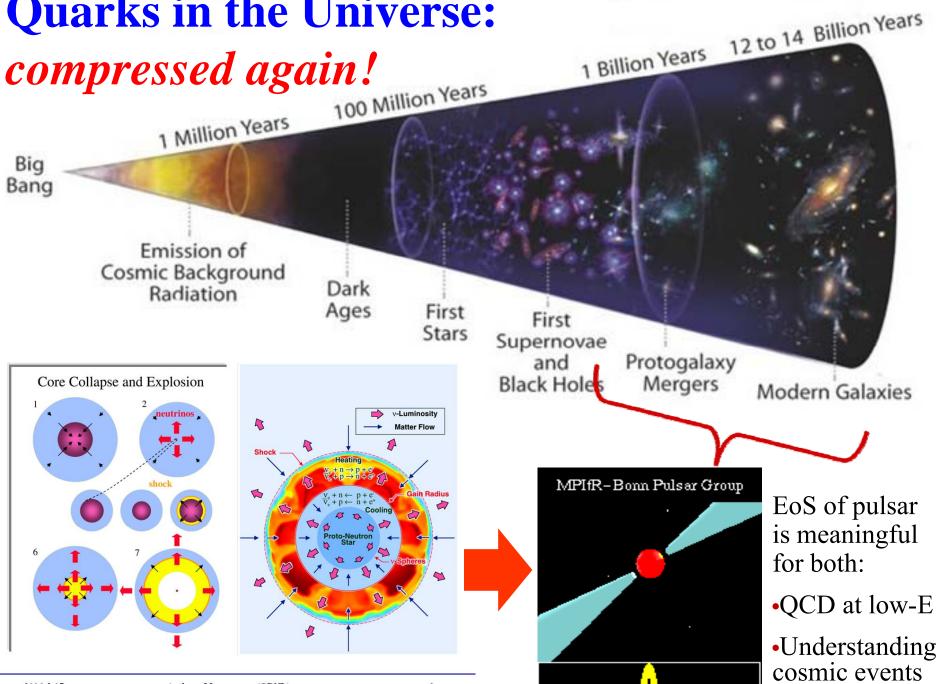

Quarks hadron-confined in Compact Stars?

Renxin Xu

School of Physics, Peking University



RRTF meeting on "Quark Matter in Compact Stars"

Oct. 8, 2013; FIAS, Frankfurt

- Baryonic matter at $>\sim \rho_0$: an alternative
- Questions for our discussions
 - Quark clustered (hadron-like confined)?
 - Causality in quark-cluster matter?
 - > EoS of quark-cluster matter: why stiff?
 - Evidence for self-bound on surface?
 - Light-flavour symmetry restoration?
- Conclusion & Outlook

Quarks in the Universe:

Baryonic matter at $>\sim \rho_0$: an alternative

•My answer: condensed matter of quark clusters

Hadron star: quarks confined gravity-bound

Quark star: quarks de-confined self-bound on surface

Hybrid/mixed star: quarks de-con./con. *gravity-bound*

Quark-cluster star: quarks localized self-bound on surface

An essential question:

Quarks de-confined or not?

•Hadron matter: *hyperon puzzle*

•Quark matter: asymptotic freedom

The peculiarity of quark-cluster star: *Quarks hadron-confined in clusters*

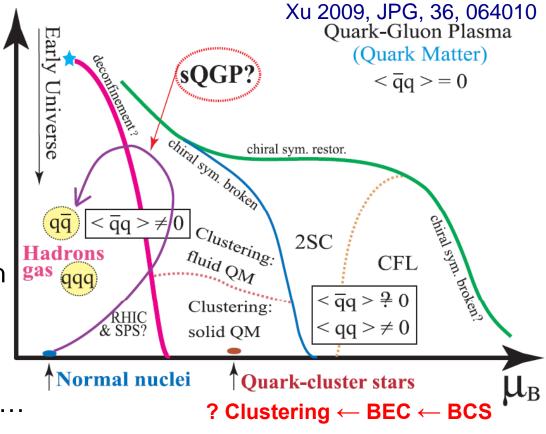
•Self-bound: M-R curves similar to QS

•Global rigidity: extra energy release

- Baryonic matter at $>\sim \rho_0$: an alternative
- Questions for our discussions
 - Quark clustered (hadron-like confined)?
 - Causality in quark-cluster matter?
 - > EoS of quark-cluster matter: why stiff?
 - Evidence for self-bound on surface?
 - Light-flavour symmetry restoration?
- Conclusion & Outlook

Quark clustered (hadron-like confined)?

- •Clustering? pressure-free \rightarrow in "low ρ " regime
- •Interaction? DSE approach of NQCD...
 - •Fermi gas at a few ρ_0 : T $\mu \approx (3\pi^2)^{1/3} \hbar c n^{1/3} \sim 0.4 \text{GeV} < 1 \text{GeV}$
 - •Fischer & Alkofer (2002)

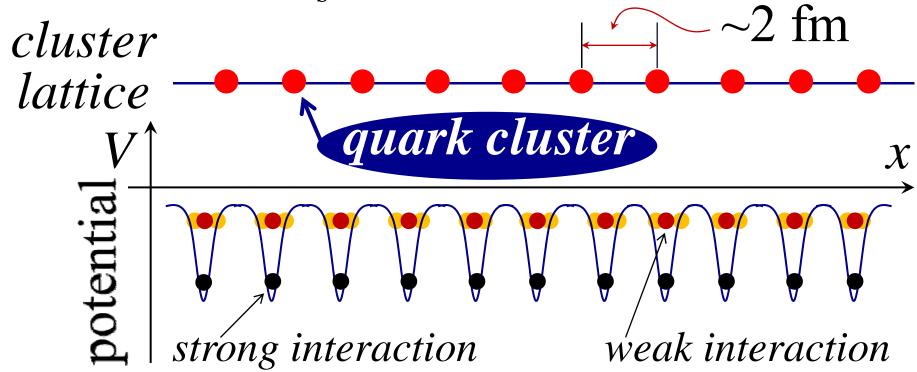

$$\alpha(x) = \frac{\alpha(0)}{\ln(e + a_1 x^{a_2} + b_1 x^{b_2})}$$

$$\sim 2 \text{ at even } 10\rho_0!$$

•If Coulomb-like color interaction

$$E_q \sim \alpha_s^2 m_q c^2 \simeq 300 \alpha_s^2 \text{ MeV} > \mu$$

⇒ Fermi gas is dangerous?


•A quark-cluster state expected ...

- Baryonic matter at $>\sim \rho_0$: an alternative
- Questions for our discussions
 - Quark clustered (hadron-like confined)?
 - Causality in quark-cluster matter?
 - EoS of quark-cluster matter: why stiff?
 - Evidence for self-bound on surface?
 - Light-flavour symmetry restoration?
- Conclusion & Outlook

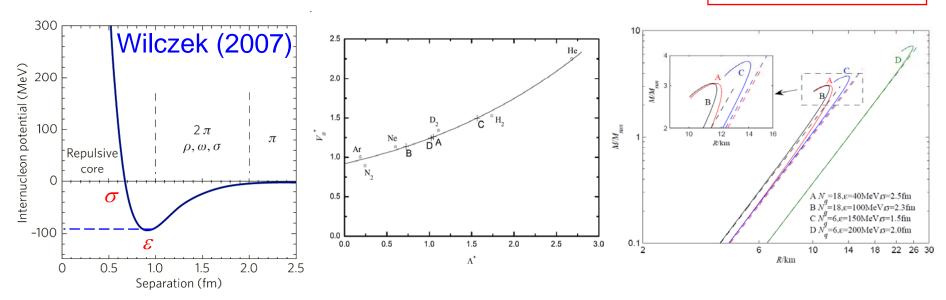
Causality in quark-cluster matter?

•Superluminal? c_s is in fact difficult to calculate

•A convenient way to calculate EoS of quark-cluster condense matter would be in *potential representation* as translational symmetry breaks there, similar to the case of condense matter physics.

 $c_s = \sqrt{\mathrm{d}P/\mathrm{d}\epsilon}$ only measures *stifness*, nothing with sound speed!

- Baryonic matter at $>\sim \rho_0$: an alternative
- Questions for our discussions
 - Quark clustered (hadron-like confined)?
 - Causality in quark-cluster matter?
 - ✓ EoS of quark-cluster matter: why stiff?
 - Evidence for self-bound on surface?
 - Light-flavour symmetry restoration?
- Conclusion & Outlook


EoS of quark-cluster matter: why stiff?

•Non-relativistic *ideal* q-clusters \rightarrow stiff EoS

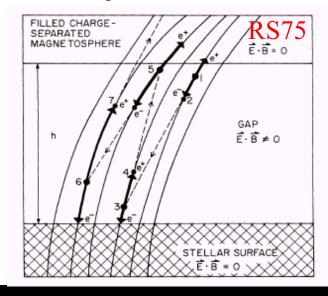
- •Heisenberg's relation \Rightarrow momentum $p \propto n^{1/3}$
- •kinetic energy $\varepsilon_{\rm k} \propto np^2 \propto n^{5/3}$,
- •pressure $P = n^2 \partial (\varepsilon_k/n)/\partial n \propto n^{5/3} (NR EoS of WD)$: very stiff EoS!

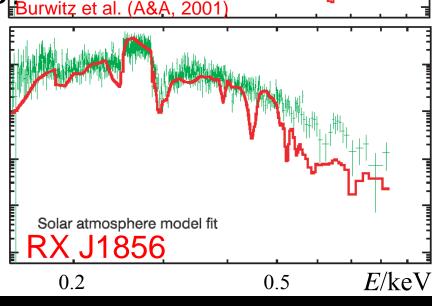
•Non-relativistic and $repulsive \rightarrow stiff EoS$

•A corresponding-state approach (Guo, Gao & Xu, CPC, 2013) $P^* = f(V^*, T^*, \Lambda^*)$

- Baryonic matter at $>\sim \rho_0$: an alternative
- Questions for our discussions
 - Quark clustered (hadron-like confined)?
 - Causality in quark-cluster matter?
 - > EoS of quark-cluster matter: why stiff?
 - Evidence for self-bound on surface?
 - Light-flavour symmetry restoration?
- Conclusion & Outlook

Evidence for self-bound on surface?

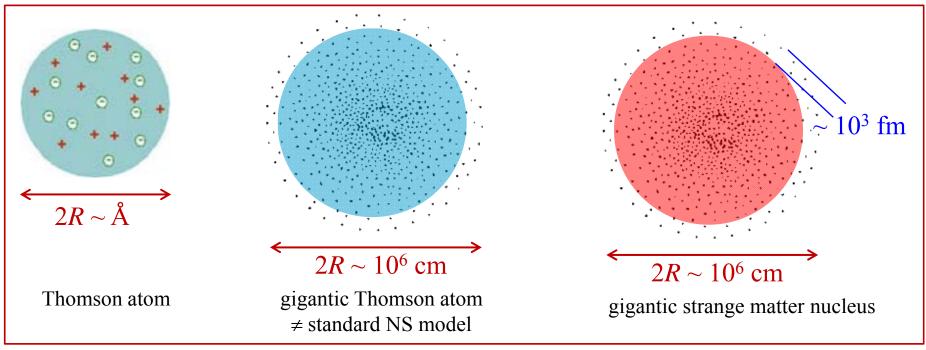

•Besides mass, clear signals could from surface


•Subpulse drifting: self-bound surface or strong B?

•Bi-drifting: strong self-bound quark surface?

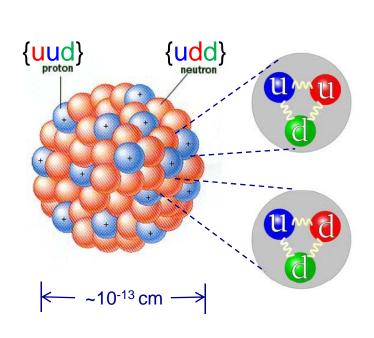
•Nonatomic spectra: quark surface?

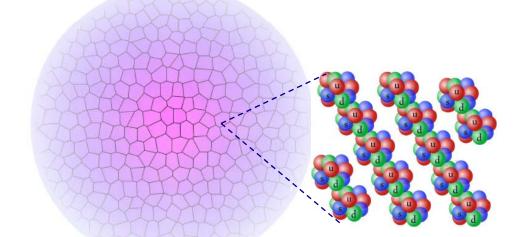
•Clean fireball for SNE & GRB Burwitz et al. (A&A, 2001)



- Baryonic matter at $>\sim \rho_0$: an alternative
- Questions for our discussions
 - Quark clustered (hadron-like confined)?
 - Causality in quark-cluster matter?
 - > EoS of quark-cluster matter: why stiff?
 - > Evidence for self-bound on surface?
 - ✓ Light-flavour symmetry restoration?
- Conclusion & Outlook

Light-flavour symmetry restoration?

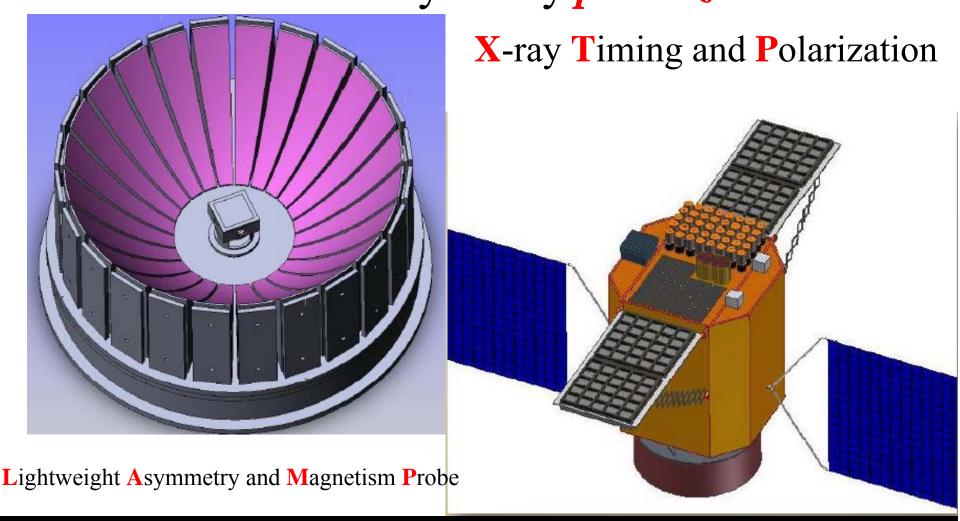

- •3-symmetry: an extension of *B-W conjecture*
 - •Energy scale $E_{\rm scale} \sim 400 {\rm MeV} > \Delta m_{\rm \{s,\,ud\}} \sim 100 {\rm MeV}$
 - •Electrons contribute negligible energy, if not: electron Fermi energy: $E_{\rm F} \sim \hbar c n_{\rm e}^{1/3} \sim 10^2 \ {\rm MeV!}$
 - •to eliminate E_F by neutronization or strangeness?



- Baryonic matter at $>\sim \rho_0$: an alternative
- Questions for our discussions
 - Quark clustered (hadron-like confined)?
 - Causality in quark-cluster matter?
 - EoS of quark-cluster matter: why stiff?
 - Evidence for self-bound on surface?
 - Light-flavour symmetry restoration?
- Conclusion & Outlook

Conclusion & Outlook

•Quark-cluster star is condensed matter of quark clusters, which distinguishes from both neutron and conventional quark stars.



Neutrons are stable inside nuclei.

Quark-clusters, as multi-quark particles, don't decay in compact stars.

Conclusion & Outlook

•To teach us more? by X-ray *polarization* ...

Conclusion & Outlook

- •To teach us more? by radio ...
 - •To detect weak but best pulsars by FAST to be built in China (~2016)
 - Five hundred meter Aperture Spherical Telescope

- > To measure the mass of radio pulsars
- > To measure the inertial of momentum of NS
- > To find sub-ms radio pulsars