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Power Demand of Pixel Detectors

• Hybrid-Pixel detectors are power hungry devices

• Increased current consumption caused by

– parasitic detector capacitances 

– additional digital functionality

• ITkPix quad-module expected to consume 4.5-7.5 A 
of current

– Exact current consumption depends module
position e.g. layer
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Chip Pixel Area Current per Pixel Current Density

FE-I3 50 x 400 µm^2 47 µA 1400 A/m^2

FE-I4 50 x 250 µm^2 16 µA 1280 A/m^2

RD53 50 x  50 µm^2 7 µA 2800 A/m^2



Need for Low Mass

• detector mass influences the tracking and calorimeter resolution

– multiple-scattering, Bremsstrahlung, photon conversion

• limited material budget

– affects available number and diameter of supply lines

– no sense lines 

• long supply lines

– power supplies are outside the active area

– assuming c.a. 200m aluminum of 5 mm2 diameter gives 1Ω cable resistance
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Power Efficiency of Conventional Power Scheme

• Modules are connected in parallel
• Powered by constant voltage source
• Total supply current scales with the 

number n of modules
• Large supply currents affect efficiency
• IR drops on power cables
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Module
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DC / DC Conversion
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• power is distributed at k-times 
higher supply voltage

• supply voltage is converted down 
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Special Conditions in HEP Experiments
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• High magnetic field to measure momenta and charge
• ferromagnetic materials saturate
• only air coils applicable
• air coils have larger dimensions than coils with core
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for gate-oxide thickness larger than 5nm



Serial Powering
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• modules are connected in series
• powered by constant current source
• total supply current is defined by maximum load

current of a single module
• total supply voltage across the chain scales with 

the number of powered  modules

• regulator circuitry required to generate 
constant supply voltage out of constant current 
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Efficiency of Different Power Supply Concepts
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𝑉𝑚 = 1.2𝑉
𝐼𝑙  = 4.5 𝐴
𝑅𝑐 = 1 Ω 
𝑘1 = 4
𝑘2 = 2.5



The Serial Powering Commandments

• You shall prevent the break of the serial powering chain
• You shall avoid hot spots
• You shall distribute power equally across the chips and the module
• You shall avoid single point of failure
• You shall introduce redundancy

• You shall operate several regulators in parallel on module level

Module

Regulator Regulator Regulator Regulator
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Shunt Regulator Operation Principle
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Vout
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Isupply

Rload

• Voltage regulation by current steering
• Current flow through load defines 𝑉𝑜𝑢𝑡

• Referenced voltage  𝑉𝑜𝑢𝑡 = 1 +
𝑅1

𝑅2
𝑉𝑟𝑒𝑓

• Excess current 𝐼𝑆ℎ𝑢𝑛𝑡 is shunted by M1

• 𝐼𝑖𝑛 > 𝐼𝑙𝑜𝑎𝑑 → 𝜂 =
𝐼𝑙𝑜𝑎𝑑

𝐼𝑖𝑛

𝐼𝑙𝑜𝑎𝑑𝐼𝑠ℎ𝑢𝑛𝑡

𝑉𝑜𝑢𝑡

𝐼𝑖𝑛

• Very steep voltage to current characteristic
• → Small voltage source output impedance ☺
• → Unbalanced current distribution across parallel 

→ placed regulators 
• Parallel placed regulators generate different 𝑉𝑜𝑢𝑡

• voltage reference variations
• error amplifier offset
• resistor mismatch
• ground shifts

• Current will flow through regulator with small 𝑉𝑜𝑢𝑡

• Regulator may be destroyed due to overload cond.
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+

-

Vref

R 1

R 2 FE-Chip FE-Chip FE-Chip FE-Chip

Module

Known Methods to Combat Unbalanced 
Shunt Current Distribution

• Distributed shunt transistors but single
control circuitry

• Balances shunt current across the module
• Achilles heel → control circuitry
• Malfunctioning control circuit leads to loss

of module or even loss of complete chain
• Module parasitics complicate design

M2

Iref

Ishunt

k

1 : k

DI

-

+ Vref

R3 DI

• Trimming of voltage reference
• Fraction of the shunt current is mirrored

and compared with a current reference
• Current difference Δ𝐼 is read out by 

transimpedance amplifier
• Transimpedance amplifier voltage output is

fed back to the error amplifier as reference
• Effective reference voltage rises with Δ𝐼 
• Vout increases → 𝐼𝑆ℎ𝑢𝑛𝑡 decreases ☺
• Vout depends on load current 
→Bad output impedance

𝑉𝑟𝑒𝑓 + 𝑅3Δ𝐼

simplified design don’t try at home → won’t work
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FE-I3 Regulator Approach
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𝑅𝑠𝑙𝑜𝑝𝑒

• Resistor 𝑅𝑠𝑙𝑜𝑝𝑒 is added to the current input

• 𝑅𝑠𝑙𝑜𝑝𝑒 decreases the IV-slope of 𝑉𝑖𝑛(not 𝑉𝑜𝑢𝑡)

• 𝑅𝑠𝑙𝑜𝑝𝑒 helps distributing the shunt current between 

parallel placed regulators ☺
• Output impedance is not affected ☺
• 𝑅𝑠𝑙𝑜𝑝𝑒 decreases power efficiency 
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• Additional supply voltage is generated by LDO 
• Design Idea of Shunt LDO Regulator:
• Move shunt transistor 𝑀1to LDO load
• Replace 𝑅𝑠𝑙𝑜𝑝𝑒 by LDO pass transistor 𝑀2

2
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+

-
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Design Concept

• The Shunt-LDO regulator combines the functionality of an LDO voltage regulator with the 
capability of a shunt regulator to drain a constant current

• Two control loops: 1) constant output voltage 2) constant current flow through the regulator

k : 1 𝐼𝑅𝑒𝑓 ≈
𝑉𝑖𝑛 − 𝑉𝑇𝐻

𝑅3

+ -

A2

M3

𝑉𝑜𝑢𝑡 = 2𝑉𝑟𝑒𝑓
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V/I  Characteristic
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Measurements Line & Load Regulation 
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• Line Regulation =
∆𝑽𝒐𝒖𝒕

∆𝑰𝒊𝒏
= 𝟐𝟓𝒎𝑽/𝑨 • Load Regulation =

∆𝑽𝒐𝒖𝒕

∆𝑰𝒍𝒐𝒂𝒅
= 𝟏𝟏. 𝟓𝒎𝑽/𝑨

                             

                

   

   

   

   

 

   

   

   

   

   

   

 
 
  
 
 
 
  
 
 

           



Lessons Learned Outer Barrel Demonstrator

• FE-I4 quad module based serial chain

• Overload current situation reduces
module (SLDO input) voltage

• Other modules in chain see overvoltage

• PSPP chip triggers and generates even 
more overvoltages
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Protection Feature: Overload Protection
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• With RD53A overload currents lead to collapse of regualtor input voltage
• This lead to overvoltages at other modules in the serial chain

• RD53B protects against overloads which are considered as undershunt current scenarios
• high load current reduces shunt current

• In undershunt current case Vout is reduced 
• Vout is lowered by lowering Vref

• Activation Threshold Ishunt < 10 mA
• Vout minimimum value 700mV  → Vref minimum value 350 mV



Measurement of Overload/Undershunt Protection
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Enabled Disabled



Protection Feature:
Overvoltage Protection Voltage Clamp

• voltage clamp implemented as shunt regulator

– operated in parallel to SLDO

• takes all excess current in case Vin =>2v

• limits the voltage to 2V 

• can absorb up to 2A additional current per chip

• OVP threshold defined by untrimmed bandgap

– voltage limit can vary +/- 5%
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Startup Optimization

• Startup should not depend on too many bandgaps circuits

• SLDO must be in high-impedance during startup
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On-Pixel-Chip Monitoring

• Monitored SLDO properties

– input/output voltage

– shunt and total current

– Vref and Vofs reference voltages
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Monitoring of Pixel System
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DCS
Computer

CAN

• Independent Module Monitoring
─ Temperature & Voltage

• Useful when frontends are offline

Up to 16 
modules



MOPS Chip
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Negative Bias Generator
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• „preferred“ options for generation of negative voltages

– inductive Buck-Boost converter

– Cross-Coupeled Charge Pump

• Radiation-hard implementation 

– challenging but feasible



High-Frequency DCDC Buck Converter
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• Cascoded switching stage

• 4 NMOS (Mn1 - Mn4)

• 4 PMOS (Mp1 - Mp4) Operation 

• with quadruple nominal transistor 
voltage 

• Voltage-controlled pulse width 
modulation (PWM)

Specification

Input voltage 4.8V

Output voltage 1.2V

Swtiching frequency 100MHz

Max. load current 1A

Required inductance 22nH

Required capacutance 100nF

Efficiency @400mA 70%

Technology TSMC 65nm (core 
Transistoren) 

Nominal outout voltage 1.2V

Maximum voltage 1.32V



Cascoded Power Switch Stage
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• 4 PMOS and 4 NMOS transistors each

• Core transistors (nominal voltage: 1.2V, max. 
voltage 1.32V) 

• Circuit switches between HIGH state (red) and 
LOW state (blue)

• Control signals from Mp1 and Mn8 determine 
the state of the circuit

• Driver network ensures safe operation of the 
stacked transistors

• Network monitors the drain potentials of the 
stacked transistors and provides the required 
gate voltage 

• Ensures that the transistors are within their 
voltage limits 

• Auxiliary voltages VDD, 2VDD and 3VDD 
required



Decoupling Capacitors for High Freuqency Operation
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• Ultra large band Wire bondable Silicon Capacitor UWSC

• Murata

• 10nF

• 0202 (0.5 x 0.5mm) 

• Für Frequenzen bis 26GHz 

Testchip mit On-Chip capacitors
 (2.2 x 2 mm)



DC/DC Wandler | TID-Ergebnisse
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Conclusion

• Power Aspects are always relevant and challenging 

– Especially due to additional constraints in HEP experiments

• Conventional parallel/voltage based powering scheme is not viable

– Radiation hard custom made DC/DC converters are an option for outer layers

– Serial Powering with SLDO are used in inner layers

• Hybrid/Resonant Converters may allow DC/DC conversion in hybrid-pixel detectors

– e.g. as an alternative to short serial chains with 3D sensors
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Serial Powering | Stabilisierung des LDO

Pole und Nullstellen des LDOs:
– Verstärkerpol p1: 𝜔𝑝1 ≈

1

𝑅𝐸[𝐶𝐺𝑆1+ 1+𝑔𝑚1·𝑟𝐿𝐺 𝐶𝐺𝐷1]
 

– Ausgangspol p2: 𝜔𝑝2 ≈
1

𝑟𝐿𝐺 · 𝐶𝑜𝑢𝑡

– RHP-Nullstelle z1: 𝜔𝑧1 =
𝑔𝑚1

𝐶𝐺𝐷1

– Mit 𝑟𝐿𝐺 = 𝑅𝑙𝑜𝑎𝑑 𝑅1 + 𝑅2 𝑟𝑑𝑠1

– 𝑅𝐸: Ausgangswiderstand des Verstärkers A1
• Für die Stabilität ist eine Phasenreserve > 60° im 

offenen Regelkreis erforderlich
– Kompensationsnullstelle für Phasenanhebung 

• Konventioneller Ansatz: Kompensation durch ESR-
Nullstelle 
– Große On-Chip Kapazität (≈ 300nF) → ESR-

Kompensation nicht möglich 
– Neues Kompensationsschema erforderlich 
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Serial Powering | LDO-Kompensation bei großer On-
Chip Kapazität

• Kompensationsnetzwerk: 

– Rs/Cs erzeugen Nullstelle für Phasenanhebung

– Stromspiegel: M1 → M2

– Cs koppelt Spannungsabfall an Rs über R1/R2 ein

• M4 verbindet Rs mit Ausgangsspannung

– Stellt sicher, dass M2 in Sättigung bleibt 

• Referenzpfad durch Stromspiegel M3 stellt Stromfluss durch M5 ein

• Verstärker A2 stellt Stromspiegelgenauigkeit zwischen M1 und M3 sicher
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SLDO Stabilization Strategy Bode Plots
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Amplitudenantwort der Ausgangsstufe des LDOs (orange), 
Kompensationsschaltung (blau), beide Kombiniert (gelb) 

𝜔𝑧,𝑐𝑜𝑚𝑝 =
1

2𝐶𝑜𝑢𝑡𝑅𝐿𝐺

−1 + 1 +
𝑅𝐿𝐺

4 𝑔𝑚1
2 𝐶𝑜𝑢𝑡

2

𝑔𝑚2
2 𝑅0

2𝐶𝑠
2𝑅𝑥

2
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