Massive Stars within Self-Consistent Approaches

Veronica Dexheimer

in collaboration with S. Schramm, J. Steinheimer R. Negreiros, D. Menezes, M. Hempel, T. Schurhoff

* Motivation:

- QCD phase diagram
- chiral symmetry restoration
 - \cdot low density / high temperature
 - \cdot high density/low temperature
- deconfinement to quark matter
 - \cdot low density / high temperature
 - \cdot high density/low temperature
- strong magnetic fields up to $10^{18} 10^{19}$ G
 - \cdot low density/high temperature
 - \cdot high density/low temperature
- proto-neutron stars with T up to 30 MeV in the center

¹ Baryon Density [in units of nuclear matter density]

* Ingredients:

- baryon octet: p, n, Λ , Σ^+ , Σ^0 , Σ^- , Ξ^0 , Ξ^-
- up, down, strange quark
- chiral partners for baryon octet: N* (1535 MeV), Y* (same splitting)

lighter resonance spin 1/2 negative parity

- · Λ* (1670 MeV)
- · Σ* (1750 MeV)
- · no clear data for Ξ
- nuclear physics constraints
 - $\cdot\,$ saturation density
 - $\cdot\,$ binding energy, compressibility at saturation
 - $\cdot\,$ symmetry energy and derivative at saturation
 - $\cdot\,$ hyperon optical potentials at saturation

minimum parameters

* Non-Linear SU(3) Sigma Model:

- effective quantum relativistic model \rightarrow mean field
- describes hadrons interacting via meson exchange (σ , δ , ζ , ω , ρ , ϕ)
- constructed from symmetry relations \rightarrow allow it to be chirally invariant \rightarrow masses from interaction with medium

 $\mathfrak{m}_b^* = \mathfrak{g}_{b\sigma}\sigma + \mathfrak{g}_{b\delta}\tau_3\delta + \mathfrak{g}_{b\zeta}\zeta + \delta\mathfrak{m}_b$

 $\delta m_b = 150 MeV/376.58 MeV$

Dexheimer et al. Astrophys.J. 2008

1. Self-Consistent EOS – Effective Mass:

- hadronic matter+ quark matter
- effective masses
- phase transitions or crossovers
- order parameters σ, Φ
- potential for Φ
 (deconfinement)
- liquid-gas phase transition

Dexheimer et al. Phys. Rev. C 2010

5

$$U = (a_0 T^4 + a_1 \mu^4 + a_2 T^2 \mu^2)\phi^2 + a_3 T_0^4 \ln(1 - 6\phi^2 + 8\phi^3 - 3\phi^4)$$

* Local and Global Charge Neutrality:

- absence / presence of mixed phase
- "mixed" quantities like $\rho_B = \lambda \rho_B^Q + (1 \lambda) \rho_B^H$

- different from liquid-gas
- negative slope in the pressure-temperature plan
- non-congruent features vanishingly small at critical point

* Population and Mass-Radius Diag. with Local/Global **Charge Neutrality:**

massive stars

0.1

0.01

0.00

1000

 $Q_{B_i}\rho_i\,(fm^{-3})$

* Inclusion of Δ Resonances in the Nonlinear SU(3) Sigma Model:

 increase of delta coupling decreases radius but decreases maximum mass

$$\dot{v}_v = \frac{g_{\Delta\omega}}{g_{N\omega}}$$

Y

Schurhoff et al. Astrophys. J. 2010

Steiner et al. Astrophys. J. 2010

Oezel et al. Phys. Rev. D 2010

2. Self-Consistent EOS – Excluded Volume

- hadron chemical potentials decreased by quarks $\tilde{\mu}_i = \mu_i v_i P$
- reproduces nuclear matter constraints
- crossovers

Baym et al. J. Phys. G. 2008

- massive stars

Lourenco et al. Phys. Rev. D 2012

excluded volume

- different quark vector couplings
- reproduces nuclear matter constraints
- first order phase transition star matter
- massive stars + twin stars

3. Self-Consistent EOS – Excluded Volume with Chiral Partners

- hadron chemical potentials decreased by quarks

- reproduces nuclear matter constraints

- reproduces heavy ion and lattice QCD results
- massive stars

Steinheimer et al. Phys. Rev. C 2011

Dexheimer et al. Phys. Rev. C 2013

Population

- interplay between chiral partners and quarks
- 1^{st} order phase transitions

- much more strange particles at T = 30 MeV

Dexheimer et al. Phys. Rev. C 2013

* Summary:

- hybrid stars with self-consistent EOS hadron +quark + chiral partners
- 1^{st} order phase transitions / crossovers
- finite temperature
- in agreement with heavy ion collisions and lattice QCD
- reproduces observed cooling curves with pairing

Dexheimer et al. Phys. Rev. C 2013

- massive stars

- + rotation
- + magnetic field effects

Dexheimer et al. Eur. Phys. J. 2012

Cardall et al. Astrophys J. 2001

Bocquet et al. Astron. Astrophys. 1995

Mallick et al. ArXiv 2013

Interaction term between baryons and mesons

 $\mathcal{L}_{int} = -\sqrt{2}g_8^W \left\{ \alpha_W [\bar{B}\mathcal{O}BW]_{AS} + (1 - \alpha_W) [\bar{B}\mathcal{O}BW]_S \right\} - g_1^W \frac{1}{\sqrt{3}} Tr(\bar{B}\mathcal{O}B) Tr(W)$ where the antisymmetric coupling is $[\bar{B}OBW]_{AS} = Tr(\bar{B}OWB - \bar{B}OBW)$ and the symmetric one is $[\bar{B}OBW]_{S} = Tr(\bar{B}OWB + \bar{B}OBW) - \frac{2}{3}Tr(\bar{B}OB)Tr(W)$. The matrices ${\mathcal O}$ and W depend on the interaction considered. ${\mathcal O}=1$ and W=X stand for the interaction between the baryons and the scalar mesons, $\mathcal{O} = \gamma_{\mu}\gamma_{5}$ and $W = u_{\mu}$ for the interaction between the baryons and the pseudoscalar mesons, ${\cal O}=\gamma_{\mu}$ and $W=\tilde{V}_{\mu}$ for the vector part of the interaction between the baryons and the vector mesons, $\mathcal{O} = \sigma^{\mu\nu}$ and $W = V_{\mu\nu}$ for the tensor part of the interaction between the baryons and the vector mesons and ${\cal O}=\gamma_\mu\gamma_5$ and $W=\tilde{A}_\mu$ for the interaction between the baryons and the axial-vector mesons.

$$M_{N}^{*} = g_{1}^{X} \frac{1}{\sqrt{3}} (\sqrt{2}\sigma + \zeta) - g_{8}^{X} \frac{1}{3} (4\alpha_{X} - 1)(\sqrt{2}\zeta - \sigma),$$

When heavier degrees of freedom are included in the model, e.g. spin 3/2 resonances

$$\mathcal{L}_{int} = \mathcal{L}_{int} - \sqrt{2}g_{D8}^{W}[\bar{D}^{\mu}\mathcal{O}D_{\mu}W] - g_{D1}^{W}[\bar{D}^{\mu}\mathcal{O}D_{\mu}]Tr(W)$$

* Non-linear SU(3) Sigma Model Lagrangian Density for Hadrons

 $L_{MFT} = L_{Kin} + L_{Bscal} + L_{Bvec} + L_{scal} + L_{vec} + L_{SB}$

$$\begin{split} L_{Bscal} + L_{Bvec} &= -\sum_{i} \bar{\psi}_{i} [g_{i\omega} \gamma_{0} \omega + g_{i\phi} \gamma_{0} \phi + g_{i\rho} \gamma_{0} \tau_{3} \rho + m_{i}^{*}] \psi_{i} \\ L_{vec} &= -\frac{1}{2} (m_{\omega}^{2} \omega^{2} + m_{\rho}^{2} \rho^{2} + m_{\phi}^{2} \phi^{2}) \frac{\chi^{2}}{\chi_{o}^{2}} \left[-g_{4} \left(\omega^{4} + \frac{\phi^{4}}{4} + 3\omega^{2} \phi^{2} + \frac{4\omega^{3} \phi}{\sqrt{2}} + \frac{2\omega \phi^{3}}{\sqrt{2}} \right) \right] \\ L_{scal} &= \frac{1}{2} k_{0} \chi^{2} (\sigma^{2} + \zeta^{2} + \delta^{2}) - k_{1} (\sigma^{2} + \zeta^{2} + \delta^{2})^{2} - k_{2} \left(\frac{\sigma^{4}}{2} + \frac{\delta^{4}}{2} + 3\sigma^{2} \delta^{2} + \zeta^{4} \right) \\ -k_{3} \chi (\sigma^{2} - \delta^{2}) \zeta + k_{4} \chi^{4} + \frac{1}{4} \chi^{4} \ln \frac{\chi^{4}}{\chi_{0}^{4}} - \epsilon - \chi^{4} \ln \frac{(\sigma^{2} - \delta^{2}) \zeta}{\sigma_{0}^{2} \zeta_{0}} \\ L_{SB} &= \left(\frac{\chi}{\chi_{0}} \right)^{2} \left[m_{\pi}^{2} f_{\pi} \sigma + \left(\sqrt{2} m_{k}^{2} f_{k} - \frac{1}{\sqrt{2}} m_{\pi}^{2} f_{\pi} \right) \zeta \right] \\ m^{*} &= g_{i\sigma} \sigma + g_{i\delta} \tau_{3} \delta + g_{i\zeta} \zeta + \delta m \end{split}$$

15

* Non-linear SU(3) Sigma Model Parameter Fitting for Hadronic Phase:

- coupling constants reproduce: standard nuclear constraints, baryon vacuum masses, hyperon potentials

 $(\varrho_0 = 0.15 \text{ fm}^{-3}, B = -16.00 \text{ MeV}, K_0 = 298 \text{ MeV}$ $E_{\text{sym o}} = 29.56 \text{ MeV}, L_0 = 88.18 \text{ MeV}, p_0 = 4.52 \text{ MeV/fm}^3)$

- inclusion of the delta meson (scalar-isovector) ($E_{sym o}$ =32.47 MeV, L_{o} =93.85 MeV, p_{o} =4.82 MeV/fm³) Danielewicz et al. Science 2002

* Inclusion of Quarks in the Model

 $m_b^* = g_{b\sigma}\sigma + g_{b\delta}\tau_3\delta + g_{b\zeta}\zeta + \delta m_b + g_{b\Phi}\Phi^2.$

$$\mathfrak{m}_{\mathfrak{q}}^{*} = \mathfrak{g}_{\mathfrak{q}\sigma} \sigma + \mathfrak{g}_{\mathfrak{q}\delta} \tau_{3} \delta + \mathfrak{g}_{\mathfrak{q}\zeta} \zeta + \delta \mathfrak{m}_{\mathfrak{q}} + \mathfrak{g}_{\mathfrak{q}\Phi} (1 - \Phi).$$

order parameter for deconfinement in analogy with the Polyakov loop

