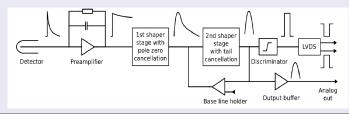
Front-end Electronics for Straw Tube Tracker in PANDA Experiment

Dominik Przyborowski, Marek Idzik

AGH University of Science and Technology

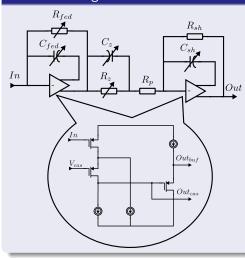

PANDA STT Workshop 10 October 2013, Juelich

Outline

1 Front-end Specification and Architecture

- 2 Measurements of 1^{st} Prototype
- 4 Summary

Specification


Features

- CSP with variable gain and time constant
- CR-RC² shaper with variable peaking time
- Ion tail cancellation circuit with trimming
- Baseline stabilized by BLH circuit
- Leading edge discriminator for time and ToT measurements
- Fast LVDS output
- Buffered analog output

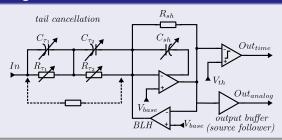
Architecture

Preamplifier and Shaper

Schematic diagram

Features

- Variable charge gain: 0.5 – 4 mV/fC
- Variable preamp time constant:
 - 25 800 ns
- PZC matched to various preamp settings
- $\bullet \ 1^{st} \ \text{shaper stage with} \ T_P \\ \text{in range} \ 10 40 \ \text{ns}$


Input transistor

- Drain current = 2 mA
- W/L = $2000\mu/0.35\mu$
- Transconductance $\approx 26 \text{ mS}$

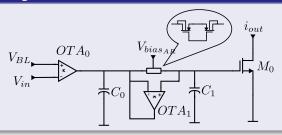
Architecture

Tail Cancellation and Output stages

Schematic diagram

Tail cancellation

- 4 modes of operation:
 - $\tau_1 \& \tau_2$ TC, only τ_1 TC, only τ_2 TC, CR-RC² (no TC)
- Trimming time constants:


$$\tau_1 \in 3 - 43 \text{ ns (6 bits)}$$

$$\tau_2 \in 18 - 511 \text{ ns (6 bits)}$$

Architecture Measurements Design of 2nd Prototype Su

Architecture Baseline Holder

Schematic diagram

Components

- Nonlinear buffer (slew rate limited OTA_0 and C_0)
- High value tunable active resistor for low pass filter

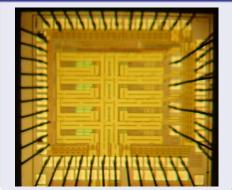
 (A. Tajalli, Y. Leblebici, E.J. Brauer, Implementing Ultra-High-Value Floating Tunable CMOS Resistors, Electronics Letters, 2008, pp. 349-350)
- Current sink controlling current in last stage feedback

Architecture

Leading Edge Discriminator

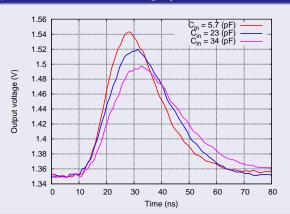
Schematic diagram Voiase InVoiase Voiase Voiase

Stages


- Two low-gain preamplifing stages
- Latch stage with histeresis
- Self-biased amplifier
- Inverters

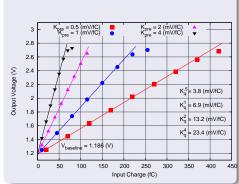
Measurement results First prototype basic data

- AMS 0.35μm 2P–4M CMOS Process
- Four channels
- Channel size: $200 \times 1130 \ \mu m^2$
- Power consumption: \sim 15.5 mW/ch + LVDS \sim 12 mW \approx 28 mW/ch
- Peripherals not yet designed, biasing and thresholds setting externally

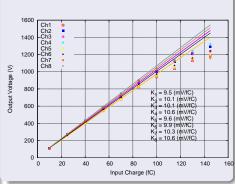

Chip size: $1.5 \times 1.2 \text{ mm}^2$

Measurement results

Pulse shapes

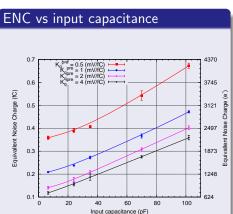

δ pulse response for 10ns T_P settings (CR–RC² mode – no TC)

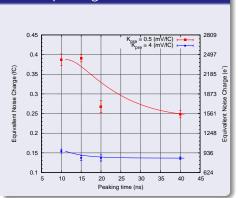
Response slower due to layout parasitics and output buffer performance


Measurement results Linearity and Gain

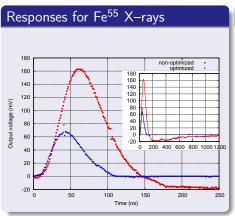
Channel modes (CR–RC² mode – no TC)

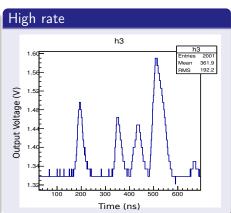
S-curves measurements


Channel uniformity (with TC)

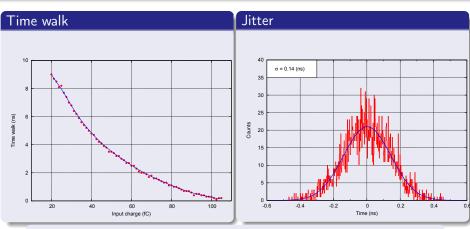

Analog buffer output

Measurement results

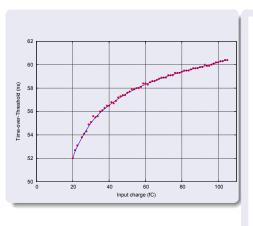


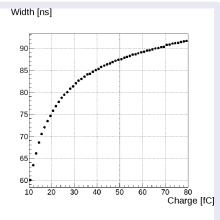

ENC vs peaking time

ENC
$$\approx 1000$$
 e⁻ for default FE settings ($K_{pre}=2mV/fC,~T_P=10ns$ and $C_{in}=25 pF$)


Measurement results Tail cancellation

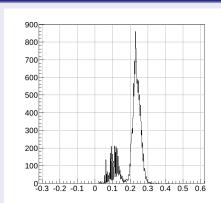
Measurement results


Time resolution

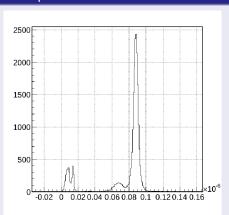


1–2 ns time precision could be obtained by compensating time walk basing on amplitude information

Measurement results Time-over-Threshold



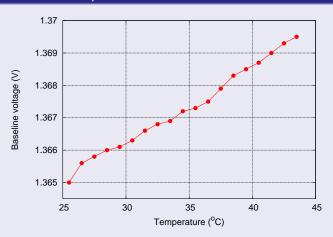
Results achieved for delta pulse and different FEE settings


Measurement results

Fe⁵⁵ X–rays spectrums

Amplitude spectrum

ToT spectrum


Good separation of Fe^{55} K- α and escape peaks for both methods

Architecture Measurements Design of 2nd Prototype Su

Measurement results

Baseline

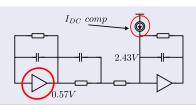
Baseline level vs temperature

Measure after output buffer – V_{gs} and β variations

- 1st prototype of STT front-end fully functional
- \bullet Variable gain 3 24 mV/fC and peaking time \sim 20 40 ns work well
- ENC ≈ 1000 e⁻ for default conditions ($K_{pre} = 2mV/fC$, $T_P = 10$ ns and $C_{in} = 25$ pF)
- Tail cancellation works and could be trimmed to various types of input signals
- Readout module with 8 ASICs (32 channels) successfully used in test-beam
- The front-end design and performance was presented at TWEPP-2013

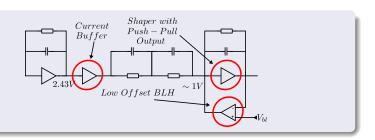
Design of 2nd Prototype

Features not implemented in 1st prototype


- Lack of DACs for baseline control (high baseline dispersion was expected)
- Longer T_P (18 ns) in post-layout simulations

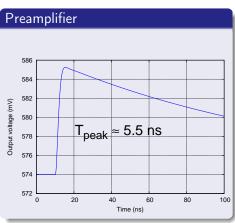
Issues found during tests

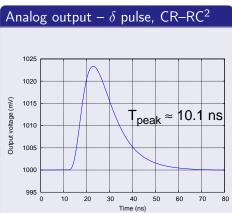
- Saturation of preamplifier for large signals
- Analog buffer not addapted for high capacitive load


Planned improvements

- Implementation of 8 channels
- Redesign of preamp/shaper for higher speed ($T_P=10$ ns)
- DAC addition and BLH modification for uniform baseline
- Improvement of analog buffer
- Elimination of saturation for large signals

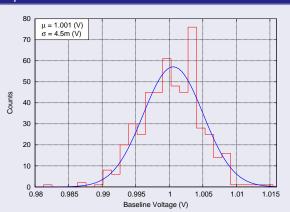
Planned Modifications


- Complementary architecture with pseudo Class AB Flipped Voltage Follower
- DC current compensation circuit
- Variable charge gain: 1, 2 and 4 mV/fC
- Response rise time \sim 5 ns (3× faster)


Planned Modifications

- Current buffer to separate 1st shaper stage and tail cancellation (to avoid T_p walking vs TC settings)
- Improvments of BLH to minimize offset ($\sigma \approx 5 \text{ mV}$)
- 2nd shaper stage with high performance Push-Pull buffer

Design of 2nd Prototype Simulation results


 $T_P \approx 15 \text{ ns in } 1^{st} \text{ prototype}$

 $T_P \approx 17 \text{ ns in } 1^{st} \text{ prototype}$

Design of 2^{nd} Prototype Simulation results

Baseline dispersion

- Baseline dispersion one order of magnitude less than in 1st prototype
- 4-bits DAC will be added for fine tunning

Summary and plans

Front-end development status

- 1st prototype of STT front-end fully functional
- \bullet Variable gain 3 24 mV/fC and peaking time \sim 20 40 ns work well
- ENC $\approx 1000 \text{ e}^-$ for default conditions ($K_{pre} = 2mV/fC$, $T_P = 10ns$ and $C_{in} = 25pF$)
- Tail cancellation works and could be trimmed to various types of input signals
- Readout module with 8 ASICs (32 channels) successfully used in test-beam

Future plans

- New improved front-end design in progress:
 - 8 channels
 - DACs for threshold and baseline settings
 - Faster preamp/shaper
 - Stronger output buffer
 - Better performance for large signals
- Submission of new prototype planned at the end of this year (if founds available)

