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Introduction

I central question of this meeting:

Is there deconfined quark matter in compact stars?

I If we could derive the exact EoS of QCD, there would be no discussion:

Just plug it into the TOV equation and check!

I problem: We don’t know it ...

I perturbative QCD (→ A. Vuorinen)
I not applicable at nuclear-matter density (confined phase)
I probably not even at central densities of compact stars

I hadronic EoSs
I microscopic or phenomenological input
I well constrained around nuclear-matter density
I range of validity at higher densities?
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Hybrid Equations of State

I standard approach: hybrid equations of state
I construct a phase transition from independent hadronic and quark-matter EoSs
I general problem: relative normalization of the pressure

I prototype: hadronic EoS + bag model

I most simple (too simple?) version: pbm = pideal − B
I phase transition: phadronic(µc) = pbm(µc) ⇒ µc is very sensitive to B

I Interpretation of the bag constant:

pressure difference between non-trivial and perturbative vacuum

I What’s its value?
I original MIT fit to hadron spectra: ∼ 60 MeV/fm3

I Tc fit at µ = 0 with a pion gas: ∼ 400 MeV/fm3

I QCD vacuum energy (from gluon condensate): ∼ 500 MeV/fm3
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NJL model

I quarks interacting by contact terms

I e.g. standard NJL Lagrangian L = q̄(i∂/−m)q + G
[
(q̄q)2 + (q̄iγ5~τq)2]

I main features:

I chiral symmetry, spontaneously broken in vacuum,
restoration at large T or µ

I dynamically generated bag pressure
→ B not an input parameter!

I color superconductivity easily included
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I T and µ dependent dynamical quark masses, pairing gaps, bag pressure
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NJL model: problems

I It’s only a model ...
(does not agree with QCD at asymptotic densities)

I not renormalizable (→ cutoff dependent results, cutoff artifacts)

I no confinement
(less severe in the deconfined phase;
partial fix at nonzero T by coupling to Polyakov loops)

I symmetries do not uniquely fix the interaction

→ (infinitely) many interaction terms and model parameters

I T and µ dependence of the effective couplings unknown and usually
neglected (in principle countained in higher-order n-point interactions)
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How can we make predictions?

I standard procedure:

I choose a certain set of interaction terms
I fix the parameters in vacuum
I assume that they do not change in medium and that other terms are irrelevant

I alternative:

I vary interactions and parameters as much as possible
and look for common features

I not really systematic, why not simply parametrize the EoS?

I intermediate:

I fix some of the parameters and vary others
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Example

I 3-flavor NJL model with qq̄ and qq interactions:

L = q̄f (i∂/−mf )qf + G
{

(q̄τ aq)2 + (q̄iγ5τ
aq)2

}
−K

{
detf

(
q̄(1 + γ5)q

)
+ detf

(
q̄(1− γ5)q

)}
+ H (q̄ iγ5τAλA′ Cq̄T )(qT C iγ5τAλA′ q)

I mu,d , ms, G, K , Λ fitted to pseudoscalar meson spectrum
I H unclear, argued to be O(G)

I phase diagram for H = 0.75G

[Rüster et al., PRD (2005)]

I phases at T = 0:

vacuum → NQ → gCFL → CFL
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Hybrid stars
[Baldo et al., PLB (2003), MB et al., PLB (2004)]

I different hadronic EoSs ⊗ different NJL parametrizations (H = 0, H = G)

I construct phase transition (Maxwell construction)

H NQ 2SC CFL

I solve TOV equation

I typical result:
I quark matter can compete with hadrons only

if strange quarks are present
I phase transition to quark matter renders star

unstable

I one exception:
I stable hybrid star with 2SC core
I Mmax = 1.66M�

excluded by M = 2M� measurement !
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Discussion 1: dressed quark masses

I dressed strange-quark mass in NJL:
+_

_
+

Ms = ms − 4G〈s̄s〉 + 2K 〈ūu〉〈d̄d〉

→ ms − 4G〈s̄s〉 for 〈ūu〉 ≈ 〈d̄d〉 ≈ 0

⇒ rather large Ms at intermediate µ

bug or feature ?

⇒ strange-quark contribution to pressure small

⇒ late phase transition
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I QCD beyond rainbow-ladder:
I gluons screened by light quarks
I Ms smaller ?

−1 = −1 + Γ
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Discussion 2: effective bag pressure

I To normalize the NJL pressure, the chirally broken vacuum solution is
identified with p = 0.

→ We believe in the NJL model in vacuum and at high density (quark phase),
but not at low density (hadronic phase).

Does this make sense?

I Alternative pressure normalization [Pagliara & Schaffner-Bielich, PRD (2008) ]:
I introduce additional (negative) bag constant by hand such that µh→q

c = µχ,NJL
c

I maximal shift which does not lead to a deconfinement phase transition into a
chirally broken quark phase

I any smaller shift would be reasonable as well

I If we don’t believe in the NJL vacuum pressure,
why do we believe in the parameter fit and the resulting µχ,NJL

c ?
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Unified description

I only convincing way out:

unified description of quark and hadronic phase in a single framework

I here: construct nucleons and nuclear matter in NJL?

I Fadeev + qq̄-meson exchange → far beyond mean field

I first steps in this direction in the literature
[Rezaeian & Pirner, NPA (2006); Lawley, Bentz & Thomas, JPG (2006);
Wang, Wang & Rischke PLB (2011)]

I should be pursued further !
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Discussion 3: vector interactions

[Klähn et al., PLB (2007)]:
I introduce repulsive vector interaction (GV = G/2):

stiffens EoS but reduces the pressure

I compensate with strong quark-quark interaction

→ M > 2M� possible!

I GV = G/2 is incompatible with lattice data at µ = 0
[Steinheimer & Schramm, PLB (2011)]

I µ-dependent GV ?

I possible, but then we loose all predictive power ...
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Towards deriving the EoS from QCD

I Lattice calculations at large baryon density:

I standard methods do not work (sign problem)
I several new ideas, but not yet realistic

I Dyson-Schwinger equations:
I in principle exact

−1 = −1 + Γ

I input for the quark DSE:

dressed gluon propagator and dressed quark-gluon vertex

⇒ truncations needed, but systematically amendable

I pressure (CJT formalism): p ≡ Γ[S] = Tr ln S−1 − Tr (1− Z2S−1
0 S) + Γ2[S]

I numerically very demanding (integrals quartically divergent)
I not applicable for all truncations
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Dyson-Schwinger equations: results

I truncation:

I gluon: lattice Yang-Mills propagator + quark corrections

I simplified scheme: polarization loop with bare quarks (HTL-HDL)
I improved scheme: with selfconsistently dressed quarks

I vertex model with infrared enhancement and perturbative ultraviolet behavior

I recent achievements: [D. Müller et al., 2013]

phase diagrams with color superconducting and inhomogeneous phases
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Dyson-Schwinger equations: challenges

I truncations not yet converged:

simplified scheme improved scheme
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I no satisfactory pressure yet (→ no EoS):
I simplified scheme: numerical difficulties
I improved scheme: DSE not derivable from an effective action

I present truncations do not yet include baryonic degrees of freedom!

(obviously even more difficult than in NJL ... )
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