated for all possible subsets of
input features, ranging from cases where all input neurons are zeros to a “normal
input event”.

Shapley sampling values follow a similar procedure but leverage a background
dataset to approximate the absence of a feature by substituting its value with
those found in the background dataset. In this case, the substituted value remains

0 since most input neurons naturally contain zero values.

6.5.3 Shapley Additive Explanations (SHAP) values

An alternative approach to approximating Shapley regression values involves
training a single model on all features. In this case, model predictions need
to be obtained when many features have undefined values, which presents a chal-
lenge since most models are not designed to handle missing data. To address
this, a statistical approach can be applied, assuming that both training and test
data are drawn from a probability distribution. Some features in a given example
x are known, while others are missing. Let xg represent the known features. In
SHAP, the characteristic function for a set of features S in an example x and

model f is defined as the conditional expectation:

v(S) = E[f(z)|zs] (6.12)

This equation expresses that v(S) is taken as the expected model prediction
f for examples 2’ sampled from the data distribution, subject to the constraint

rs = xg.

Definition of SHAP values: Given a model f, a data distribution, and a
specific test instance x, the goal is to assess the importance of each feature’s
current value relative to its uncertain values. The SHAP values for the features
in x correspond to the Shapley values computed for the following cooperative

game:

e Features act as players (the presence of the i-th player means the current
value of the i-th feature in the example, while the absence of the i-th player

means an undefined value — similar to Shapley regression values).

e The characteristic function of a coalition of features is defined as the con-

ditional expectation E [f(x)|xgs| over the data distribution.
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Figure 6.6: SHAP (SHapley Additive exPlanation) values attribute a change
in the expected model output to each feature, given its presence. They illustrate
how the prediction transitions from the base expected value E[f(z)], which cor-

responds to a scenario where no features are known, to the actual model output

f(x) [145].

Thus, the SHAP values computation algorithm follows formula (6.9): for each
possible feature grouping, all features preceding the i-th feature (denoted as S)

are considered, and the value is computed as:

As(i,8) = E [f(2)|wsom] — E[f(2)|zs] - (6.13)

Then, the obtained values are averaged over all possible feature groupings.
This means that SHAP values describe the expected increase in the model’s
output when adding the i-th feature in the given example.

SHAP values satisfy the following equation:

f(@) = Blf(=)]+ ) o (6.14)
ics

where ¢; represents SHAP values that reflect the impact of each feature on the
expected model output when present. These values allow transitioning from the
baseline prediction E[f(z)], which the model would make without knowledge of
any features, to the current output f(x), considering the provided feature infor-
mation. The diagram in Fig. 6.6 illustrates one possible order of feature addition

and the corresponding SHAP values, averaged over all possible permutations.
Calculating exact SHAP values can be computationally expensive. However,
simplified methods can be used for their approximation. The estimation of
E[f(x)|xs] can be significantly simplified by assuming that the presence of each
feature affects the model output linearly and independently. Under this assump-
tion, the values of the features not included in S are independent of both xg

and each other, contributing to the response in a linear manner. Consequently,
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E[f(z)|rs] can be estimated by replacing the missing values with their expected
values, which can be approximated by the mean over the dataset. Denoting the

missing features as .S, this can be expressed as:

Elf(@)lzs] ~ [ ([xs, Elrs]]) - (6.15)

The approximate equality holds because linearity and independence are as-
sumptions: the closer they are to reality, the more accurate the approximation.
Using this formula, f(zg) can be computed for any subset of features xg, enabling
the practical computation of SHAP values based on formula (6.9). Additionally,
the multi-sample approximation using background data — Shapley sampling val-
ues — can be applied to improve the estimation.

The next section introduces the Deep SHAP method, which is particularly

relevant for analyzing deep neural networks.

6.5.4 Deep SHAP (DeepLIFT + Shapley values)

To understand how Deep SHAP works, it is useful to first describe
DeepLIFT (Deep Learning Important FeaTures) [146], a method for decomposing
the output of a neural network into contributions of individual input features.
DeepLIFT explains the difference in output relative to a certain “reference” input.

The approach involves two datasets: test data and background data, where
the latter serves as a reference for comparison and represents a typical uninfor-
mative state of the inputs. In other words, background data is used to create a
“zero” context against which variations in input values are evaluated. DeepLIFT
employs gradient-based methods that consider signal differences, mitigating arti-
facts that arise when gradients are zero and reducing distortions caused by input
discretization. This allows for more accurate and reliable explanations of neural
network predictions.

In the context of a QGP event classifier, both event classes (with and without
QGP) are used as background data, while the test data consists of only one class.
As a result, DeepLIFT explains the difference between a “neutral” averaged event
and a specific class event (QGP or NoQGP). The method operates as follows:

e A reference input event (224000 input neurons) is created by averaging
events with and without QGP. This reference is used for comparison with

a single test event and is referred to as the background event.
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e Fach input neuron of the test event z; is assigned a value Cagz,a,, Which
quantifies the effect of replacing this input neuron with a corresponding
value from the background event.

e When calculating Caz;ay, DeepLIFT applies the “delta summation” rule:
i=1

where o = f(x) represents the output of the neural network,

Ao = f(z) — f(r), (6.17)
Ax; = x; — 15, (6.18)

and r is the reference input.

By defining ¢; = Chaz,no and E[f(z)] = f(r), DeepLIFT follows the formula-
tion of equation (6.14), thereby qualifying as another additive feature attribution
method.

The Deep SHAP method, which combines DeepLIFT and Shapley values, is
designed to approximate SHAP values for deep neural networks. It achieves
this by aggregating SHAP values computed for smaller network components into
comprehensive SHAP values for the entire network. Deep SHAP recursively
propagates DeepLIFT multipliers, now interpreted in terms of SHAP values,
through the network in a backward direction. This process begins at the output
layer and systematically transfers SHAP values back through the hidden layers
to the input layer. An example is illustrated in Fig. 6.7.

¢i(f37 .CE)
Mg,y = —— 2 (6.19)
87 w; — Elxj]
. ¢i(fj7 y)
Vie{1,2}, my, = 20 6.20
th2} wl yi — Elyi] ( )
2

My, f5 = Zmyi £;Ma,f;  (chain rule) (6.21)

=1
®i(f3,y) = my, s, (y; — Ely;])  (linear approximation) (6.22)

On the right side of the diagram, where “1” is placed next to f3, it indicates
that the initial SHAP multiplier value for the output neuron is set to one. This
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Figure 6.7: Deep neural net-

works are composed of multi-
ple simple components. By
computing Shapley values for
these components and applying
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the DeepLIFT backpropagation
method, approximate values for

w the entire model can be ob-
tained. [145]
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is because the output neuron directly influences the result, and its contribution
is fully assigned to the output value. Subsequent neurons, however, will have
multipliers calculated using formulas (6.19) and (6.20).

Next, the chain rule is applied, summing the products of multipliers m over
all intermediate neurons (formula (6.21)). The final SHAP value can be approx-
imated using formula (6.22). In other words, the SHAP values for the input
neurons represent the product of the multipliers m, which propagate backward
through the neural network layers, and the difference between the test image and
the averaged background image.

This example demonstrates the connection between SHAP values and neu-
ral network layers. It is important to note that Deep SHAP effectively handles
different types of neural network layers, including those performing max pool-
ing or convolution operations. This makes the method particularly suitable for
analyzing convolutional neural networks.

The next section focuses on the calculation of SHAP values for the QGP event

classifier using the PyTorch Deep Explainer library.

6.5.5 PyTorch Deep Explainer

The calculation of SHAP values for the QGP event classifier is performed using
the PyTorch Deep Explainer library and includes the following steps:

e First, the model must be trained or the weights of a previously trained
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model must be loaded.

e Two datasets are created: a background dataset and a test dataset. The
background dataset contains information on 1000 events, with half of them
containing QGP and the other half not. Based on this dataset, an averaged
event E[f(x)] is computed, which is required for SHAP value calculation
and represents a “neutral event” — a reference image. The test dataset
consists of events of the same class, which are then compared to the ref-
erence. The choice of 1000 events for the background dataset is based on

computational efficiency and class description in the documentation [147].

e The shap_values method computes SHAP values for the specified test
data. The parameter ranked_outputs=None specifies that SHAP values
should be computed for all model outputs, including the QGP and NoQGP

neurons. A code example is provided in Listing 6.1.

e The output of the shap_values function is a list of arrays containing SHAP
values, where each array represents the contribution of features to a spe-
cific model output. For the QGP event classifier, the result is a tensor of
dimensions 2 x 28 x 20 x 20 x 20, which is then saved to a file for further

visualization.

background = datal[:numBackground]
test_images = data_QGP[:numTest]
#test_images = data_NoQGP[:numTest]

# Initialize a Deep SHAP explainer with the model and background
dataset
e = shap.DeepExplainer(model, background)

# Compute SHAP values for the test images
shap_values = e.shap_values(test_images, ranked_outputs=None)

shap_values = np.asarray(shap_values)

print("shap values shape = ", shap_values.shape)

shap_size = shap_values.shape

Listing 6.1: Python code for computing SHAP values
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To better understand how Deep Explainer works, the process of
shap.DeepExplainer for a CNN model in the PyTorch framework can be de-

scribed using the following key steps and corresponding formulas:

1. Computation of the expected model output:

self .expected_value = outputs.mean(0).cpu() .numpy ()

Here, outputs represents the model outputs obtained by passing the back-
ground dataset through the model. The function .mean(0) computes the

mean of the outputs across all examples in the background dataset.

2. Gradient calculation: The gradients of the model outputs with respect

to the inputs are computed using automatic differentiation:

grads = torch.autograd.grad(selected, X, ...)

Here, selected refers to the selected model outputs (e.g., for a specific
class, in this case, QGP and NoQGP), and X denotes the input data for

which gradients are required.

3. Application of the chain rule and linear approximation: During the
computation of SHAP values, the chain rule and linear approximation are
utilized to connect the contribution of each neuron to its preceding layers.
This algorithm operates by propagating gradients backward — from the
output layer to the input layer. For a given module and output gradient

grad_output, the transformation function can be represented as:

grad_input = func(module, grad_output, delta_in)

where func varies depending on the type of operation (e.g., convolutional

layer, pooling layer, etc.).

4. Computation of SHAP values: SHAP values for each input feature x;

are computed based on the gradients and input data:

gbi = (Xz — Xi,ref) X grads,
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where X; represents the current value of the input feature, X ;¢ denotes the
corresponding feature value in the background dataset, and grads refers to

the previously computed gradients.

To estimate SHAP values, so-called “tiles” are created — sets of image pairs
consisting of one test image and one background image. A total of 1000 such
tiles are generated, where the first image in each pair corresponds to a test
sample, and the second is randomly selected from the background dataset.
SHAP values are computed for each tile and subsequently averaged using
the .mean(0) function, as demonstrated in the first step. The gradients in

this formula are determined using the DeepLIFT method described earlier.

5. Validation of SHAP value additivity: After computing the SHAP val-
ues, the check_additivity function verifies that the sum of SHAP values
across all input features corresponds to the difference between the model’s

prediction for the input data and its expected value:

ZSHAP(%) = [(z) - E[f(2)]

shap.DeepExplainer follows these steps to determine the contribution of each
input feature to each model output.

The results obtained using the Deep Explainer library for the QGP event
classifier are shown in Fig. 6.8. Analyzing the SHAP values projected by particle

type allows for the following conclusions:

e SHAP values serve as indicators of event classification accuracy. Predomi-
nantly positive SHAP values for the QGP neuron when analyzing an event

containing QGP indicate correct classification.

e The SHAP values for the QGP and NoQGP neurons are mirrored due to

the binary nature of the model’s output, leading to inverted values.

e Normalization of SHAP values highlights the contribution of rare parti-
cles to event classification, which may otherwise be overlooked in standard

analysis.

These observations are essential for understanding how the model interprets
different event types and which features it considers decisive for classifying the

presence or absence of QGP.
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Figure 6.8: Visualization of the SHAP value computation process for the out-
puts of an ANN (QGP and NoQGP neurons) processing events with a dimen-
sionality of 28x20x20x20. For visualization purposes, results are compressed by
summing over the non-fixed parameters, representing the contribution of each
particle type separately.

This chapter has reviewed various methods for interpreting the results of
a neural network. These methods provide insight into the internal mech-
anisms of neural networks and clarify which input data features influence
decision-making. By applying these methods, neural network operations be-
come more transparent and, consequently, more trustworthy. Furthermore,
these approaches validate theoretical predictions and uncover new correla-
tions within input data, potentially leading to future scientific discoveries in

high-energy and heavy-ion physics.




Chapter 7

QGP Trigger based on CNN: PHSD
vs UrQMD

The previous chapter discussed the development of the ANN4FLES package,
which involved not only the implementation of various types of neural networks
but also their performance testing on well-known datasets such as MNIST, CI-
FAR, and Cora, followed by a comparison with the PyTorch library. The testing
results confirmed that the neural network architectures in ANN4FLES were im-
plemented correctly, while the execution time was found to be faster than in
PyTorch.

This chapter focuses on the application of the ANN4FLES package for the
future development of a trigger designed to select events containing QGP. The
analysis includes the use of ANN4FLES with datasets generated by the PHSD
and UrQMD models, an evaluation of classification performance, and the exten-
sion of ANN4FLES functionalities by incorporating an event classifier for QGP-
containing events as part of the FLES physics analysis pipeline.

First, the modification and application of a CNN-based event classifier for data
generated by the PHSD [148] model are examined. Then, the same approach is
applied to events obtained from the UrQMD [151] model. Subsequently, cross-
validation is performed on data from both models to confirm the model indepen-
dence of the ANN4FLES package. Finally, a comprehensive implementation and
validation of ANN4FLES in the CBM experiment are presented.
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7.1 QGP Classification Using PHSD Model

The Parton-Hadron-String Dynamics (PHSD) approach is used to study the evo-
lution of the quark-gluon plasma (QGP) within the framework of heavy-ion col-
lision modeling. PHSD enables the description of the dynamical evolution of
strongly interacting systems, including transitions between the hadronic phase
and the QGP phase. For event analysis, the primary data source is the output

file phsd.dat, which contains comprehensive information about each event.

7.1.1 PHSD Data Format

The phsd.dat file is structured to include a header followed by a list of particles
for each event. The header contains essential information about the collision

parameters:
e N — the total number of particles in the event,
e ISUB — the run number,

IRUN — the number of the current parallel event,

b — the impact parameter in fm,

SRTIN — the invariant energy per nucleon pair in GeV,

Ratqgp — the ratio of the energy originating from the QGP phase to the

total event energy.
The particle list includes data for each particle:
e ID — particle type in PDG notation,
e Q — particle charge,
e Px, Py, Pz — momentum components of the particle in GeV /c,

PO — particle energy in GeV,

ID(J,5)/IPI(5,J) — information about the particle creation process,

X, Y, Z, T— spatial and temporal coordinates at the point of interaction

exit (if applicable).
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Output file phsd.dat - all particles

N ISUB IRUN b  IBweight ipdgTA ipdgPR SRTIN Ratqgp
Np 9(2) €2) ¥3) @3) ¥(4) e(4)  ¥(B)  eB)

ID Q P, P, P. B IDUJS)/IPI5J)) [X Y Z T

Figure 7.1: Example structure of the output file phsd.dat, illustrating the

collision parameters and particle information for a single event [148].

Figure 7.1 presents an example of the phsd.dat file structure, extracted from
the PHSD [148] manual.

7.1.2 Innovations in PHSD Data

As part of the collaboration with the PHSD team, additional parameters were
introduced for event analysis, including the Ratqgp parameter, which represents
the ratio of QGP phase energy to the total event energy. The inclusion of this
parameter enables a quantitative assessment of the QGP’s influence on an event
and allows for a more detailed analysis of the phase transition.

For each event, the integral parameter R; can be computed to describe the

temporal evolution of the QGP:

ty QGP
R, = /0 R(t)%dt, (7.1)

where E?YP(t) denotes the QGP phase energy at time ¢, and E™!(t) represents
the total energy of the system.

Figure 7.2 illustrates the behavior of the Ratqgp parameter as a function of the
event number for central Au+Au collisions at /syy = 27 GeV with an impact
parameter b = 2.2 fm.

Higher values of R; indicate a greater influence of QGP in a given event.

Typical R; values for central Au+Au collisions are:
e 200 GeV: from 0.16 to 0.3 fm/c,
e 27GeV: from 0.04 to 0.07 fm/c,

e 5GeV: from 0.014 to 0.03 fm/c.
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Figure 7.2: The QGP energy fraction (Ratqgp) as a function of the event
number for central Au+Au collisions at \/syy = 27 GeV and an impact parameter
b=2.2 fm [148].

Larger R; values correspond to a more pronounced QGP presence, which man-
ifests as an increased number of strange particles, baryons, and mesons, as well
as modifications in collective flow patterns.

Additionally, the phsd.dat file now includes information about particles
formed in the QGP phase, expanding the possibilities for studying the dynamics

of baryon, meson, and other particle generation.

7.1.3 PHSD Input Data Analysis

Analysis of input data obtained from PHSD allows for a detailed examination of
the characteristics of heavy-ion collision events and facilitates data preparation
for subsequent use in machine learning applications. The phsd.dat files contain
information about each event, including the total number of particles, the number
of particles produced in the quark-gluon plasma (QGP) phase, their momenta,
types, and spatiotemporal coordinates. These data depend on the collision energy
VSN, enabling the study of system evolution under different conditions. For

instance, significant differences in the number of QGP particles are observed
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Figure 7.3: Comparison of central and minimum-bias events at the same energy.
The figure highlights the differences in the number of QGP particles available in
the PHSD output files.

between central and minimum-bias events, as illustrated in Fig. 7.3.

The information on QGP particles is particularly important for the analysis as
it enables the assessment of the contribution of the QGP phase to event dynamics.
In particular, a larger number of heavy and strange particles are observed in
events with QGP compared to those without QGP. These differences are also
evident in the distributions of momentum, azimuthal, and inclination angles,
allowing the identification of characteristic features of events involving quark-
gluon plasma (Fig. 7.4). Such an analysis provides a deeper understanding of the
physical processes occurring in heavy-ion collisions and helps to determine the
parameters most sensitive to the presence of QGP.

A crucial aspect of input data analysis involves its preparation for machine
learning applications, specifically for training and validating neural networks.
The QGP particle count data and R; (7.1) can serve as labels for event classifi-
cation, making them essential for training.

Furthermore, studying the characteristics of events with and without QGP
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Figure 7.4: Average input distribution from simulated collisions. The panels,
presented in an anti-clockwise order starting from the top left, show the distribu-

tion by particle type, absolute momentum |p|, inclination angle 6, and azimuthal
angle ¢ [149].

helps to identify the most significant parameters that can be passed to the neu-
ral network. This facilitates further modifications not only in the neural network
architectures used for event classification but also in the input layer. Such opti-

mizations contribute to enhancing the speed and efficiency of the event classifier.

7.1.4 Update of CNN Architecture for New PHSD Data

To process the additional information extracted from the new version of PHSD
data, the convolutional neural network (CNN) architecture was updated, as
shown in Fig. 7.5. The main modification was introduced in the output layer.
Previously, the output layer only predicted the probability of the presence of
quark-gluon plasma (QGP) in an event, where the labels took values of 1 (QGP
present) or 0 (QGP absent). Now, the output layer predicts four parameters
for each event: the QGP classification index, the parameter R;, the number of
particles from the QGP region (N,g,), and the event impact parameter.

To ensure compatibility with this additional information, the activation func-
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Figure 7.5: The updated CNN architecture with 4 output neurons. The modi-

fications include changes to the activation functions and the mean squared error

(MSE) loss function to accommodate the new outputs.

tion in the final layer was changed from softmax to LeakyReLU. This modification
guarantees that all four output values remain positive, maintaining consistency
with their physical interpretation. Furthermore, replacing the cross-entropy loss
function with the mean squared error (MSE) loss enabled better handling of the
continuous nature of the new output parameters, leading to improved backprop-
agation efficiency.

Thanks to these modifications, the updated CNN architecture can efficiently
process extended PHSD data. It is capable of predicting multiple parameters for
each event simultaneously, preserving the physical interpretation of output values
and reducing prediction errors.

From the error calculation algorithm 7.1, it is evident that the total loss is
the sum of the errors of each output neuron. Therefore, ensuring that all output
neurons have the same scale, or equivalently, the same “weight”, is essential. To
achieve this, output values are scaled both during data preprocessing and result
processing.

Another important feature of the loss function calculation is the ability to
selectively deactivate individual neurons during training. The trained weights of
active neurons can be saved and reused for validation. This approach enhances
model flexibility and allows for incremental improvements in training. A more

detailed discussion of this concept will be provided in the conclusion of this
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chapter, where a universal CNN architecture for processing real experimental
data in future applications will be introduced.
The pseudocode for implementing the updated loss and activation function is

provided below:

/* Define custom loss function for four output neurons */
Function custom_loss(predictions, targets):
MSE(predictions[QGP_score], targets[QGP_score])
MSE(predictions[Ri], targets[Ri])

error3 = MSE(predictions[N_qgpl, targets[N_qgpl)

errorl

error?2

error4d = MSE(predictions[Impact_parameter], targetsl[

Impact_parameter])

total error = errorl + error2 + error3 + error4d
Return total_error

End Function

/* Define the output layer with LeakyReLU activation */
Output_Layer:
Fully-connected layer: input -> 4 neurons (QGP_score, Ri,
N_qgp, Impact_parameter)
Activation function: LeakyReLU

End Layer

Listing 7.1: Pseudocode for updated CNN architecture

7.1.5 Results and Interpretation

The classifier is trained and validated using two classes of events (with and with-
out QGP) for Au+Au collisions at 30A GeV under minimum-bias conditions.
Each event is labeled with additional information, including the number of QGP
particles, the parameter R;, and the impact parameter. These labels are used for
validation to assess classifier performance and estimate prediction error.

For training, the input dataset is divided into two parts: 80% of the data is
used for training, and the remaining 20% is allocated for validation. During the

training process, classifier outputs and network weights are saved for each epoch,
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Figure 7.6: Distributions of the output neurons for events with QGP. The
panels show the distributions for the QGP classification neuron, the number of
QGP particles (N,gp), the R, parameter, and the impact parameter b. The
CNN outputs are compared to the PHSD labels.

allowing for the selection of the optimal model state. The classifier demonstrates
stable performance throughout the training process.

Analyzing the classifier outputs enables the construction of distributions repre-
senting the number of events with specific output neuron values, as illustrated in
Fig. 7.6. These distributions provide insights into the recovery of event informa-
tion. The plot indicates that the classifier output values exhibit more pronounced
peaks than the event labels. This phenomenon arises because near-central and
peripheral events contain a similar number of particles, which corresponds to the
plateau observed in the dependence of particle count on the impact parameter
(Fig. 7.7).

Another type of analysis involves plotting the neuron outputs and label values
for 30 events of each epoch, as shown in Fig. 7.8. Such plots allow for the

observation of the network’s accuracy for individual events and the estimation of
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Additionally, two-dimensional plots can be constructed, where the Y axis rep-
resents the network’s output values, and the X axis corresponds to the true
label values from the input files, as illustrated in Fig. 7.9. These plots highlight
the plateau effect, where the classifier exhibits reduced accuracy in determining
parameters for central and peripheral events due to their similarity in terms of

particle production.

Finally, Fig. 7.10 presents the error in determining the impact parameter as
a function of its value. This analysis provides valuable insights that can be
compared with the results of other event classification approaches. For instance,
a study in [150] employed a similar CNN architecture but with different input

data, allowing for a comparative evaluation of classification methods.

The classifier results demonstrate high accuracy and stability in predicting
event parameters. The updated CNN architecture performs well in recon-
structing key event characteristics, such as the impact parameter b, the num-
ber of particles from the QGP region (Ny,), and the parameter R;, as well
as in classifying events based on the presence or absence of QGP. The pre-
sented plots and performance metrics confirm that the network effectively
analyzes PHSD data, ensuring a close agreement between predictions and
actual values for most events. However, some limitations in accuracy are

observed for central and peripheral events due to the plateau effect, which

influences particle distributions in these regions.

The next section explores the classifier’s performance when applied to simu-
lated data obtained using UrQMD.
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Figure 7.9: 2D scatter plots comparing the CNN outputs and PHSD labels for
events with QGP. Each panel corresponds to a different parameter: impact pa-
rameter b, number of QGP particles (NVy,,), and R,,,. The correlation highlights
the consistency of the CNN predictions.
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Figure 7.10: Error in determining the impact parameter b as a function of its
true value. Larger errors are observed for central (b ~ 0) and peripheral (b ~ 16)

collisions due to the plateau effect in particle distributions (Fig. 7.7).
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7.2 QGP Classification Using UrQMD Model

The Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model is used to
study heavy-ion collisions and classify events with quark-gluon plasma (QGP).
This model can simulate collisions at different energy levels, from SIS to RHIC,
and describes both small-scale and large-scale processes, such as particle produc-
tion, movement, and interactions.

UrQMD provides information about collision conditions and particle proper-
ties, making it useful for machine learning tasks like event classification. The main
difference between UrQMD and PHSD is that UrQMD focuses on transport dy-
namics and does not describe the QGP phase transition directly. However, it still
gives important data, such as the number of particles, their energy, momentum,
and other details.

The goal of using UrQMD in this study is to create a classifier that can predict
whether QGP is present in an event, even though UrQMD does not model QGP
explicitly. This requires adjusting the data and methods and comparing the

classifier’s results with models trained on PHSD data.

7.2.1 UrQMD Data Format

The output data from the UrQMD model contain information about collision
parameters and particle properties. Each file includes a header with event details
and a list of particles. The data format is described in the UrQMD manual [151].

The event header includes:

e Total number of particles (n),

e Impact parameter (b),

e Number of colliding particles,

e (Collision energy.

Each particle has a set of characteristics:
e Position (x,y, z) and time (),

e Energy (F),

e Momentum (p,, Dy D2,
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e Mass (m),

Charge (q),

Strangeness (.9),

Particle type ID (ityp),

Collision number where the particle was created (N_coll),
e Interaction history and parent particles.

Two datasets from the UrQMD model are used to train and test the classifier.
These datasets follow two different approaches: Casel and Case2. Each approach
models event dynamics in a different way and focuses on specific physical aspects.

Casel follows a “core-corona” model, as described in [152]. It separates the
system into a dense core and a less dense corona. The core is hot and equilibrated,
while the corona has a different effect on particle properties. This approach
helps analyze strange particles and collective flows, improving their distribution
modeling based on collision centrality.

Case2 uses a chiral mean-field equation of state, as described in [153]. It
focuses on how heavy ions compress and how this depends on the equation of
state. Case2 helps study baryon density, temperature, and pressure evolution in
events. It is useful for analyzing phase transitions, especially in the energy range
Ep =1—10A GeV.

Both datasets provide important information for studying heavy ion collisions.
They offer different perspectives on event dynamics and help improve classifier

training.

7.2.2 Innovations in UrQMD Data

As part of the collaboration with the UrQQMD team, additional parameters were
introduced for event analysis. One of the key updates in the UrQMD Casel
dataset is the inclusion of information on particles generated in the “core” of the
hydrodynamic phase. These particles are marked in a separate column of the
output files, where a label of 1 indicates particles originating from the hydrody-

namic phase, while 0 is assigned to all other particles. This approach enables the
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identification of specific particle properties that can be linked to high energy den-
sity and conditions similar to those observed in the quark-gluon plasma (QGP)
phase within the PHSD model.

This classification is comparable to the separation of QGP particles in PHSD,
making Casel well-suited for analysis using machine learning techniques. Specif-

ically, this enhancement allows for:

e Examination of the kinematic and statistical properties of particles associ-
ated with the hydrodynamic phase,

e Identification of events dominated by “core” particles, which may serve as
an analog to QGP events,

e Comparison of Casel results with PHSD to evaluate similarities in the

descriptions of QGP and the hydrodynamic phase.

The addition of information about the origin of particles significantly improves
the quality of data for event classification. In particular, this enhancement allows
neural networks to be trained more accurately for event recognition tasks under
conditions characteristic of hydrodynamic evolution. This aspect is discussed in
detail in [152], where it is demonstrated that the division into “core” and “corona”
improves the description of strange particles and collective flows, especially in
relation to collision centrality.

Thus, this innovation provides a unique opportunity to use Casel as an equiv-

alent dataset to PHSD, where the hydrodynamic phase serves as an analog to the
QGP phase.

7.2.3 Analysis of UrQMD Input Data

To analyze UrQMD input data, it is necessary to convert particle identifiers
(PIDs) from the UrQMD system to the PID system used in PHSD. This is because
UrQMD and PHSD use different particle labeling systems, and there is no direct
mapping between them. A PID conversion table was created to establish the
correspondence between UrQMD and PHSD particle identifiers (see Table 7.1).

The conversion process consists of the following steps:

1. Read UrQMD input data containing particle vectors with UrQMD identi-
fiers (format described in Section 7.2.1).
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UrQMD (PID) | Particle | PHSD (PID) || UrQMD (PID) | Particle | PHSD (PID)
(101, 1) at 211 (101, -1) T 211
(106, 1) K+ 321 (-106, -1) K- -321
(106, 0) K° 311 (-106, 0) KO -311
(133, 1) Dt 411 (-133, -1) D~ 411
(133, 0) DO 421 (-133, 0) DO -421

(1,1) p 2212 (-1,-1) P 2212
(1, 0) n 2112 (-1, 0) 0 2112
(41, 0) A 3122 (-41, 0) A -3122
(54, 1) »t 3222 (-54, -1) >+ -3222
(54, 0) 0 3212 (-54, 0) 30 -3212
(54, -1) > 3112 (-54, 1) b -3112
(63, 0) =0 3322 (-63, 0) =0 -3322
(63, -1) =" 3312 (-63, 1) = -3312
(69, -1) Q- 3334 (-69, 1) [ -3334
(102, 0) n 221 (101, 0) 70 111
(70, 1) AF 4122 (135, 0) J /b 443

Table 7.1: PID comparison between UrQMD and PHSD.

2. Use the correspondence table to replace UrQMD identifiers with PIDs in
the PHSD system.

3. Generate transformed data for further analysis or as input for a classifier.

This transformation is a critical step in unifying UrQMD and PHSD data,
especially for tasks related to neural network training and validation. The cor-
respondence table includes identifiers for baryons, mesons, strange particles, and
charmed mesons, ensuring a complete conversion.

Once the transformation is performed, UrQMD input data can be analyzed
similarly to PHSD data, including energy, momentum, and centrality distribu-
tions. This allows for a direct comparison of the physical results from both models
and facilitates their combined use in event classification tasks.

Analyzing the input data from UrQMD allows for a similar approach to event
analysis as previously applied to PHSD. The dataset contains information on
the number of particles, their momenta, types, and other properties, which can
be used to study the differences between Casel and Case2 events. Figure 7.11
illustrates that the number of particles originating from the hydro-phase varies

significantly between these datasets. These differences can be utilized for further
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Au + Au, 30 AGeV, min bias, UrQMD
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Figure 7.11: Comparison of Casel and Case2 events at the same energy. The
figure highlights differences in the number of particles originating from the hydro-
phase in UrQMD data.

analysis and data preparation for machine learning applications.

Figure 7.12 presents the average distributions of input data, visualizing key
characteristics of the events, such as the distribution of particles by type, mo-
mentum, and angular parameters. Analyzing these distributions provides insights
into the distinctions between Casel and Case2 events and helps identify features

relevant for event classification.

Preliminary analysis of input data is essential before feeding it into the classi-
fier. This step helps determine which data features are most significant and can
enhance the classifier’s performance. A comparison of Casel and Case2 indicates
that their differences can be leveraged for testing model performance and training

neural networks.
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Figure 7.12: Average input distribution from simulated UrQMD collisions. The
panels show distributions by particle type, the absolute value of momentum |p|,

inclination angle ¢, and azimuthal angle ¢.

7.2.4 Update CNN Architecture for UrQMD Data

To process UrQMD data, which includes information on the number of particles
from the hydrodynamic region and the impact parameter of the event, the CNN
architecture was modified, as shown in Fig. 7.13. The primary change was in
the output layer, which now consists of two neurons: one predicting the number
of particles from the hydrodynamic region and the other predicting the impact
parameter.

The activation function in the output layer was changed to LeakyReLU, ensur-
ing that the output values remain positive, consistent with their physical inter-
pretation. Additionally, mean squared error (MSE) is used for backpropagation,
which improves the accuracy of predictions by accounting for the continuous
nature of both output parameters.

This architecture enables efficient processing of UrQMD input data by pre-
dicting key parameters for each event. The use of LeakyReLU activation and the
MSE loss function ensures accurate model training while maintaining the physical

interpretability of the output values. These modifications enhance the network’s
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Figure 7.13: Updated CNN architecture for UrQMD data, now with 2 output

neurons. The changes include modifications to the activation functions and the

mean squared error (MSE) loss function to account for the new outputs.

applicability for further analysis and its use in heavy-ion event classification tasks.

Pseudocode for the updated loss function:

/* Define custom loss function for two output neurons */
Function custom_loss(predictions, targets):
errorl = MSE(predictions[N_qgpl, targets[N_qgpl)
error2 = MSE(predictions[Impact_parameter], targetsl[

Impact_parameter])

total _error = errorl + error2
Return total_error

End Function

/* Define the output layer with LeakyReLU activation */
Output_Layer:
Fully-connected layer: input -> 2 neurons (N_qgp,
Impact_parameter)
Activation function: LeakyReLU

End Layer

Listing 7.2: Pseudocode for updated CNN architecture for UrQMD
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7.2.5 Results and Interpretation

Au+Au, 30 AGeV, min bias, UrQMD

1600 F —— Total Particles

Figure 7.14: Dependence of
the total number of particles
on the impact parameter b for
UrQMD data.

8
Impact Parameter

Training and validation of the classifier for UrQMD data were performed sim-
ilarly to the procedure used for PHSD. The input dataset includes events from
two sources: Casel and Case2. Each event is labeled with information about
the number of QGP-related particles (N,,,) and the impact parameter (b), which
were used for both training and validation.

For training, 80% of the dataset was allocated for training, while the remaining
20% was used for validation. The model weights and outputs were stored to
determine the optimal network state. Analysis of the CNN outputs demonstrated
stable performance in predicting event parameters.

Figure 7.15 shows the distributions of CNN output values for events from Casel
and Case2. The plots demonstrate that the network accurately reconstructs event
characteristics.

As seen in Figure 7.16, the network outputs closely match the true labels for
30 events, confirming the accuracy of the model predictions.

Figure 7.17 presents the network’s performance in predicting the impact pa-
rameter b for UrQMD data. The left panels show the relationship between the
predicted neuron values for the impact parameter and the true b values. The right

panels display the distribution of the prediction error for the impact parameter.

The analysis of UrQMD data confirms that the updated CNN architecture
accurately predicts event parameters. The output values of the neurons (N,
and b) closely match the ground truth labels for both Casel and Case2 events.
The graphical results support the model’s high accuracy, making it a reliable

tool for further studies in heavy-ion event classification.
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7.3 Model-Independent QGP Classification

In the previous sections, the CNN classifier was tested on input data generated by
the PHSD and UrQMD models to assess its ability to distinguish between QGP
and noQGP events. The results demonstrated that the classifier successfully
differentiates between QGP and noQGP events for both models.

This section evaluates the model independence of the classifier: the CNN
classifier is trained on input data generated by the PHSD model, containing two
event classes (QGP and noQGP). The trained network weights are then saved,
and the classifier is tested on input data obtained from the UrQMD model for

casel and case2.

7.3.1 Results Analysis

Figure 7.18 illustrates the ANN classifier’s performance, showing the distribution
of the Ratio of the QGP parameter for input data obtained from PHSD and
UrQMD. The Ratio of the QQGP parameter can be interpreted as the volume
of QGP in an event. The upper plots represent distributions for PHSD, where
QGP-on and QGP-off events are clearly separated. The lower plots indicate that
QGP-on corresponds to UrQMD casel, while QGP-off corresponds to UrQMD
case2. These results confirm the classifier’s ability to identify key differences in
events regardless of the model used.

Model independence of the classifier is crucial for analyzing real experimental
data, as it enables event interpretation without being tied to a specific theoretical

model.

7.3.2 Modification of the Classifier Architecture

To further extend the classifier’s capabilities, a universal architecture is proposed,
integrating output neurons for both PHSD and UrQMD data. The output layer

of the universal classifier consists of six neurons:

e Four neurons for PHSD data: one neuron for the probability that an event
contains QGP, one for the parameter R;, one for the number of particles
N,

q9p> and one for the event impact parameter.

e Two neurons for UrQMD data: one for the number of particles N,q, and

one for the event impact parameter.
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Figure 7.18: Performance of the ANN classifier: Ratio of the QGP for input
data generated by the PHSD and UrQMD models. The upper plots show the
distribution for PHSD (QGP and noQGP), while the lower plots correspond to
UrQMD (casel and case2).

The training process includes a loss function that considers the sum of errors
from all active neurons. When working with data from a specific model, only the
neurons corresponding to that model are activated.

Figure 7.19 illustrates the proposed architecture.

7.3.3 Pseudocode of the Universal Classifier

The training algorithm for the universal classifier is presented below. It describes
how neurons are activated and participate in the training process for different
datasets. This structured approach ensures that each dataset contributes only
to the relevant output neurons, preventing interference between PHSD and
UrQMD data during training.
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Figure 7.19: Universal CNN classifier architecture. Integrates output neurons
for PHSD and UrQMD data. Supports combined training.

# Training process for universal CNN classifier
For each training dataset:
If dataset == PHSD:
Activate neurons for QGP_neuron, R_i, N_qgp,

impact_parameter

Else if dataset == UrQMD:
Activate neurons for N_qggp, impact_parameter
End If

# Calculate loss only for active neurons
loss = 0
For each active neuron:
loss += MSE(predicted_output [neuron], true_output[neuron])
End For

# Perform backpropagation using the calculated loss
Backpropagate(loss)
End For

Listing 7.3: Pseudocode for Universal CNN Architecture Training




7.4 QGP Classification in the CBM Experiment

This section demonstrated a model-independent approach to classifying QGP
events using a CNN-based classifier. The training was conducted on PHSD
data with QGP-on and QGP-off classes, while testing was performed on
UrQMD data (casel and case2), which were not included in the training.
The results confirmed that the classifier successfully distinguishes between
QGP-on and QGP-off events for both models, demonstrating its model in-
dependence.

Additionally, a universal classifier architecture was proposed, integrating
data from different models with the ability to activate the relevant neurons
for each model. This structure enables combined training, where only the
corresponding output neurons are activated for each dataset. This approach

ensures proper classifier training on data from different theoretical models

139

without compromising classification quality.

In the future, this approach can be applied to the analysis of real experimen-
tal data. Using a classifier trained on PHSD and UrQMD data will allow for the

interpretation of real events and their comparison with theoretical model char-

acteristics. Such an analysis will open new possibilities for studying quark-gluon

plasma properties, assessing contributions from various models, and identifying

unique features in experimental data. Furthermore, the universal classifier archi-

tecture can be adapted to work with other models or their combinations, making

it a versatile tool for classification and data analysis tasks in high-energy physics.

The next section will present the application of the event classifier to simulated

data obtained from the CBM experiment.

7.4 QGP Classification in the CBM Experiment

The previous sections demonstrated the performance of the CNN classifier on data

obtained using different theoretical models. This section describes the procedure

for transitioning from idealized Monte Carlo (MC) data to reconstructed data

obtained using the FLES package.
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Figure 7.20: Block diagram of the FLES package with the tentative components
of ANN4FLES, which will be used in the trigger for event selection [149].

7.4.1 Integration of CNN Classifier into FLES

The FLES package for the CBM experiment can reconstruct the complete topol-
ogy of an event, including tracks of charged and short-lived particles. The FLES
package consists of several modules (Figure 7.20): a track search module, a track
filter, a particle search module, and a physical analysis module.

At the input, the FLES package receives simplified detector geometry and
signals generated by charged particles as they pass through the detectors.

Tracks of charged particles are reconstructed using the CA Track Finder algo-
rithm based on a cellular automaton. The KF Track Fitter, based on the Kalman
filter, is used for precise track parameter estimation. Short-lived particles that
decay before reaching the detectors can only be reconstructed through their decay
products. To search for and reconstruct the parameters of such short-lived par-
ticles, the KF' Particle Finder combines the tracks of long-lived charged particles
that have already been identified. Finally, the quality control module ensures
verification of the reconstruction quality at each stage.

The classification neural network, based on the ANN4FLES package, receives
information about reconstructed particles from the KF Particle Finder and will
be integrated into the physics analysis module of the FLES package (Figure 7.20).
It will then be used as a trigger for selecting QGP events. Using the outputs of



7.4 QGP Classification in the CBM Experiment 141

this neural network in combination with results from the FLES physics analysis

module, the final event selection will be performed within the FLES package.

7.4.2 Topology reconstruction with KF Particle Finder

This section describes the event topology reconstruction process using the KF
Particle Finder, demonstrated with the decays K0 — 777~ and A — pr—. These
decays are crucial for analysis and reconstruction validation as they frequently
occur in central collisions and have well-defined parameters. The reconstruction
structure remains the same for other decays, making the described approach
universal.

Physical analysis requires obtaining the cleanest possible samples of recon-
structed particles. To achieve this, background contributions from irrelevant
events must be minimized. Independent analysis of each decay cannot fully elim-
inate background noise, as redundant particles may contribute to its generation.
Therefore, complete event topology reconstruction is required to address this
issue.

At the first stage, all possible particle candidates are created, including uniden-
tified charged particles that participate in the reconstruction of both decays using
the corresponding mass hypothesis.

The main source of background is random combinatorial intersections of tracks
that are not associated with the primary vertex. Candidates with an incorrect
mass hypothesis generate a broad background, while candidates with the correct
mass hypothesis contribute to the signal peak.

To filter out incorrect candidates, distances to the mass peak normalized by
the standard deviation (30) are calculated, and only the closest candidate is
retained. This helps eliminate background formed by real short-lived particles.

Residual physical background is composed of y-particles and candidates with
an incorrect mass hypothesis that are randomly closer to an incorrect peak. This
is illustrated in Figure 7.21.

Only primary particles, which are produced directly in the collision, should
be selected for physical analysis, as secondary particles produced by decays or
interactions with detector material do not carry information about the collision.

Thus, the described reconstruction method, demonstrated using the K° —
77~ and A — pr~ decays, proves the effectiveness of the approach and its

universality for other types of decays, which can be analyzed in a similar manner.
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Figure 7.21: Full event topology reconstruction illustrated with K0 — 7t~
and A — pr~ decays in 10k minimum bias UrQMD Au+Au events at 10 AGeV
with ToF PID [154].

7.4.3 Transition from MC data to Reco data

The transition from Monte Carlo data to reconstructed data in the CBM ex-
periment consists of several stages, each leading to a reduction in classification
accuracy. At the initial stage, the analysis is performed on pure PHSD data,
where classification accuracy reaches 95.1%. These data provide complete infor-
mation about the kinematic parameters of particles without considering physical
and technical limitations. However, as the data are processed with detector ge-
ometry and reconstruction algorithms, accuracy gradually decreases.

At the stage of detector acceptance (CBM Acceptance), accuracy drops to
90.3%. This reduction is due to limitations in the detector’s angular coverage and
inefficiencies in detecting particles in certain regions. Some particles generated in
the simulation do not enter the active registration zone due to the experimental
setup’s geometry or detector “dead zones”.

The next stage involves track reconstruction using the CA Track Finder al-
gorithm in combination with true Monte Carlo (MC) information (MC Mother
Particles). At this stage, accuracy decreases to 85.8%. The main reasons for
accuracy loss are related to the high track density, especially in central collisions,
which creates challenges for the tracking algorithm. Additionally, errors arise
due to combinatorial background caused by random track intersections.

The final stage uses the KF Particle Finder module to reconstruct short-lived

particles. Here, classification accuracy decreases to 83.7%. Losses are associ-
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Figure 7.22: Classification accuracy at different stages of data processing for
Au+Au collisions at 31.2 AGeV. The graph on the left shows the accuracy as a
function of training epochs for various datasets. The table on the right summa-

rizes the accuracy at each stage and the drop compared to the previous step.

ated with errors in decay reconstruction as well as an increase in combinatorial
background.

The final analysis, presented in Figure 7.22, shows that the overall accuracy
loss amounts to approximately 11.4%. Despite this, the final accuracy of 83.7%
remains sufficiently high for performing online event selection for QGP in the
CBM experiment. These results confirm that the proposed approach effectively

handles data analysis tasks even under realistic constraints.

The decrease in classification accuracy at each stage is a result of the realistic
constraints of the CBM experiment, including;:

e detector geometry and the presence of dead zones;

e inaccuracies in tracking and particle identification algorithms;
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e physical effects such as multiple scattering and information loss from

low-energy particles.

The final classification accuracy is 83.7%, demonstrating the feasibility
of reliable QGP event classification even when considering all limitations.

This result confirms that the proposed classification method is effective
and suitable for online QGP event selection under CBM experiment condi-
tions. It opens up prospects for further real-time application of the classifier

in analyzing complex events.

7.5 Conclusions

This chapter provided a detailed analysis of the application of convolutional neu-
ral networks for QGP event classification in the CBM experiment. The data
formats obtained using the PHSD and UrQMD models were described, along
with their characteristics affecting the analysis process. The development and
training of the classifier were discussed, including its testing on data from both
models.

Special attention was given to constructing a universal CNN architecture ca-
pable of processing data from different theoretical models. The integration of
the classifier into the FLES package was also described, enabling the transition
from idealized Monte Carlo data to reconstructed data. The impact of each data
processing stage on classification accuracy was analyzed, identifying key sources
of losses related to detector limitations and reconstruction algorithms.

The results demonstrated that the proposed approach effectively handles QGP
event classification while maintaining high accuracy, even under realistic experi-
mental constraints.

The integration of the classifier into the FLES package opens new possibilities
for real-time QGP event selection. This is particularly important for the CBM
experiment, which requires fast processing of large volumes of data.

Future work includes adapting the classifier to real experimental data, ex-
tending the architecture to support additional models, and optimizing training
methods to improve accuracy. The developed approaches lay the foundation for
further studies of phase transitions in heavy-ion collisions and the integration of

machine learning into high-energy physics experiments.



Chapter 8

Summary

This work explores the theoretical and methodological aspects of studying the
phase transition from a hadronic state to quark-gluon plasma (QGP) and pro-
poses the use of neural network-based algorithms to significantly enhance the
efficiency of real-time rare event selection (“triggering”) in heavy-ion collisions.
Using the PHSD and UrQMD transport models, it is demonstrated that convolu-
tional neural networks (CNNs) can not only classify events based on the presence
or absence of QGP but simultaneously determine several important characteris-
tics, such as the number of QGP particles, impact parameter, and the fraction
of energy in the QGP phase. A thorough validation confirmed that the devel-
oped approach maintains high accuracy even when accounting for distortions
introduced by the detector system, which is critical for applications in real ex-
periments.

The key findings of this study are as follows. First, it highlights the high
sensitivity of CNNs to those physical observables that can be efficiently recon-
structed using the detector’s tracking and identification subsystems. Second, it
is confirmed that training CNNs on PHSD and UrQMD models ensures model-
independent event classification. This effect is achieved by relying on universal
spatial and angular features (momentum and angular distributions of particles),
which remain consistent across different approaches to describing heavy-ion colli-
sions. Additionally, it is shown that transitioning from “ideal” Monte Carlo data
to reconstructed data leads to an expected degradation in classification perfor-
mance. However, an accuracy level around 80-85% remains achievable, which is
sufficient for selecting the required event statistics.

One of the main practical contributions of this dissertation is the integra-
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tion of the developed algorithms into the FLES package — a specialized sys-
tem for online event reconstruction and selection in the CBM experiment. The
conducted tests indicate that with proper code optimization for heterogeneous
computing architectures (CPU/GPU/FPGA) and consideration of network con-
figuration specifics, the overall data output stream can be reduced by several
orders of magnitude while preserving nearly all events where quark-gluon plasma
was produced. This paves the way for a more in-depth exploration of the QCD
phase diagram, including the search for the critical point, fluctuation measure-
ments, and collective flow studies.

It should also be noted that the proposed neural network-based method is
flexible and scalable. By enabling or disabling specific output neurons and intro-
ducing new features, it can be adapted to different experimental configurations
and even to other setups with similar detector systems. Moreover, extended CNN
architectures can incorporate not only kinematic properties but also topological
features of particle decays (such as D-meson or hypernuclei decays), further en-
hancing the sensitivity to QGP event identification.

Future development prospects cover several directions. First, full integration
of online processing algorithms into specialized hardware accelerators is possible,
where deep convolutional network computations are performed on FPGA in real
time, further reducing latency. Second, a more detailed analysis of the temporal
structure of events (4D tracking, where hit timestamps are considered alongside
spatial coordinates) is of particular interest, as it could potentially improve the
separation of overlapping collisions. Third, open questions remain regarding the
expansion of the training dataset with new models and the verification of the
proposed architecture’s universality over an even broader energy range — from
low SIS18 energies to the ultra-relativistic energies of the LHC collider.

Thus, the outcome of this work is a comprehensive approach that combines
fundamental physics concepts of the quark-gluon plasma phase transition with
modern deep learning techniques. The proposed solutions significantly reduce
the volume of stored data without losing the most informative events, bringing
the field closer to a more comprehensive and precise study of strongly interacting
matter under extreme conditions. Further improvements in neural network-based
event selection, its extension to new data types, and its implementation in real
experimental conditions may lead to new discoveries in heavy-ion physics and

provide a novel perspective on the fundamental laws of QCD.
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Zusammenfassung

Motivation und Einfiihrung in das Quark-Gluon-

Plasma

Die Untersuchung extremer Materiezustande stand stets im Zentrum der moder-
nen Physik. Unter Bedingungen, in denen sehr hohe Temperaturen und Dichten
— wie sie bei Kollisionen schwerer Ionen oder in den frithen Momenten des Uni-
versums erreicht werden — vorherrschen, ist die gewohnliche hadronische Materie
in der Lage, in einen vollig anderen Zustand iiberzugehen, in dem Quarks und
Gluonen aus ihren ,Zellen* austreten. Dieser Zustand, das sogenannte Quark-
Gluon-Plasma (QGP), stellt eine Phase dar, in der die starke Wechselwirkung

das Verhalten subatomarer Teilchen wesentlich verandert.

Das Verstiandnis des QGP ist von fundamentaler Bedeutung fir die Er-
forschung der Quantenchromodynamik (QCD) und fiir die Rekonstruktion der
Bedingungen, die in den ersten Augenblicken nach dem Urknall herrschten.
In diesem Zustand konnen Quarks und Gluonen frei umherwandern, was neue
Moéglichkeiten eroffnet, die Eigenschaften der starken Wechselwirkung und die
Mechanismen der Dekonfinierung zu untersuchen. Neben der theoretischen Rel-
evanz besitzt die experimentelle Erforschung des QGP auch praktische Bedeu-
tung, da sie dazu beitragt, neue Korrelationen zwischen Kollisionseigenschaften
zu identifizieren, den Einfluss kollektiver Effekte zu bewerten und die Dynamik

der Entstehung neuer Materiezustdande zu verstehen.

Ein zentrales Problem besteht darin, dass Ereignisse mit QGP-Bildung auflerst
selten auftreten. Bei Kollisionen schwerer Ionen entsteht eine riesige Anzahl von
Teilchen, und nur ein kleiner Bruchteil ist mit dem Ubergang in den QGP-Zustand
verbunden. Diese Tatsache fiihrt zur Herausforderung, aus einem enormen Daten-

strom die relevanten Ereignisse herauszufiltern. Traditionelle Trigger-Methoden
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Figure 8.1: Raumzeitliche Entwicklung von A+A-Kollisionen gemaf relativis-
tischen hydrodynamischen Modellen. In diesem vereinfachten Phasendiagramm
(nach J. Stachel und K. Reygers) wird die Abfolge von hadronischer Phase iiber
eine Mischphase bis hin zum Quark-Gluon-Plasma (QGP) illustriert.

stolen bei der Verarbeitung solch hoher Datenraten haufig an ihre Grenzen,
weshalb moderne Methoden der Datenanalyse — insbesondere Deep Learning —
unumganglich werden.

Aktuelle Algorithmen des Deep Learnings, vor allem Convolutional Neu-
ral Networks (CNN), ermoglichen es, feine, raumorientierte Merkmale in den
Verteilungen der Teilchen zu extrahieren. Dank ihrer Fahigkeit, sich automatisch
anhand komplexer, mehrdimensionaler Eingabedaten zu trainieren, eréffnen CNN
neue Perspektiven fiir die Analyse seltener Ereignisse. Dies ist insbesondere fiir
Experimente von grofler Bedeutung, in denen Daten in Echtzeit analysiert werden
mussen.

Zusammenfassend zielt diese Arbeit darauf ab, fundamentale Fragestellungen
zum QGP mit modernen rechnergestiitzten Methoden zu verbinden. Ziel ist es,
den Phaseniibergang genauer zu untersuchen und zugleich die praktische Um-
setzung von Online-Selektionsalgorithmen in experimentellen Umgebungen der

Kernphysik zu realisieren.
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Das CBM-Experiment und seine Anlage

RICH/ /
STS+MVD/

Figure 8.2: Schematische Darstellung der experimentellen Anlage des CBM-
Experiments. Die Abbildung zeigt die wesentlichen Komponenten wie Magnet,
Trackingsysteme, Mikrovertex-Detektor, RICH- und TOF-Systeme sowie weitere

Module, die fiir eine vollstdndige Rekonstruktion der Kollisionen notwendig sind.

Das Experiment CBM (Compressed Baryonic Matter) ist eines der Schlis-
selforschungsprojekte am zukiinftigen FAIR-Beschleunigerzentrum in Darmstadst.
Das Ziel des CBM-Experiments ist es, die Eigenschaften der stark wechsel-
wirkenden Materie bei extrem hohen Dichten zu untersuchen und damit den
Phasentibergang von der hadronischen in die partonische Phase zu erforschen
sowie das Phasendiagramm der Quantenchromodynamik (QCD) aufzubauen. Fiir
diese Untersuchungen ist es notwendig, eine enorme Anzahl von Kollisionen schw-
erer Jonen zu registrieren und zu analysieren, was hohe Anforderungen an die
Datenerfassung und -verarbeitung stellt.

Eine besondere Eigenschaft der CBM-Anlage ist die Arbeitsweise ohne
herkémmlichen Trigger. Stattdessen werden alle Signale der Detektoren kon-
tinuierlich erfasst und an das FLES System (First-Level Event Selector) weit-
ergeleitet, das fiir die Online-Rekonstruktion der Ereignisse verantwortlich ist.
Dieser Ansatz erlaubt es, sdmtliche verfiigharen Daten zu nutzen, erfordert je-
doch die Entwicklung von Algorithmen, die in Echtzeit seltene, aber physikalisch

relevante Ereignisse selektieren.
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Das Experiment CBM umfasst ein vielfaltiges Detektornetzwerk, bei dem jeder

Detektor eine spezifische Aufgabe tibernimmt:

e Mikrovertex-Detektor: Liefert prézise Informationen tiiber die primare
Kollision, indem er die Position der Wechselwirkungszone mit hoher

Genauigkeit bestimmt.

e Trackingsysteme: Ermoglichen die Rekonstruktion der Flugbahnen von

geladenen Teilchen mit hoher rdumlicher Auflésung.

e RICH (Ring Imaging Cherenkov) und TOF (Time-of-Flight):
Diese Systeme dienen der Teilchenidentifikation, indem sie Informationen

iiber Geschwindigkeit und Energie der Teilchen liefern.

e Weitere Subsysteme: Erginzen die Detektion, indem sie zeitliche und

rdumliche Parameter der Ereignisse messen.

Der Einsatz dieses komplexen Detektornetzwerks ermoglicht nicht nur die
Rekonstruktion der Teilchenbahnen, sondern auch die Erfassung wichtiger
physikalischer Groflen wie Energie, Impuls und Winkelverteilungen. Diese um-
fassenden Informationen sind die Grundlage fiir den Einsatz moderner Anal-
ysemethoden, mit denen seltene Ereignisse — insbesondere jene mit QGP-Bildung
— herausgefiltert werden kénnen. Die kontinuierliche Online-Verarbeitung durch
das FLES-System erlaubt es, die Datenmenge erheblich zu reduzieren, indem

vorab unerwiinschte Ereignisse verworfen werden.

Entwicklung des ANN4FLES-Pakets

Im Rahmen der Analyse von Schwerionenkollisionen ist es unabdingbar, hoch-
performante Algorithmen einzusetzen, die in der Lage sind, in Echtzeit seltene,
aber wertvolle Ereignisse zu identifizieren. Herkommliche Methoden stoflen hier-
bei schnell an ihre Grenzen, da sie mit der enormen Datenmenge nicht effizient
umgehen konnen. Zur Losung dieser Problematik wurde das Paket ANN4FLES
entwickelt — ein Framework, das auf den neuesten Techniken des Deep Learn-
ings basiert und speziell fiir die Online-Datenverarbeitung im CBM-Experiment

konzipiert wurde.
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Figure 8.3: Grafische Benutzeroberfliche zur Leistungsanalyse und

Hyperparameter-Abstimmung wahrend des neuronalen Netztrainings.

Motivation fiir den Einsatz neuronaler Netze

Traditionelle Trigger-Algorithmen beruhen héufig auf einfachen Schwellenwerten
oder linearen Kombinationen von Parametern, was in Fallen, in denen die Signa-
turen seltener Prozesse hochdimensional und komplex sind, nicht ausreicht. Kiin-
stliche neuronale Netze, insbesondere Convolutional Neural Networks (CNNs),
bieten hier einen entscheidenden Vorteil: Sie sind in der Lage, aus den hochdi-
mensionalen Eingabedaten verborgene Muster zu extrahieren und nichtlineare
Zusammenhéange zu erkennen. Dies erméglicht eine effektive Trennung von QGP-

Ereignissen von dem tiberwiegenden Rauschen an Daten.

Implementierung und Entwicklungsstand

Das ANN4FLES-Paket wurde vollstdndig in C++ implementiert, um maximale
Kontrolle iiber die verwendeten Algorithmen zu gewéhrleisten und eine hohe
Leistungsfihigkeit zu erzielen. Anders als bei herkdmmlichen Loésungen, die auf
umfangreichen mathematischen Formeln beruhen, liegt der Fokus hier auf einer

praxisorientierten Beschreibung der Funktionsweise. Wichtige Aspekte der Im-
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plementierung sind:

e Modularitdt und Erweiterbarkeit: Die Architektur erlaubt es, ver-
schiedene Typen von neuronalen Netzen — etwa vollstandig verbundene
(Fully Connected) Schichten sowie Faltungsschichten — flexibel zu kom-

binieren und bei Bedarf zu erweitern.

e Optimierung der Berechnungen: Mittels OpenMP wird eine effektive
Parallelisierung erreicht, und die Software ist so konzipiert, dass sie auch
auf heterogenen Systemen (CPU, GPU, FPGA) optimal laufen kann.

e Echtzeitfahigkeit: Durch die Optimierung des Codes und die Integration
in das FLES-System kann ANN4FLES Ereignisse in Echtzeit klassifizieren,

was fiir den Online-Trigger essenziell ist.

e Praktische Ausrichtung: Anstelle eines Ubermafies an theoretischen
Formeln stehen ausfiihrliche Beschreibungen der Arbeitsprinzipien, die es
dem Anwender ermdoglichen, die interne Logik zu verstehen und das System

an spezifische experimentelle Bediirfnisse anzupassen.

Die Leistungsfihigkeit von ANN4FLES wurde durch umfangreiche Tests auf
bekannten Datensédtzen validiert. Dabei zeigte sich, dass die Losung nicht nur
vergleichbare Klassifikationsergebnisse wie Standardbibliotheken (z.B. PyTorch)
liefert, sondern auch in Bezug auf die Ausfithrungsgeschwindigkeit iiberlegen
ist — ein entscheidender Faktor fiir den Einsatz im Online-Betrieb des CBM-

Experiments.

Anwendung von ANNAJ4FLES als Trigger fiir QGP-

Ereignisse und Integration in CBM

Ein zentraler Aspekt dieser Arbeit ist die praktische Anwendung des ANN4FLES-
Pakets zur Echtzeitselektion von QGP-Ereignissen. Zur Demonstration der Ef-

fektivitat wurden simulierte Datenséitze aus zwei unterschiedlichen Transport-
modellen — PHSD und UrQMD — verwendet.
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Training und Kreuzvalidierung mit PHSD- und
UrQMD-Daten

Zunéchst wurde das CNN anhand von Daten aus dem PHSD-Modell trainiert. Je-
dem simulierten Ereignis wurden Parameter wie das Vorhandensein von QGP, der
Integralsparameter R;, die Anzahl der QGP-Teilchen sowie der Impact-Parameter
zugeordnet. Die Trainingsresultate zeigten, dass das Netzwerk in der Lage
war, QGP-Ereignisse von Nicht-QGP-Ereignissen mit sehr hoher Genauigkeit
zu trennen. FEin wichtiger Schritt war die Kreuzvalidierung: Die auf PHSD-
Daten trainierte Netzwerkarchitektur wurde anschlieSend auf Daten des UrQMD-
Modells angewendet, bei denen mithilfe spezieller Markierungen Ereignisse identi-
fiziert wurden, die analog zu QGP-Ereignissen interpretiert werden konnten. Die
dabei erzielten Ergebnisse wiesen eine hohe Korrelation zwischen den Vorher-
sagen des Netzwerks und den tatsidchlichen physikalischen Parametern auf — ein
Beleg fiir die Robustheit und Modellunabhéngigkeit des Ansatzes.

Integration in das FLES-System des CBM-

Experiments

Ein weiterer Meilenstein bestand in der Integration des ANN4FLES-Pakets in das
Online-Datenverarbeitungssystem FLES, das im Rahmen des CBM-Experiments
eingesetzt wird. Das FLES-System iibernimmt die Echtzeit-Rekonstruktion der
Ereignisse aus den verschiedenen Detektorsubsystemen (z. B. CA Track Finder,
KF Particle Finder) und bildet die Basis fiir die Online-Selektion. Durch die
Einbindung des CNN-basierten QGP-Triggers konnen Ereignisse, die Signa-
turen einer QGP-Bildung aufweisen, in Echtzeit identifiziert und fiir eine de-
taillierte Offline-Analyse gespeichert werden. Ein speziell entwickelter Interface-
Mechanismus erméglicht dabei den reibungslosen Datenaustausch zwischen den
rekonstruierten Ereignisdaten und dem ANN4FLES-Modul. Dies fithrt zu einer
signifikanten Reduktion der zu speichernden Datenmenge, ohne dass die relevan-

ten physikalischen Ereignisse verloren gehen.
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Au+Au, 31.2 AGeV, central, 80k/20k events
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Figure 8.4: Klassifikationsgenauigkeit in verschiedenen Stufen der Datenverar-
beitung fiir Au+Au-Kollisionen bei 31,2 AGeV. Das Diagramm auf der linken
Seite zeigt die Genauigkeit in Abhéngigkeit von der Anzahl der Trainingse-
pochen fiir unterschiedliche Datensitze. Die Tabelle auf der rechten Seite fasst
die Genauigkeit in jeder Stufe zusammen und veranschaulicht den Riickgang

gegeniiber dem vorherigen Schritt.

Schlussfolgerungen und Ausblick

Zusammenfassend verbindet die vorliegende Arbeit fundamentale physikalis-
che Konzepte des Phaseniibergangs von hadronischer Materie in das Quark-
Gluon-Plasma mit modernen Methoden des Deep Learnings. Das entwickelte
ANN4FLES-Paket erweist sich als leistungsfihiges Werkzeug, um in Echtzeit sel-
tene QGP-Ereignisse aus riesigen Datenstromen zu selektieren und gleichzeitig
wichtige physikalische Parameter wie die Anzahl der QGP-Teilchen, den Inte-
gralsparameter R; und den Impact-Parameter zu rekonstruieren.

Die erzielten Ergebnisse zeigen, dass selbst bei der Umstellung von idealen

Monte-Carlo-Daten auf rekonstruierte Daten — bei denen Detektoreffekte und
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Rekonstruktionsunsicherheiten berticksichtigt werden — eine Klassifikationsge-
nauigkeit von etwa 83-85% erreicht wird. Diese Genauigkeit ist ausreichend,
um den Online-Trigger im CBM-Experiment zu realisieren und so die zu spe-
ichernde Datenmenge erheblich zu reduzieren, wiahrend die fir die physikalische
Analyse relevanten Ereignisse nahezu vollstdndig erhalten bleiben.

Dartiber hinaus zeichnet sich der entwickelte Ansatz durch seine Flexibilitat
und Skalierbarkeit aus. FEr kann problemlos an unterschiedliche Simulations-
modelle (z. B. PHSD, UrQMD) angepasst werden und lasst sich um zusit-
zliche physikalisch relevante Parameter erweitern. Die Integration in das FLES-
System des CBM-Experiments stellt einen wichtigen Schritt dar, um die Online-
Datenverarbeitung in zukiinftigen Schwerionenexperimenten zu revolutionieren.

Fir die Zukunft ergeben sich folgende Perspektiven:

e Die vollstindige Implementierung der Algorithmen auf spezialisierten
Beschleunigern (z. B. FPGA), um die Latenzzeiten bei der Online-

Verarbeitung weiter zu senken.

e Die Erweiterung der Trainingsdatensatze durch die Einbeziehung weiterer
Simulationsmodelle und realer Experimentaldaten, um die Robustheit und

Generalisierbarkeit des Ansatzes zu verbessern.

e Die Integration von 4D-Tracking-Methoden, bei denen zeitliche Informatio-
nen neben den raumlichen Koordinaten genutzt werden, um die Trennung

von liberlappenden Ereignissen zu optimieren.

e Die Weiterentwicklung der Netzwerkarchitektur sowie der Regular-
isierungsalgorithmen, um die Resistenz gegentiber Rauschen und Hinter-

grundkomponenten weiter zu erhohen.

Insgesamt liefert diese Arbeit einen umfassenden, praxisorientierten Ansatz fir
die Online-Selektion von QGP-Ereignissen, der es ermdoglicht, die enormen Daten-
mengen zukiinftiger Schwerionenexperimente effizient zu verarbeiten und dabei
die physikalisch relevanten Ereignisse zu erhalten. Die Kombination von fun-
damentalen physikalischen Prinzipien mit modernen Deep-Learning-Methoden
eroffnet neue Horizonte in der Erforschung der Eigenschaften stark wechselwirk-
ender Materie und wird in Zukunft zu bedeutenden Entdeckungen in der Kern-

physik fiihren.
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