Compact-star matter from NJL models and QCD

Michael Buballa

EMMI Rapid Reaction Task Force Meeting on Quark Matter in Compact Stars FIAS, Frankfurt, October 7-9, 2013

central question of this meeting:
Is there deconfined quark matter in compact stars?

- central question of this meeting:
 Is there deconfined quark matter in compact stars?
- ▶ If we could derive the exact EoS of QCD, there would be no discussion: Just plug it into the TOV equation and check!

- central question of this meeting:
 Is there deconfined quark matter in compact stars?
- If we could derive the exact EoS of QCD, there would be no discussion: Just plug it into the TOV equation and check!
- problem: We don't know it ...

- central question of this meeting:
 Is there deconfined quark matter in compact stars?
- If we could derive the exact EoS of QCD, there would be no discussion: Just plug it into the TOV equation and check!
- problem: We don't know it ...
- ▶ perturbative QCD (→ A. Vuorinen)
 - not applicable at nuclear-matter density (confined phase)
 - probably not even at central densities of compact stars

- central question of this meeting:
 Is there deconfined quark matter in compact stars?
- If we could derive the exact EoS of QCD, there would be no discussion: Just plug it into the TOV equation and check!
- problem: We don't know it ...
- ▶ perturbative QCD (→ A. Vuorinen)
 - not applicable at nuclear-matter density (confined phase)
 - probably not even at central densities of compact stars
- ▶ hadronic EoSs
 - microscopic or phenomenological input
 - well constrained around nuclear-matter density
 - range of validity at higher densities?

- standard approach: hybrid equations of state
 - construct a phase transition from independent hadronic and quark-matter EoSs
 - general problem: relative normalization of the pressure

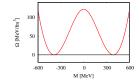
- standard approach: hybrid equations of state
 - construct a phase transition from independent hadronic and quark-matter EoSs
 - general problem: relative normalization of the pressure
- prototype: hadronic EoS + bag model

- standard approach: hybrid equations of state
 - construct a phase transition from independent hadronic and quark-matter EoSs
 - general problem: relative normalization of the pressure
- prototype: hadronic EoS + bag model
 - ▶ most simple (too simple?) version: $p_{bm} = p_{ideal} B$
 - ▶ phase transition: $p_{hadronic}(\mu_c) = p_{bm}(\mu_c)$ \Rightarrow μ_c is very sensitive to B

- standard approach: hybrid equations of state
 - construct a phase transition from independent hadronic and quark-matter EoSs
 - general problem: relative normalization of the pressure
- prototype: hadronic EoS + bag model
 - ▶ most simple (too simple?) version: $p_{bm} = p_{ideal} B$
 - ▶ phase transition: $p_{hadronic}(\mu_c) = p_{bm}(\mu_c)$ \Rightarrow μ_c is very sensitive to B
- Interpretation of the bag constant: pressure difference between non-trivial and perturbative vacuum

- standard approach: hybrid equations of state
 - construct a phase transition from independent hadronic and quark-matter EoSs
 - general problem: relative normalization of the pressure
- prototype: hadronic EoS + bag model
 - ▶ most simple (too simple?) version: $p_{bm} = p_{ideal} B$
 - ▶ phase transition: $p_{hadronic}(\mu_c) = p_{bm}(\mu_c)$ \Rightarrow μ_c is very sensitive to B
- Interpretation of the bag constant: pressure difference between non-trivial and perturbative vacuum
- ▶ What's its value?
 - ightharpoonup original MIT fit to hadron spectra: $\sim 60~{
 m MeV/fm^3}$
 - ► T_c fit at μ = 0 with a pion gas: $\sim 400 \text{ MeV/fm}^3$
 - ▶ QCD vacuum energy (from gluon condensate): ~ 500 MeV/fm³

NJL model



- quarks interacting by contact terms
 - e.g. standard NJL Lagrangian $\mathcal{L} = \bar{q}(i\partial \!\!\!/ m)q + G\left[(\bar{q}q)^2 + (\bar{q}i\gamma_5\vec{\tau}q)^2\right]$

NJL model

- quarks interacting by contact terms
 - e.g. standard NJL Lagrangian $\mathcal{L} = \bar{q}(i\partial m)q + G\left[(\bar{q}q)^2 + (\bar{q}i\gamma_5\vec{\tau}q)^2\right]$
- main features:
 - chiral symmetry, spontaneously broken in vacuum, restoration at large ${\cal T}$ or μ
 - dynamically generated bag pressure
 - → B not an input parameter!
 - color superconductivity easily included
 - ightharpoonup T and μ dependent dynamical quark masses, pairing gaps, bag pressure

NJL model: problems

- It's only a model ...(does not agree with QCD at asymptotic densities)
- ightharpoonup not renormalizable (ightharpoonup cutoff dependent results, cutoff artifacts)
- no confinement
 (less severe in the deconfined phase;
 partial fix at nonzero T by coupling to Polyakov loops)
- symmetries do not uniquely fix the interaction
 - ightarrow (infinitely) many interaction terms and model parameters
- ▶ T and μ dependence of the effective couplings unknown and usually neglected (in principle countained in higher-order n-point interactions)

- standard procedure:
 - choose a certain set of interaction terms
 - fix the parameters in vacuum
 - assume that they do not change in medium and that other terms are irrelevant

- standard procedure:
 - choose a certain set of interaction terms
 - fix the parameters in vacuum
 - assume that they do not change in medium and that other terms are irrelevant

alternative:

- vary interactions and parameters as much as possible and look for common features
- not really systematic, why not simply parametrize the EoS?

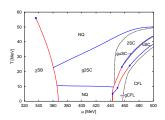
- standard procedure:
 - choose a certain set of interaction terms
 - fix the parameters in vacuum
 - assume that they do not change in medium and that other terms are irrelevant
- alternative:
 - vary interactions and parameters as much as possible and look for common features
 - not really systematic, why not simply parametrize the EoS?
- intermediate:
 - fix some of the parameters and vary others

Example

▶ 3-flavor NJL model with qq and qq interactions:

$$\mathcal{L} = \bar{q}_{f}(i\partial \!\!\!/ - m_{f})q_{f} + G\left\{(\bar{q}\tau^{a}q)^{2} + (\bar{q}i\gamma_{5}\tau^{a}q)^{2}\right\}$$
$$-K\left\{\det_{f}\left(\bar{q}(1+\gamma_{5})q\right) + \det_{f}\left(\bar{q}(1-\gamma_{5})q\right)\right\}$$
$$+H(\bar{q}i\gamma_{5}\tau_{A}\lambda_{A'}C\bar{q}^{T})(q^{T}Ci\gamma_{5}\tau_{A}\lambda_{A'}q)$$

- $m_{u,d}$, m_s , G, K, Λ fitted to pseudoscalar meson spectrum
- ▶ H unclear, argued to be $\mathcal{O}(G)$

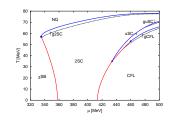

Example

▶ 3-flavor NJL model with qq and qq interactions:

$$\begin{split} \mathcal{L} &= \bar{q}_f (i \partial \!\!\!/ - m_f) q_f + G \left\{ (\bar{q} \tau^a q)^2 + (\bar{q} i \gamma_5 \tau^a q)^2 \right\} \\ &- K \left\{ \det_f \! \left(\bar{q} (1 + \gamma_5) q \right) + \det_f \! \left(\bar{q} (1 - \gamma_5) q \right) \right\} \\ &+ H (\bar{q} i \gamma_5 \tau_A \lambda_{A'} \, C \bar{q}^T) (q^T C \, i \gamma_5 \tau_A \lambda_{A'} \, q) \end{split}$$

- $M_{u,d}$, M_s , G, K, Λ fitted to pseudoscalar meson spectrum
- ▶ H unclear, argued to be $\mathcal{O}(G)$
- ▶ phase diagram for H = 0.75G [Rüster et al., PRD (2005)]
 - ▶ phases at T = 0: vacuum → NQ → gCFL → CFL

Example


▶ 3-flavor NJL model with qq and qq interactions:

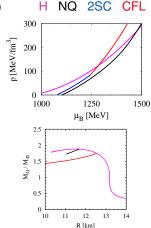
$$\mathcal{L} = \bar{q}_f (i\partial \!\!\!/ - m_f) q_f + G \left\{ (\bar{q}\tau^a q)^2 + (\bar{q}i\gamma_5\tau^a q)^2 \right\}$$

$$- K \left\{ \det_f \left(\bar{q}(1+\gamma_5)q \right) + \det_f \left(\bar{q}(1-\gamma_5)q \right) \right\}$$

$$+ H (\bar{q}i\gamma_5\tau_A\lambda_{A'}C\bar{q}^T) (q^TCi\gamma_5\tau_A\lambda_{A'}q)$$

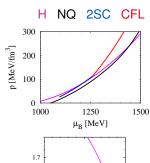
- $m_{u,d}, m_s, G, K, \Lambda$ fitted to pseudoscalar meson spectrum
- ▶ H unclear, argued to be $\mathcal{O}(G)$
- ▶ phase diagram for H = G [Rüster et al., PRD (2005)]
 - phases at T = 0: vacuum → 2SC → CFL

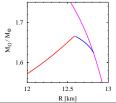
[Baldo et al., PLB (2003), MB et al., PLB (2004)]



- ▶ different hadronic EoSs \otimes different NJL parametrizations (H = 0, H = G)
- construct phase transition (Maxwell construction)
- solve TOV equation

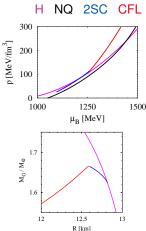
[Baldo et al., PLB (2003), MB et al., PLB (2004)]


- ▶ different hadronic EoSs \otimes different NJL parametrizations (H = 0, H = G)
- construct phase transition (Maxwell construction)
- solve TOV equation
- typical result:
 - quark matter can compete with hadrons only if strange quarks are present
 - phase transition to quark matter renders star unstable



[Baldo et al., PLB (2003), MB et al., PLB (2004)]

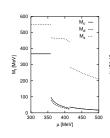
- ▶ different hadronic EoSs \otimes different NJL parametrizations (H = 0, H = G)
- construct phase transition (Maxwell construction)
- solve TOV equation
- typical result:
 - quark matter can compete with hadrons only if strange quarks are present
 - phase transition to quark matter renders star unstable
- one exception:
 - stable hybrid star with 2SC core
 - ► $M_{max} = 1.66 M_{\odot}$



[Baldo et al., PLB (2003), MB et al., PLB (2004)]

- ▶ different hadronic EoSs \otimes different NJL parametrizations (H = 0, H = G)
- construct phase transition (Maxwell construction)
- solve TOV equation
- typical result:
 - quark matter can compete with hadrons only if strange quarks are present
 - phase transition to quark matter renders star unstable
- one exception:
 - stable hybrid star with 2SC core
 - ► $M_{max} = 1.66 M_{\odot}$

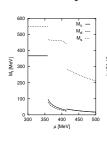
excluded by $M = 2M_{\odot}$ measurement!



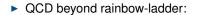
$$M_s = m_s - 4G\langle \bar{s}s \rangle + 2K\langle \bar{u}u \rangle \langle \bar{d}d \rangle$$

 $\rightarrow m_s - 4G\langle \bar{s}s \rangle$ for $\langle \bar{u}u \rangle \approx \langle \bar{d}d \rangle \approx 0$

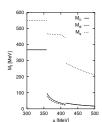
$$M_s = m_s - 4G\langle \bar{s}s \rangle + 2K\langle \bar{u}u \rangle \langle \bar{d}d \rangle$$
 $\rightarrow m_s - 4G\langle \bar{s}s \rangle$ for $\langle \bar{u}u \rangle \approx \langle \bar{d}d \rangle \approx 0$


- \Rightarrow rather large $\textit{M}_{\textit{s}}$ at intermediate μ
- ⇒ strange-quark contribution to pressure small
- ⇒ late phase transition

$$M_s = m_s - 4G\langle \bar{s}s \rangle + 2K\langle \bar{u}u \rangle \langle \bar{d}d \rangle$$
 $\rightarrow m_s - 4G\langle \bar{s}s \rangle$ for $\langle \bar{u}u \rangle \approx \langle \bar{d}d \rangle \approx 0$
 \Rightarrow rather large M_s at intermediate μ bug or feature ?


- strange-quark contribution to pressure small
- late phase transition

$$egin{aligned} \mathcal{M}_s &= m_s - 4G\langle \bar{s}s
angle + 2K\langle \bar{u}u
angle \langle \bar{d}d
angle \ &
ightarrow m_s - 4G\langle \bar{s}s
angle \end{aligned} \qquad ext{for } \langle \bar{u}u
angle pprox \langle \bar{d}d
angle pprox 0$$


- \Rightarrow rather large M_s at intermediate μ bug or feature?
- ⇒ strange-quark contribution to pressure small
- \Rightarrow late phase transition

- gluons screened by light quarks
- ► M_s smaller?

▶ To normalize the NJL pressure, the chirally broken vacuum solution is identified with p = 0.

- ▶ To normalize the NJL pressure, the chirally broken vacuum solution is identified with p = 0.
- \rightarrow We believe in the NJL model in vacuum and at high density (quark phase), but not at low density (hadronic phase).

Does this make sense?

- ► To normalize the NJL pressure, the chirally broken vacuum solution is identified with p = 0.
- → We believe in the NJL model in vacuum and at high density (quark phase), but not at low density (hadronic phase).

Does this make sense?

- Alternative pressure normalization [Pagliara & Schaffner-Bielich, PRD (2008)]:
 - ▶ introduce additional (negative) bag constant by hand such that $\mu_c^{h \to q} = \mu_c^{\chi, NJL}$
 - maximal shift which does not lead to a deconfinement phase transition into a chirally broken quark phase
 - any smaller shift would be reasonable as well

- ▶ To normalize the NJL pressure, the chirally broken vacuum solution is identified with p = 0.
- \rightarrow We believe in the NJL model in vacuum and at high density (quark phase), but not at low density (hadronic phase).

Does this make sense?

- ► Alternative pressure normalization [Pagliara & Schaffner-Bielich, PRD (2008)]:
 - ▶ introduce additional (negative) bag constant by hand such that $\mu_c^{h \to q} = \mu_c^{\chi, NJL}$
 - maximal shift which does not lead to a deconfinement phase transition into a chirally broken quark phase
 - any smaller shift would be reasonable as well
- If we don't believe in the NJL vacuum pressure, why do we believe in the parameter fit and the resulting $\mu_c^{\chi,NJL}$?

Unified description

only convincing way out: unified description of quark and hadronic phase in a single framework

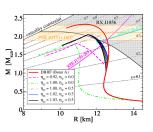
Unified description

- only convincing way out: unified description of quark and hadronic phase in a single framework
- ▶ here: construct nucleons and nuclear matter in NJL?
 - ► Fadeev + $q\bar{q}$ -meson exchange \rightarrow far beyond mean field

Unified description

- only convincing way out: unified description of quark and hadronic phase in a single framework
- ▶ here: construct nucleons and nuclear matter in NJL?

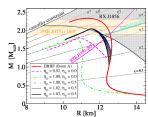
- ► Fadeev + $q\bar{q}$ -meson exchange \rightarrow far beyond mean field
- first steps in this direction in the literature
 [Rezaeian & Pirner, NPA (2006); Lawley, Bentz & Thomas, JPG (2006);
 Wang, Wang & Rischke PLB (2011)]
- should be pursued further!

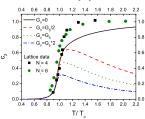


- introduce repulsive vector interaction ($G_V = G/2$): stiffens EoS but reduces the pressure
- compensate with strong quark-quark interaction

- ▶ introduce repulsive vector interaction ($G_V = G/2$): stiffens EoS but reduces the pressure
- compensate with strong quark-quark interaction

$$\rightarrow$$
 $M > 2M_{\odot}$ possible!



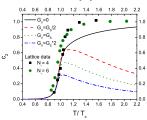

[Klähn et al., PLB (2007)]:

- ▶ introduce repulsive vector interaction ($G_V = G/2$): stiffens EoS but reduces the pressure
- compensate with strong quark-quark interaction

$$\rightarrow$$
 $M > 2M_{\odot}$ possible!

• $G_V = G/2$ is incompatible with lattice data at $\mu = 0$ [Steinheimer & Schramm, PLB (2011)]

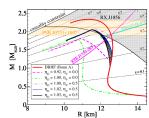


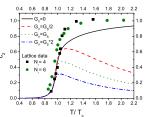


- ▶ introduce repulsive vector interaction ($G_V = G/2$): stiffens EoS but reduces the pressure
- compensate with strong quark-quark interaction

$$\rightarrow$$
 $M > 2M_{\odot}$ possible!

- $G_V = G/2$ is incompatible with lattice data at $\mu = 0$ [Steinheimer & Schramm, PLB (2011)]
- μ -dependent G_V ?





- introduce repulsive vector interaction ($G_V = G/2$): stiffens EoS but reduces the pressure
- compensate with strong quark-quark interaction

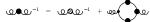
$$\rightarrow$$
 $M > 2M_{\odot}$ possible!

- $G_V = G/2$ is incompatible with lattice data at $\mu = 0$ [Steinheimer & Schramm, PLB (2011)]
- μ -dependent G_V ?
- possible, but then we loose all predictive power ...

- Lattice calculations at large baryon density:
 - standard methods do not work (sign problem)
 - several new ideas, but not yet realistic

- ► Lattice calculations at large baryon density:
 - standard methods do not work (sign problem)
 - several new ideas, but not yet realistic
- Dyson-Schwinger equations:

- in principle exact
- input for the quark DSE: dressed gluon propagator and dressed quark-gluon vertex
 - \Rightarrow truncations needed, but systematically amendable

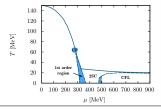

- ► Lattice calculations at large baryon density:
 - standard methods do not work (sign problem)
 - several new ideas, but not yet realistic
- ► Dyson-Schwinger equations:

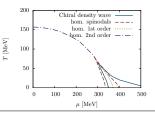
- in principle exact
- input for the quark DSE: dressed gluon propagator and dressed quark-gluon vertex
 - ⇒ truncations needed, but systematically amendable
- ▶ pressure (CJT formalism): $p \equiv \Gamma[S] = \text{Tr In } S^{-1} \text{Tr} (1 Z_2 S_0^{-1} S) + \Gamma_2[S]$
 - numerically very demanding (integrals quartically divergent)
 - not applicable for all truncations

Dyson-Schwinger equations: results

truncation:

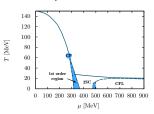
- gluon: lattice Yang-Mills propagator + quark corrections
 - simplified scheme: polarization loop with bare quarks (HTL-HDL)
 - ▶ improved scheme: with selfconsistently dressed quarks
- vertex model with infrared enhancement and perturbative ultraviolet behavior

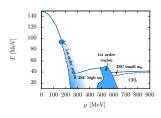

Dyson-Schwinger equations: results



truncation:

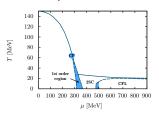
- gluon: lattice Yang-Mills propagator + quark corrections
 - simplified scheme: polarization loop with bare quarks (HTL-HDL)
 - ▶ improved scheme: with selfconsistently dressed quarks
- vertex model with infrared enhancement and perturbative ultraviolet behavior
- ▶ recent achievements: [D. Müller et al., 2013] phase diagrams with color superconducting and inhomogeneous phases

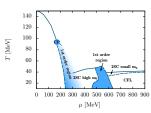




truncations not yet converged:

simplified scheme

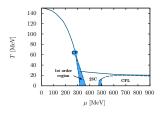

improved scheme



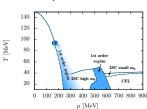
truncations not yet converged:

simplified scheme

improved scheme



- ▶ no satisfactory pressure yet (→ no EoS):
 - simplified scheme: numerical difficulties
 - ▶ improved scheme: DSE not derivable from an effective action



truncations not yet converged:

simplified scheme

improved scheme

- ▶ no satisfactory pressure yet (→ no EoS):
 - simplified scheme: numerical difficulties
 - improved scheme: DSE not derivable from an effective action
- ▶ present truncations do not yet include baryonic degrees of freedom! (obviously even more difficult than in NJL ...)