NJL hybrid stars & the recent $2M_{\odot}$ pulsars

Germán Lugones (UFABC – Brazil)

EMMI task force meeting FIAS, Frankfurt , October 7-9, 2013

Outline of the talk:

1. NJL hybrid stars & the recent 2M_o pulsars Lenzi & Lugones; ApJ. 759, 57 (2012)

2. Discriminating compact stars through GWs of pulsation modes Flores & Lugones; arXiv:1310.0554

3. Few words about surface tension. Lugones, Grunfeld & Ajmi, arXiv:1308.1452

1. NJL hybrid stars & the recent 2M pulsars Lenzi & Lugones; ApJ. 759, 57 (2012)

Hadronic matter

Relativistic mean field model with neutrons, protons and electrons (GM1, TM1 & NL3 parametrizations).

$$\mathcal{L} = \sum_{B} \overline{\psi}_{B} (i\gamma_{\mu}\partial^{\mu} - m_{B} + g_{\sigma B}\sigma - g_{\omega B}\gamma_{\mu}\omega^{\mu} - \frac{1}{2}g_{\rho B}\gamma_{\mu}\tau \cdot \rho^{\mu})\psi_{B} + \frac{1}{2}(\partial_{\mu}\sigma\partial^{\mu}\sigma - m_{\sigma}^{2}\sigma^{2}) - \frac{1}{4}\omega_{\mu\nu}\omega^{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu} - \frac{1}{4}\rho_{\mu\nu}\cdot\rho^{\mu\nu} + \frac{1}{2}m_{\rho}^{2}\rho_{\mu}\cdot\rho^{\mu} - \frac{1}{3}bm_{n}(g_{\sigma}\sigma)^{3} - \frac{1}{4}c(g_{\sigma}\sigma)^{4} + \sum_{\mu} \overline{\psi}_{\lambda}(i\gamma_{\mu}\partial^{\mu} - m_{\lambda})\psi_{\lambda}.$$

Set	GM1	TM1	NL3
$\overline{m_{\sigma} (\text{MeV})}$	512	511.198	508.194
m_{ω} (MeV)	783	783	782.501
m_{ρ} (MeV)	770	770	763
$\overline{g_{\sigma}}$	8.91	10.029	10.217
g_{ω}	10.61	12.614	12.868
g_{ρ}	8.196	9.264	8.948
b	0.002947	-0.001506	0.002055
С	-0.001070	0.000061	-0.002651
$M_{\rm max}$	2.32	2.18	2.73

Coupling Constants for the Parameterizations GM1 (Glendenning & Moszkowski 1991), TM1 (Sugahara & Toki 1994), and NL3 (Lalazissis et al. 1997)

Notes. M_{max} is the maximum mass of a pure hadronic star for matter composed of nucleons and electrons.

Quark matter

QUARK MATTER: SU(3) NJL model with scalar–pseudoscalar, isoscalar–vector, and 't Hooft six-fermion interactions.

$$\begin{aligned} \mathcal{L}_{Q} &= \bar{\psi}(i\gamma_{\mu}\partial^{\mu} - \hat{m})\psi \\ &+ g_{s} \sum_{a=0}^{8} [(\bar{\psi}\lambda^{a}\psi)^{2} + (\bar{\psi}i\gamma_{5}\lambda^{a}\psi)^{2}] \\ &- g_{v} \sum_{a=0}^{8} [(\bar{\psi}\gamma_{\mu}\lambda^{a}\psi)^{2} + (\bar{\psi}\gamma_{5}\gamma_{\mu}\lambda^{a}\psi)^{2}] \\ &+ g_{t} \{\det[\bar{\psi}(1+\gamma_{5})\psi] + \det[\bar{\psi}(1-\gamma_{5})\psi]\}, \end{aligned}$$

In this work we consider the following set of parameters (Kunihiro 1989; Ruivo et al. 1999): $\Lambda = 631.4$ MeV, $g_s \Lambda^2 = 1.829$, $g_t \Lambda^5 = -9.4$, $m_u = m_d = 5.6$ MeV, $m_s = 135.6$ MeV

Our regime: weak diquark coupling strength.

For calculations in the strong diquark coupling strength regime see Bonanno & Sedrakian A&A 2012.

Thermodynamic potential:

$$\begin{split} \Omega &= -\eta N_c \sum_i \int_{k_{Fi}}^{\Lambda} \frac{p^2 dp}{2\pi^2} \sqrt{p^2 + M_i^2} + 2g_s \sum_i \langle \bar{\psi}\psi \rangle_i^2 \\ &- 2g_v \sum_i \langle \psi^{\dagger}\psi \rangle_i^2 + 4g_t \langle \bar{u}u \rangle \langle \bar{d}d \rangle \langle \bar{s}s \rangle \\ &- \eta N_c \sum_i \mu_i \int_0^{k_{Fi}} \frac{p^2 dp}{2\pi^2} - \Omega_0, \end{split}$$

Conventional procedure: Fix the Ω_0 term through the condition: $\Omega(T=0,\mu=0) = 0$ (arbitrary way to uniquely determine the EoS without any further assumptions).

in the MIT bag model, for instance, the pressure in the vacuum is non-vanishing.

Other choices lead to significant changes in the EoS: e.g. Pagliara & Schaffner-Bielich (PRD 2008) fix a bag constant for deconfinement to occur at the same chemical potential as the chiral phase transition.

OUR WORK: $\Omega_0 \rightarrow \Omega_0 + \delta \Omega_0$ ($\delta \Omega_0$ is a free parameter) (*Lenzi & Lugones, ApJ 2012*)

- the μ at which the chiral transition occurs doesn't depend on $\Omega_0 \rightarrow$ it is determined from the solution of the gap equations for the constituent masses.
- the μ for the deconfinement transition depends on Ω_0 because it is determined by matching the pressures of the hadronic and quark phases.
- Thus, tuning $\delta\Omega_0$ is an easy way to control the splitting between both chemical potentials.

Similar to the conjecture of quarkionic matter: the deconfinement and chiral transitions split from one another at the critical point (McLerran & Pisarski 2007) \rightarrow quarkyonic phase: a confined but chiral symmetric phase, can exist in the region of high μ .

EFFECT OF THE VECTOR COUPLING CONSTANT g_v AND OF $\delta \Omega_0$

400

350

Increase $\delta \Omega_0$

- Larger deconfinement pressure
- Smaller quark cores
- Larger maximum masses because ٠ the hadronic EoS is stiffer than the quark EoS.
- Less stable: there is a larger • **density jump** between the two phases, which tends to destabilize the star.

$\delta \Omega_0 = 0$ 300 2.1 Lessing [100] $\delta\Omega_0 = 7.6$ M [Solar Masses] 2 - GM1 1.9 1.8 100 1.7 50 1.6 (a) 1.5**–** 14.8 0 2 15 6 8 ρ/ρ_0 $\log_{10}(\varepsilon_{c} [g/cm^{3}])$ 450 2.3 $g_{v}/g_{o} = 0$ Phase Transition 400 2.2 $g_{v}/g_{s} = 0.1$ 350 $g_{y}/g_{s} = 0.2$ 2.1 Pressure [Mev.fm⁻³] M [Solar Masses] 1.9 1.8 $g_{v}/g_{s} = 0.3$ 300 GM1 250 200 150 Ouark Phase 1.7 100 1.6 50 -Hadron Phase Hadron Phase (a)

2

٦)

 $\delta \Omega_0 = -16.75$

 $\delta\Omega_0 = -9.14$

2.3

2.2

1.5**–** 14.8

15

8

6

 ρ/ρ_0

(b)

15.4

15.2

Phase Transition

Quark Phase

15.2

 $\log_{10}(\varepsilon_{c} [g/cm^{3}])$

(b)

15.4

Increase g_v

- Larger deconfinement pressure
- Smaller quark cores
- Larger maximum masses •
- Larger density jump
- Less stable •

- Background colors and contour lines indicate the maximum mass.
- black line: limit between parameters that allow for stable hybrid stars and those that always give unstable hybrid stars.
- red dashed line: mass of PSR J1614–2230.

- large masses are situated on the right-upper corner
- stable configurations are located on the left-lower corner
- stable configurations with a maximum mass compatible with PSR J1614–2230 and PSR J0348-0432 are located halfway (between the red and black lines)

EFFECT OF HADRONIC EOS: stable hybrid stars have higher values of the maximum mass for the stiffer hadronic EoS.

Effect of hyperons in the hadronic EoS : NL3 hyp + NJL

For small g_v or $\delta\Omega_{0,j}$ the maximum mass values are altered by a few percent (because the deconf. transition occurs at relatively low pressures).

As we increase g_v or δΩ₀, the deconfinement transition is shifted to larger pressures and the hadronic EoS with hyperons tends to be favored.

 \rightarrow Above a certain limit there is no deconfinement transition at all.

□ We show that hybrid configurations in agreement with PSR J1614–2230 and PSR J0348-0432 are possible for a significant region of the parameter space of g_v and $\delta\Omega_0$ provided a stiff enough hadronic EoS without hyperons is used.

□ The "bag constant" $\delta \Omega_0$ has a strong impact on the structure of neutron stars and deserve more study within other models for the EoS.

2. Discriminating compact stars through GWs of pulsation modes Flores & Lugones; arXiv:1310.0554

→ We investigate non-radial fluid oscillations of hadronic, hybrid and strange quark stars with maximum masses above the mass of PSR J1614-2230 and PSR J0348-0432.

MOTIVATION

1. Advanced LIGO and Advanced VIRGO will bring within the next few years the science of gravitational radiation to a mode of regular astrophysical observation

2. Non-radial oscillations are sources of gravitational radiation. The pulsation modes depend on the EOS.

EQUATIONS OF STATE

- Hadronic matter: RMFM with neutrons, protons and electrons → GM1 & NL3 parametrizations.
- **Quark matter:** MIT bag model.

$$\Omega_{QM} = \sum_{i=u,d,s,e} \Omega_i + \frac{3\mu^4}{4\pi^2} (1 - a_4) + B,$$

QCD interactions are roughly incorporated through the parameter a_4 (e.g. Alford et al. 2005, Weissenborn et al. 2011).

$$\Omega_{\rm CFL} = \Omega_{\rm free} - \frac{3}{\pi^2} \Delta^2 \mu^2 + B,$$

Effect of color superconductivity: CFL strange matter (e.g. Lugones & Horvath 2002)

PULSATION EQUATIONS

The relativistic equations of non-radial oscillations were integrated within the Cowling approximation.

Errors of Cowling approx. with respect to full linearized calculation: less than 20 % for f mode, less than 10 % for p_1 and less than few % for g-modes (Sotani et al. 2011).

- there is an overlapping of the curves corresponding to hadronic, hybrid and strange quark stars for stellar masses larger that ~ 1 M_{\odot}
- difficult to distinguish hybrid and hadronic stars even if the mass or the surface z of the object is determined together with f_f
- However, in some cases we can discriminate strange stars and hadronic/hybrid stars.
 strange stars cannot emit GWs with frequency below ~ 1.7 kHz
 - sources with M = 1-1.5 M_{\odot} emitting a signal in the range 2-3 kHz would be strange stars.

 f_{p1} is much more affected by the internal composition of the star:

- for hadronic and hybrid stars, we find that fp1 is in the range 4 6 kHz for objects with masses in the range 1 2 M_{\odot}
- for strange quark stars it is always significantly larger than ~ 6 kHz.

Thus, a compact object emitting a signal above ~ 6 kHz could be identified as a strange star even if its mass or gravitational redshift are unknown.

g-mode due to the hadron-quark discontinuity

- High frequency g-modes are only present in hybrid stars and fall in the range 0.4 1 kHz.
- Clearly distinguishable from:
 - the fundamental mode,
 - low-frequency g-modes associated with chemical inhomogeneities in the outer layers or thermal profiles (Miniutti, Pons, Berti, Gualtieri, Ferrari 2003).

	f_{f}	f_{p1}	f_{g}
strange stars	$\sim 2 \text{ kHz}$	> 6 kHz	not present
hybrid stars	$\sim 2 \text{ kHz}$	$\sim 4 - 6 \text{ kHz}$	$\sim 0.4 - 1 \text{ kHz}$
hadronic stars	$\sim 2 \text{ kHz}$	$\sim 4 - 6 \text{ kHz}$	not present

compact objects emitting a signal above 6 kHz should be interpreted as strange quark stars (p1 mode is large)

compact objects emitting a signal in the range ~ 0.4–1 kHz should be interpreted as hybrid stars (hadron-quark discontinuity g mode)

3. Few words about surface tension. Lugones, Grunfeld & Ajmi, arXiv:1308.1452

Surface Tension: a wide range, 5–300 MeV/fm²:

- 1. Lima, Avancini & Providência (2013) 0.5-1 MeV/fm²
- 2. Early calculations (Berger & Jaffe 1987) values below 5 MeV/fm²
- 3. Palhares & Fraga (2010): 5–15 MeV/fm²
- Pinto, Koch & Randrup (2012): NJL within a geometrical approach 5 30 MeV/ fm²
- 5. Voskresensky, Yasuhira & Tatsumi (2003) 50 150 MeV/fm²
- 6. Lugones, Gunfeld & Ajmi (2013) 150-160 MeV/fm², NJL with MRE.
- 7. Alford, Rajagopal, Reddy & Wilczek: ~ 300 MeV/fm², on the basis of dimensional analysis of the minimal interface between a color-flavor locked phase and nuclear matter.

OUR CALCULATION: $SU(3)_f$ NJL effective model which also includes color superconducting quark-quark interactions

$$\mathcal{L} = \bar{\psi} (i \partial \!\!\!/ - \hat{m}) \psi$$

+ $G \sum_{a=0}^{8} \left[\left(\bar{\psi} \tau_a \psi \right)^2 + \left(\bar{\psi} i \gamma_5 \tau_a \psi \right)^2 \right]$
+ $2H \sum_{A,A'=2,5,7} \left[\left(\bar{\psi} i \gamma_5 \tau_A \lambda_{A'} \psi_C \right) \left(\bar{\psi}_C i \gamma_5 \tau_A \lambda_{A'} \psi \right) \right]$

Multiple Reflection Expansion Formalism (MRE), Balian & Bloch (1970), Madsen (1994), Kiriyama & Hosaka (2003), Kiriyama (2005).

$$\int_0^{\Lambda} \cdots \frac{k^2 \, dk}{2\pi^2} \longrightarrow \int_{\Lambda_{IR}}^{\Lambda} \cdots \frac{k^2 \, dk}{2\pi^2} \rho_{MRE}$$

Density of states for the case of a finite spherical droplet

$$\rho_{MRE}(k, m_f, R) = 1 + \frac{6\pi^2}{kR} f_S + \frac{12\pi^2}{(kR)^2} f_C$$

Thank you !

EMMI task force meeting FIAS, Frankfurt , October 7-9, 2013

Effect of rotation: Gaertig & Kokkotas PRD 2009

- $\delta\Omega_0$ has a minimum value because the deconfinement transition cannot be shifted to a pressure regime where the NJL model describes the vacuum.
- That is, we fix a minimum limit to $\delta\Omega_0$ for which the phase transition occurs at the chiral symmetry restoration point as performed by Pagliara & Schaffner-Bielich (2008).
- On the other hand, in principle there is no maximum value for $\delta\Omega_0$ since the phase transition can be shifted to arbitrarily large pressures.