Compact-star matter from NJL models and QCD

Michael Buballa

EMMI Rapid Reaction Task Force Meeting on Quark Matter in Compact Stars FIAS, Frankfurt, October 7-9, 2013

Introduction

- central question of this meeting:

Is there deconfined quark matter in compact stars?

Introduction

- central question of this meeting:

Is there deconfined quark matter in compact stars?

- If we could derive the exact EoS of QCD, there would be no discussion: Just plug it into the TOV equation and check!

Introduction

- central question of this meeting:

Is there deconfined quark matter in compact stars?

- If we could derive the exact EoS of QCD, there would be no discussion: Just plug it into the TOV equation and check!
- problem: We don't know it ...

Introduction

- central question of this meeting:

Is there deconfined quark matter in compact stars?

- If we could derive the exact EoS of QCD, there would be no discussion: Just plug it into the TOV equation and check!
- problem: We don't know it ...
- perturbative QCD $(\rightarrow \mathrm{A}$. Vuorinen)
- not applicable at nuclear-matter density (confined phase)
- probably not even at central densities of compact stars

Introduction

- central question of this meeting:

Is there deconfined quark matter in compact stars?

- If we could derive the exact EoS of QCD, there would be no discussion:

Just plug it into the TOV equation and check!

- problem: We don't know it ...
- perturbative QCD ($\rightarrow \mathrm{A}$. Vuorinen)
- not applicable at nuclear-matter density (confined phase)
- probably not even at central densities of compact stars
- hadronic EoSs
- microscopic or phenomenological input
- well constrained around nuclear-matter density
- range of validity at higher densities?

Hybrid Equations of State

- standard approach: hybrid equations of state
- construct a phase transition from independent hadronic and quark-matter EoSs
- general problem: relative normalization of the pressure

Hybrid Equations of State

- standard approach: hybrid equations of state
- construct a phase transition from independent hadronic and quark-matter EoSs
- general problem: relative normalization of the pressure
- prototype: hadronic EoS + bag model

Hybrid Equations of State

- standard approach: hybrid equations of state
- construct a phase transition from independent hadronic and quark-matter EoSs
- general problem: relative normalization of the pressure
- prototype: hadronic EoS + bag model
- most simple (too simple?) version: $\quad p_{b m}=p_{\text {ideal }}-B$
- phase transition: $p_{\text {hadronic }}\left(\mu_{c}\right)=p_{b m}\left(\mu_{c}\right) \Rightarrow \mu_{c}$ is very sensitive to B

Hybrid Equations of State

- standard approach: hybrid equations of state
- construct a phase transition from independent hadronic and quark-matter EoSs
- general problem: relative normalization of the pressure
- prototype: hadronic EoS + bag model
- most simple (too simple?) version: $\quad p_{b m}=p_{\text {ideal }}-B$
- phase transition: $p_{\text {hadronic }}\left(\mu_{c}\right)=p_{b m}\left(\mu_{c}\right) \Rightarrow \mu_{c}$ is very sensitive to B
- Interpretation of the bag constant:
pressure difference between non-trivial and perturbative vacuum

Hybrid Equations of State

- standard approach: hybrid equations of state
- construct a phase transition from independent hadronic and quark-matter EoSs
- general problem: relative normalization of the pressure
- prototype: hadronic EoS + bag model
- most simple (too simple?) version: $\quad p_{b m}=p_{\text {ideal }}-B$
- phase transition: $p_{\text {hadronic }}\left(\mu_{c}\right)=p_{b m}\left(\mu_{c}\right) \Rightarrow \mu_{c}$ is very sensitive to B
- Interpretation of the bag constant:
pressure difference between non-trivial and perturbative vacuum
- What's its value?
- original MIT fit to hadron spectra:
- T_{c} fit at $\mu=0$ with a pion gas:
- QCD vacuum energy (from gluon condensate):

$$
\begin{aligned}
& \sim 60 \mathrm{MeV} / \mathrm{fm}^{3} \\
& \sim 400 \mathrm{MeV} / \mathrm{fm}^{3} \\
& \sim 500 \mathrm{MeV} / \mathrm{fm}^{3}
\end{aligned}
$$

NJL model

- quarks interacting by contact terms
- e.g. standard NJL Lagrangian $\quad \mathcal{L}=\bar{q}(i \not \partial-m) q+G\left[(\bar{q} q)^{2}+\left(\bar{q} i \gamma_{5} \vec{\tau} q\right)^{2}\right]$

NJL model

- quarks interacting by contact terms
- e.g. standard NJL Lagrangian $\mathcal{L}=\bar{q}(i \not \partial-m) q+G\left[(\bar{q} q)^{2}+\left(\bar{q} i \gamma_{5} \vec{\tau} q\right)^{2}\right]$
- main features:
- chiral symmetry, spontaneously broken in vacuum, restoration at large T or μ
- dynamically generated bag pressure
$\rightarrow \quad B$ not an input parameter!
- color superconductivity easily included

- T and μ dependent dynamical quark masses, pairing gaps, bag pressure

NJL model: problems

- It's only a model ... (does not agree with QCD at asymptotic densities)
- not renormalizable (\rightarrow cutoff dependent results, cutoff artifacts)
- no confinement
(less severe in the deconfined phase; partial fix at nonzero T by coupling to Polyakov loops)
- symmetries do not uniquely fix the interaction
\rightarrow (infinitely) many interaction terms and model parameters
- T and μ dependence of the effective couplings unknown and usually neglected (in principle countained in higher-order n-point interactions)

How can we make predictions?

How can we make predictions?

- standard procedure:
- choose a certain set of interaction terms
- fix the parameters in vacuum
- assume that they do not change in medium and that other terms are irrelevant

How can we make predictions?

- standard procedure:
- choose a certain set of interaction terms
- fix the parameters in vacuum
- assume that they do not change in medium and that other terms are irrelevant
- alternative:
- vary interactions and parameters as much as possible and look for common features
- not really systematic, why not simply parametrize the EoS?

How can we make predictions?

- standard procedure:
- choose a certain set of interaction terms
- fix the parameters in vacuum
- assume that they do not change in medium and that other terms are irrelevant
- alternative:
- vary interactions and parameters as much as possible and look for common features
- not really systematic, why not simply parametrize the EoS?
- intermediate:
- fix some of the parameters and vary others

Example

- 3-flavor NJL model with $q \bar{q}$ and $q q$ interactions:

$$
\begin{aligned}
\mathcal{L}=\bar{q}_{f}\left(i \not \partial-m_{f}\right) q_{f} & +G\left\{\left(\bar{q} \tau^{a} q\right)^{2}+\left(\bar{q} i \gamma_{5} \tau^{a} q\right)^{2}\right\} \\
& -K\left\{\operatorname{det}_{f}\left(\bar{q}\left(1+\gamma_{5}\right) q\right)+\operatorname{det}_{f}\left(\bar{q}\left(1-\gamma_{5}\right) q\right)\right\} \\
& +H\left(\bar{q} i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} C \bar{q}^{T}\right)\left(q^{T} C i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} q\right)
\end{aligned}
$$

- $m_{u, d}, m_{s}, G, K, \wedge$ fitted to pseudoscalar meson spectrum
- H unclear, argued to be $\mathcal{O}(G)$

Example

- 3-flavor NJL model with $q \bar{q}$ and $q q$ interactions:

$$
\begin{aligned}
\mathcal{L}=\bar{q}_{f}\left(i \not \partial \bar{\partial}-m_{f}\right) q_{f} & +G\left\{\left(\bar{q} \tau^{a} q\right)^{2}+\left(\bar{q} i \gamma_{5} \tau^{a} q\right)^{2}\right\} \\
& -K\left\{\operatorname{det}_{f}\left(\bar{q}\left(1+\gamma_{5}\right) q\right)+\operatorname{det}_{f}\left(\bar{q}\left(1-\gamma_{5}\right) q\right)\right\} \\
& +H\left(\bar{q} i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} C \bar{q}^{T}\right)\left(q^{T} C i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} q\right)
\end{aligned}
$$

- $m_{u, d}, m_{s}, G, K, \wedge$ fitted to pseudoscalar meson spectrum
- H unclear, argued to be $\mathcal{O}(G)$
- phase diagram for $H=0.75 G$
[Rüster et al., PRD (2005)]
- phases at $T=0$:

$$
\text { vacuum } \rightarrow N Q \rightarrow g C F L \rightarrow C F L
$$

Example

- 3-flavor NJL model with $q \bar{q}$ and $q q$ interactions:

$$
\begin{aligned}
\mathcal{L}=\bar{q}_{f}\left(i \not \partial \bar{\partial}-m_{f}\right) q_{f} & +G\left\{\left(\bar{q} \tau^{a} q\right)^{2}+\left(\bar{q} i \gamma_{5} \tau^{a} q\right)^{2}\right\} \\
& -K\left\{\operatorname{det}_{f}\left(\bar{q}\left(1+\gamma_{5}\right) q\right)+\operatorname{det}_{f}\left(\bar{q}\left(1-\gamma_{5}\right) q\right)\right\} \\
& +H\left(\bar{q} i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} C \bar{q}^{T}\right)\left(q^{T} C i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} q\right)
\end{aligned}
$$

- $m_{u, d}, m_{s}, G, K, \wedge$ fitted to pseudoscalar meson spectrum
- H unclear, argued to be $\mathcal{O}(G)$
- phase diagram for $H=G$
[Rüster et al., PRD (2005)]
- phases at $T=0$:

$$
\text { vacuum } \rightarrow 2 S C \rightarrow C F L
$$

Hybrid stars

[Baldo et al., PLB (2003), MB et al., PLB (2004)]

- different hadronic EoSs \otimes different NJL parametrizations $(H=0, H=G)$
- construct phase transition (Maxwell construction)
- solve TOV equation

Hybrid stars

[Baldo et al., PLB (2003), MB et al., PLB (2004)]

- different hadronic EoSs \otimes different NJL parametrizations $(H=0, H=G)$
- construct phase transition (Maxwell construction)

Hybrid stars

[Baldo et al., PLB (2003), MB et al., PLB (2004)]
TECHNISCHE

- different hadronic EoSs \otimes different NJL parametrizations $(H=0, H=G)$
- construct phase transition (Maxwell construction)
H NQ 2SC CFL
- solve TOV equation
- typical result:
- quark matter can compete with hadrons only if strange quarks are present
- phase transition to quark matter renders star unstable
- one exception:
- stable hybrid star with 2SC core
- $M_{\text {max }}=1.66 M_{\odot}$

Hybrid stars

[Baldo et al., PLB (2003), MB et al., PLB (2004)]

- different hadronic EoSs \otimes different NJL parametrizations $(H=0, H=G)$
- construct phase transition (Maxwell construction)
H NQ 2SC CFL
- solve TOV equation
- typical result:
- quark matter can compete with hadrons only if strange quarks are present
- phase transition to quark matter renders star unstable
- one exception:
- stable hybrid star with 2SC core
- $M_{\text {max }}=1.66 M_{\odot}$

$$
\text { excluded by } M=2 M_{\odot} \text { measurement ! }
$$

Discussion 1: dressed quark masses

Discussion 1: dressed quark masses

- dressed strange-quark mass in NJL:

$$
\begin{array}{rlr}
M_{s} & =m_{s}-4 G\langle\bar{s} s\rangle+2 K\langle\bar{u} u\rangle\langle\bar{d} d\rangle \\
& \rightarrow m_{s}-4 G\langle\bar{s} s\rangle & \text { for }\langle\bar{u} u\rangle \approx\langle\bar{d} d\rangle \approx 0
\end{array}
$$

Discussion 1: dressed quark masses

- dressed strange-quark mass in NJL:

$$
\begin{array}{rlrl}
M_{s} & =m_{s}-4 G\langle\bar{s} s\rangle+2 K\langle\bar{u} u\rangle\langle\bar{d} d\rangle \\
& \rightarrow m_{s}-4 G\langle\bar{s} s\rangle & \text { for }\langle\bar{u} u\rangle \approx\langle\bar{d} d\rangle \approx 0
\end{array}
$$

$\Rightarrow \quad$ rather large M_{s} at intermediate μ
\Rightarrow strange-quark contribution to pressure small
$\Rightarrow \quad$ late phase transition

Discussion 1: dressed quark masses

- dressed strange-quark mass in NJL:

$$
\begin{array}{rlrl}
M_{s} & =m_{s}-4 G\langle\bar{s} s\rangle+2 K\langle\bar{u} u\rangle\langle\bar{d} d\rangle \\
& \rightarrow m_{s}-4 G\langle\bar{s} s\rangle & \text { for }\langle\bar{u} u\rangle \approx\langle\bar{d} d\rangle \approx 0
\end{array}
$$

$\Rightarrow \quad$ rather large M_{s} at intermediate $\mu \quad$ bug or feature ?
\Rightarrow strange-quark contribution to pressure small
$\Rightarrow \quad$ late phase transition

Discussion 1: dressed quark masses

- dressed strange-quark mass in NJL:

$$
\begin{array}{rlr}
M_{s} & =m_{s}-4 G\langle\bar{s} s\rangle+2 K\langle\bar{u} u\rangle\langle\bar{d} d\rangle \\
& \rightarrow m_{s}-4 G\langle\bar{s} s\rangle \quad \text { for }\langle\bar{u} u\rangle \approx\langle\bar{d} d\rangle \approx 0
\end{array}
$$

$\Rightarrow \quad$ rather large M_{s} at intermediate $\mu \quad$ bug or feature ?
\Rightarrow strange-quark contribution to pressure small
$\Rightarrow \quad$ late phase transition

- QCD beyond rainbow-ladder:
- gluons screened by light quarks
- M_{s} smaller ?

Discussion 2: effective bag pressure

Discussion 2: effective bag pressure

- To normalize the NJL pressure, the chirally broken vacuum solution is identified with $p=0$.

Discussion 2: effective bag pressure

- To normalize the NJL pressure, the chirally broken vacuum solution is identified with $p=0$.
\rightarrow We believe in the NJL model in vacuum and at high density (quark phase), but not at low density (hadronic phase).

Does this make sense?

Discussion 2: effective bag pressure

TECHNISCHE

- To normalize the NJL pressure, the chirally broken vacuum solution is identified with $p=0$.
\rightarrow We believe in the NJL model in vacuum and at high density (quark phase), but not at low density (hadronic phase).

Does this make sense?

- Alternative pressure normalization [Pagliara \& Schaffner-Bielich, PRD (2008)]:
- introduce additional (negative) bag constant by hand such that $\mu_{c}^{h \rightarrow q}=\mu_{c}^{\chi, N J L}$
- maximal shift which does not lead to a deconfinement phase transition into a chirally broken quark phase
- any smaller shift would be reasonable as well

Discussion 2: effective bag pressure

- To normalize the NJL pressure, the chirally broken vacuum solution is identified with $p=0$.
\rightarrow We believe in the NJL model in vacuum and at high density (quark phase), but not at low density (hadronic phase).

Does this make sense?

- Alternative pressure normalization [Pagliara \& Schaffner-Bielich, PRD (2008)]:
- introduce additional (negative) bag constant by hand such that $\mu_{c}^{h \rightarrow q}=\mu_{c}^{\chi, N J L}$
- maximal shift which does not lead to a deconfinement phase transition into a chirally broken quark phase
- any smaller shift would be reasonable as well
- If we don't believe in the NJL vacuum pressure, why do we believe in the parameter fit and the resulting $\mu_{c}^{\chi, N J L}$?

Unified description

- only convincing way out:
unified description of quark and hadronic phase in a single framework

Unified description

- only convincing way out:
unified description of quark and hadronic phase in a single framework
- here: construct nucleons and nuclear matter in NJL?
- Fadeev + $q \bar{q}$-meson exchange $\quad \rightarrow \quad$ far beyond mean field

Unified description

- only convincing way out:
unified description of quark and hadronic phase in a single framework
- here: construct nucleons and nuclear matter in NJL?
- Fadeev $+q \bar{q}$-meson exchange $\quad \rightarrow$ far beyond mean field

- first steps in this direction in the literature
[Rezaeian \& Pirner, NPA (2006); Lawley, Bentz \& Thomas, JPG (2006);
Wang, Wang \& Rischke PLB (2011)]
- should be pursued further !

Discussion 3: vector interactions

Discussion 3: vector interactions

[Klähn et al., PLB (2007)]:

- introduce repulsive vector interaction ($G_{v}=G / 2$):
stiffens EoS but reduces the pressure
- compensate with strong quark-quark interaction

Discussion 3: vector interactions

[Klähn et al., PLB (2007)]:

- introduce repulsive vector interaction ($G_{V}=G / 2$): stiffens EoS but reduces the pressure
- compensate with strong quark-quark interaction

$$
\rightarrow \quad M>2 M_{\odot} \text { possible! }
$$

Discussion 3: vector interactions

[Klähn et al., PLB (2007)]:

- introduce repulsive vector interaction $\left(G_{V}=G / 2\right)$: stiffens EoS but reduces the pressure
- compensate with strong quark-quark interaction

$$
\rightarrow \quad M>2 M_{\odot} \text { possible! }
$$

- $G_{V}=G / 2$ is incompatible with lattice data at $\mu=0$ [Steinheimer \& Schramm, PLB (2011)]

Discussion 3: vector interactions

[Klähn et al., PLB (2007)]:

- introduce repulsive vector interaction ($G_{V}=G / 2$): stiffens EoS but reduces the pressure
- compensate with strong quark-quark interaction

$$
\rightarrow \quad M>2 M_{\odot} \text { possible! }
$$

- $G_{V}=G / 2$ is incompatible with lattice data at $\mu=0$ [Steinheimer \& Schramm, PLB (2011)]
- μ-dependent G_{V} ?

Discussion 3: vector interactions

[Klähn et al., PLB (2007)]:

- introduce repulsive vector interaction ($G_{V}=G / 2$): stiffens EoS but reduces the pressure
- compensate with strong quark-quark interaction

$$
\rightarrow \quad M>2 M_{\odot} \text { possible! }
$$

- $G_{V}=G / 2$ is incompatible with lattice data at $\mu=0$ [Steinheimer \& Schramm, PLB (2011)]
- μ-dependent G_{V} ?
- possible, but then we loose all predictive power ...

Towards deriving the EoS from QCD

Towards deriving the EoS from QCD

- Lattice calculations at large baryon density:
- standard methods do not work (sign problem)
- several new ideas, but not yet realistic

Towards deriving the EoS from QCD

- Lattice calculations at large baryon density:
- standard methods do not work (sign problem)
- several new ideas, but not yet realistic
- Dyson-Schwinger equations:

- in principle exact
- input for the quark DSE:
dressed gluon propagator and dressed quark-gluon vertex
$\Rightarrow \quad$ truncations needed, but systematically amendable

Towards deriving the EoS from QCD

- Lattice calculations at large baryon density:
- standard methods do not work (sign problem)
- several new ideas, but not yet realistic
- Dyson-Schwinger equations:

- in principle exact
- input for the quark DSE:
dressed gluon propagator and dressed quark-gluon vertex
\Rightarrow truncations needed, but systematically amendable
- pressure (CJT formalism): $\quad p \equiv \Gamma[\mathcal{S}]=\operatorname{Tr} \ln \mathcal{S}^{-1}-\operatorname{Tr}\left(1-Z_{2} \mathcal{S}_{0}^{-1} \mathcal{S}\right)+\Gamma_{2}[\mathcal{S}]$
- numerically very demanding (integrals quartically divergent)
- not applicable for all truncations

Dyson-Schwinger equations: results

- truncation:

- gluon: lattice Yang-Mills propagator + quark corrections
- simplified scheme: polarization loop with bare quarks (HTL-HDL)
- improved scheme: with selfconsistently dressed quarks
- vertex model with infrared enhancement and perturbative ultraviolet behavior

Dyson-Schwinger equations: results

- truncation:

- gluon: lattice Yang-Mills propagator + quark corrections
- simplified scheme: polarization loop with bare quarks (HTL-HDL)
- improved scheme: with selfconsistently dressed quarks
- vertex model with infrared enhancement and perturbative ultraviolet behavior
- recent achievements: [D. Müller et al., 2013] phase diagrams with color superconducting and inhomogeneous phases

Dyson-Schwinger equations: challenges

Dyson-Schwinger equations: challenges

- truncations not yet converged:
simplified scheme

improved scheme

Dyson-Schwinger equations: challenges

- truncations not yet converged:

- no satisfactory pressure yet (\rightarrow no EoS):
- simplified scheme: numerical difficulties
- improved scheme: DSE not derivable from an effective action

Dyson-Schwinger equations: challenges

- truncations not yet converged:
simplified scheme

improved scheme

- no satisfactory pressure yet (\rightarrow no EoS):
- simplified scheme: numerical difficulties
- improved scheme: DSE not derivable from an effective action
- present truncations do not yet include baryonic degrees of freedom! (obviously even more difficult than in NJL ...)

