Quarks, gluons and hadrons from Dyson-Schwinger equations

Christian S. Fischer

Justus Liebig Universität Gießen

9th of October 2013

Christian Fischer (University of Gießen)

Quarks, gluons and hadrons

Overview

I.Introduction: quarks and gluons

2.Electromagnetic properties of mesons and baryons

3.Gluons, quarks and the QCD phase diagram

Properties of QCD: Dynamical mass generation

Dynamical quark masses via weak and strong force

Y.Nambu, Nobel prize 2008

F. Englert, P. Higgs, Nobel prize 2013

		u	d	S	С	b	t
Mweak	$[MeV/c^2]$	3	5	80	1200	4500	176000
Mstrong	$[MeV/c^2]$	350	350	350	350	350	350
M _{total}	$[MeV/c^2]$	350	350	450	1500	4800	176000

Christian Fischer (University of Gießen)

Properties of QCD: Dynamical mass generation

Dynamical quark masses via weak and strong force

Y.Nambu, Nobel prize 2008

F. Englert, P. Higgs, Nobel prize 2013

Input parameters in N_f=2+1 QCD

		u	d	S	С	b	t
Mweak	$[MeV/c^2]$	3	5	80	1200	4500	176000
Mstrong	$[MeV/c^2]$	350	350	350	350	350	350
M _{total}	$[MeV/c^2]$	350	350	450	1500	4800	176000

 $S^{-1}(p) = [i\not p + M(p^2)]/Z_f(p^2)$

Wednesday, October 9, 2013

Confinement

Color confinement:

We are not detecting quarks and gluons, but baryons, mesons, tetraquarks, glueballs....

Strategies to deal with this situation:

- Effective theories in terms of hadrons
- Nonperturbative QCD: Lattice, Functional methods

Chiral symmetry+confinement: meson clouds

Hadrons

Baryons: see Talk of Gernot Eichmann on Saturday

Quark configurations

beyond quark model:

Christian Fischer (University of Gießen)

Quarks, gluons and hadrons

Nonperturbative QCD: Complementary approach

Quarks and gluons

- Lattice simulations
 - Ab initio
 - Gauge invariant

- Effective theories and models (χPT, chiral mod...)
 - Physical degrees of freedom
- Functional approaches (DSE, FRG, Hamilton):
 - Chiral symmetry: physical quark masses
 - Infinite volume and continuum limit
 - Multi-scale problems feasible (e.g. (g-2)μ)
 Goecke, CF, Williams, PRD 87 (2013) 03401
 - Chemical potential: no sign problem

Quarks and Gluons

$$\mathcal{Z}_{QCD} = \int \mathcal{D}[\Psi, A] \exp\left\{-\int d^4x \left(\bar{\Psi} \left(iD / -m\right)\Psi - \frac{1}{4} \left(F^a_{\mu\nu}\right)^2 + \text{gauge fixing}\right)\right\}$$

Landau gauge propagators in momentum space,

The Goal: gauge invariant information in a gauge fixed approach.

Christian Fischer (University of Gießen)

Quarks, gluons and hadrons

DSEs of QCD

Christian Fischer (University of Gießen)

Quarks, gluons and hadrons

DSEs of QCD

Christian Fischer (University of Gießen)

Quarks, gluons and hadrons

DSEs of QCD

Christian Fischer (University of Gießen)

Landau gauge gluon propagator

- spacelike momenta: excellent agreement with lattice
- deep infrared: 'massive' behaviour

 $Z(p^2)/p^2 \sim const.$

Aguilar, Binosi, Papavassiliou, PRD 78, 025010 (2008). Cornwall, PRD 26 (1982) 1453.

positivity violations!

Gluon cannot appear in detector!

Christian Fischer (University of Gießen)

CF, Maas, Pawlowski, Annals Phys. 324 (2009) 2408. Huber, von Smekal, JHEP 1304 (2013) 149.

Unquenching effects in gluon

Kubrak, CF, in prep.

Quantitative agreement with lattice

Based on: CF, Watson and Cassing, PRD 72 (2005) 094025, Huber, von Smekal, JHEP 1304 (2013) 149

Quarks, gluons and hadrons

Overview

I.Introduction: quarks and gluons

2.Electromagnetic properties of mesons and baryons

3.Gluons, quarks and the QCD phase diagram

Christian Fischer (University of Gießen)

Quarks, gluons and hadrons

Mesons and Baryons

General goal:

Experimental observables from nonperturbative quark and gluon structure of QCD

Framework: DSEs, BSEs, FEs

- Dynamics at perturbative and nonperturbative scales
- Dynamical chiral symmetry breaking: connects dynamically generated 'constituent-quark mass' with current quark mass
- Dynamical realization of Goldstone boson nature of pseudoscalar mesons

The DSE for the quark propagator

Input:

- dressed Gluon propagator
- dressed Quark-Gluon-Vertex

Two strategies: I. calculate gluon and vertex from their DSEs →mandatory e.g. for QCD phase diagram

CF and Luecker, PLB 718 (2013) 1036-1043

II. use model for quark-gluon interaction →ok for some phenomenological applications

Strategy II: model for quark-gluon interaction

Combine gluon with quark-gluon vertex:

Maris-Tandy-model

$$\alpha(k^2) = \pi \eta^7 \left(\frac{k^2}{\Lambda^2}\right) e^{-\eta^2 \left(\frac{k^2}{\Lambda^2}\right)} + \alpha_{UV}(k^2)$$
Maris, Tandy, 1999

and fix

- two (related) parameters η and Λ from f $_{\pi}$
- α_{UV} from perturbation theory
- masses $m_u = m_d$ from m_{π} or m_{ρ}

Wednesday, October 9, 2013

Strategy II: model for quark-gluon interaction

Phenomenology from Maris-Tandy interaction

	expt.	calc.
$\langle \bar{q}q \rangle^0_\mu$	(0.236 GeV) ³	(0.241 [†]) ³
n_{π}	0.1385 GeV	0.138 [†]
π	0.0924 GeV	0.093 [†]
n_K	0.496 GeV	0.497*
fĸ	0.113 GeV	0.109
Charge r	adii (PM, Tandy	, PRC62, 055204)
.2 π	0.44 fm ²	0.45
.2 K+	0.34 fm ²	0.38
.2 K ⁰	-0.054 fm ²	-0.086
πγ trans	sition (PM, Tandy	, PRC65, 045211)
βπγγ	0.50	0.50
-2 πγγ	0.42 fm ²	0.41
Weak K _l	3 decay (PM, Ji	, PRD64, 014032)
(e3)	0.028	0.027
$\Gamma(K_{e3})$	$7.6 \cdot 10^6 \text{ s}^{-1}$	7.38
$\Gamma(K_{n3})$	$5.2 \cdot 10^6 \text{ s}^{-1}$	4.90

Summary of light meson results

Vector mesons	(PM, T	(PM, Tandy, PRC60, 055214)			
$m_{ m p/\omega}$	0.770 GeV	0.742			
$f_{ ho/\omega}$	0.216 GeV	0.207			
m _{K*}	0.892 GeV	0.936			
$f_{K^{\star}}$	0.225 GeV	0.241			
m _φ	1.020 GeV	1.072			
f_{ϕ}	0.236 GeV	0.259			
Strong decay (J	arecke, PM, T	andy, PRC67, 035202)			
<i>В</i> рлл	6.02	5.4			
<i>SφKK</i>	4.64	4.3			
<i>8K</i> * <i>K</i> π	4.60	4.1			
Padiativa dagav		(DM pup) th/0112022)			

$g_{\rho\pi\gamma}/m_{\rho}$ 0.74 $g_{\omega\pi\gamma}/m_{\omega}$ 2.31		(1 11, 1001 110112022)		
$g_{ ho \pi \gamma}/m_{ ho}$	0.74	0.69		
$g_{\omega\pi\gamma}/m_{\omega}$	2.31	2.07		
$(g_{K^{\star}K\gamma}/m_K)^+$	0.83	0.99		
$(g_{K^{\star}K\gamma}/m_K)^0$	1.28	1.19		
- 23-63				

Scattering length (PM, Cotanch, PRD66, 116010) a_0^0 0.220 0.170 a_0^2 0.044 0.045

0.038

0.036

 $M_{\rho}, M_{\phi}, M_{K^{\star}}$ good to 5%, $f_{\rho}, f_{\phi}, f_{K^{\star}}$ good to 10%

 a_1^1

Slide from Pieter Maris

15 / 38

Christian Fischer (University of Gießen)

Quarks, gluons and hadrons

Quark-photon vertex and pion form factors

good agreement with data

Krassnigg, Schladming 2011; Maris, Tandy NPPS 161, 2006

rho/omega pole generated dynamically

Results including pion cloud are under way!

Christian Fischer (University of Gießen)

Quarks, gluons and hadrons

Results: Hadronic vacuum polarisation

Very reasonable agreement $! \rightarrow LB$

Christian Fischer (University of Gießen)

Quarks, gluons and hadrons

Goecke, CF, Williams, PRD87 (2013) 3, 034013

Faddeev - equation

Faddeev equation:

=

- neglect irreducible three-body forces (three-gluon interaction !)
- approximate two-body interactions by RL-gluon exchange
 - same one-parameter-model (MT) for mesons and baryons
- 64 tensor structures for nucleon: s, p, d wave
- numerically expensive but manageable !

Eichmann, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010)

Eichmann, PRD 84 (2011)

Sanchis-Alepuz, Eichmann, Villalba-Chavez, Alkofer, PRD (2012)

Faddeev - equation

Faddeev equation:

=

- neglect irreducible three-body forces (three-gluon interaction !)
- approximate two-body interactions by RL-gluon exchange
 - same one-parameter-model (MT) for mesons and baryons
- 64 tensor structures for nucleon: s, p, d wave
- numerically expensive but manageable !

Eichmann, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010)

Eichmann, PRD 84 (2011)

Sanchis-Alepuz, Eichmann, Villalba-Chavez, Alkofer, PRD (2012)

Baryon masses

- first covariant threebody calculations !
- grosso modo:
 consistent description of mesons and baryons
- masses dominated
 by s-waves

Eichmann, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010) Eichmann, PRD 84 (2011) Sanchis-Alepuz ,Eichmann, Villalba-Chavez, Alkofer, PRD (2012)

Christian Fischer (University of Gießen)

Nucleon EM form factors

missing pion cloud effectssimilar for axial form factors

Eichmann, PRD 84 (2011)

Eichmann and CF, Eur. Phys. J.A48 (2012) 9

Christian Fischer (University of Gießen)

Wednesday, October 9, 2013

Quarks, gluons and hadrons

20 / 38

Magnetic moments

Magnetic moments (p, n):

missing pion cloud effects in isovector moment Kv
 no pion cloud effects in isoscalar moment Ks

Eichmann, PRD 84 (2011)

Christian Fischer (University of Gießen)

Quarks, gluons and hadrons

Strategy I: Including the pion cloud

•Hadron level: πN-contributions to nucleon self-energy

Quark-level: π-contributions to quark self-energy

Christian Fischer (University of Gießen)

Strategy I: Including the pion cloud

Hadron level: πN-contributions to nucleon self-energy

Quark-level: π-contributions to quark self-energy

Christian Fischer (University of Gießen)

Quarks, gluons and hadrons

quark-gluon vertex:

CF, Nickel and Wambach, PRD 76 (2007) 094009

quark:

Christian Fischer (University of Gießen)

Quarks, gluons and hadrons

CF, Nickel and Wambach, PRD 76 (2007) 094009

quark:

Christian Fischer (University of Gießen)

Quarks, gluons and hadrons

CF, Nickel and Wambach, PRD 76 (2007) 094009

quark:

Christian Fischer (University of Gießen)

Quarks, gluons and hadrons

	RL	Зg	3g+ π	Experiment
M_{π}	138	138	138	138
f_{π}	94	111	105	93
$M_{ ho}$	758	881	805	776
$f_{ ho}$	154	176	168	162
M_{σ}	645	884	820	450
M _{a1}	926	1055	1040	1230
<i>M</i> _{b1}	912	972	940	1229

CF, Williams, PRL 103 (2009), PRD 78 (2008)

- Attractive effects of pion cloud
- Scalar too large or ... too low!

cp Parganlija, Kovacs, Wolf, Giacosa and Rischke, PRD 87 (2013) 014011 Heupel, Eichman, CF, PLB 718 (2012) 545-549

	RL	Зg	3g+ π	Experiment
M_{π}	138	138	138	138
f_{π}	94	111	105	93
$M_{ ho}$	758	881	805	776
$f_{ ho}$	154	176	168	162
M_{σ}	645	884	820	450
M _{a1}	926	1055	1040	1230
<i>M</i> _{<i>b</i>1}	912	972	940	1229

CF, Williams, PRL 103 (2009), PRD 78 (2008)

- Attractive effects of pion cloud
- Scalar too large or ... too low!

cp Parganlija, Kovacs, Wolf, Giacosa and Rischke, PRD 87 (2013) 014011 Heupel, Eichman, CF, PLB 718 (2012) 545-549

	RL	Зg	3g+ π	Experiment
M_{π}	138	138	138	138
f_{π}	94	111	105	93
$M_{ ho}$	758	881	805	776
$f_{ ho}$	154	176	168	162
M_{σ}	645	884	820	450
M _{a1}	926	1055	1040	1230
M_{b_1}	912	972	940	1229
				CEVA/illiama PRI 102 (200

CF, Williams, PRL 103 (2009), PRD 78 (2008)

- Attractive effects of pion cloud
- Scalar too large or ... too low!

cp Parganlija, Kovacs, Wolf, Giacosa and Rischke, PRD 87 (2013) 014011 Heupel, Eichman, CF, PLB 718 (2012) 545-549

	RL	Зg	3g+ π	Experiment
M_{π}	138	138	138	138
f_{π}	94	111	105	93
$M_{ ho}$	758	881	805	776
$f_{ ho}$	154	176	168	162
M_{σ}	645	884	820	450
M _{a1}	926	1055	1040	1230
<i>M</i> _{<i>b</i>1}	912	972	940	1229

CF, Williams, PRL 103 (2009), PRD 78 (2008)

Attractive effects of pion cloud

Scalar too large or ... too low!

cp Parganlija, Kovacs, Wolf, Giacosa and Rischke, PRD 87 (2013) 014011 Heupel, Eichman, CF, PLB 718 (2012) 545-549

Quarks, gluons and hadrons

Pion cloud effects in baryons

$$N = - N = + \frac{\pi}{N} + Permuta$$

First results:

- Nucleon:
 I.05 → 0.94 GeV
- Roper:
 I.60 → I.35 GeV

Next steps:

- systematics + precision
- EM form factors w. pion cloud
 - Gauge invariant formalism
 - Test calculation: pion
 - Extend calculation to nucleon

in progress

in progress

Nucleon Compton scattering

Nonperturbative description of hadron-photon and hadron-meson scattering on quark-gluon basis

Eichmann, CF, PRD 85 034015 (2012)

Eichmann and CF, PRD 87 (2013) 036006

Technical/conceptual progress:

- Derive fermion-two-photon vertex
 - consistent with gauge invariance
 - free of kinematic singularities
 - transverse part: on-shell nucleon Compton amplitude
- Reproduce $\pi \Upsilon \Upsilon$ transition form factor on t-channel pole

Next steps:

- Two-photon contributions to EM form factor
- Polarisabilities

Overview

I.Introduction: quarks and gluons

2.Electromagnetic properties of mesons and baryons

3.Gluons, quarks and the QCD phase diagram

QCD phase transitions

plot by O. Philipsen

QCD phase transitions

plot by O. Philipsen

QCD phase transitions

Christian Fischer (University of Gießen)

Quarks, gluons and hadrons

QCD phase transition: heavy quark limit/quenched

- Expect: Transitions controlled by deconfinement
- SU(2) second order, SU(3) first order

Transition temperatures, quenched

Luecker, C.F., arXiv:1111.0180; C.F., Maas, Mueller, EPJC 68 (2010).

- SU(2): *T_c* ≈ 305 MeV
 SU(3): *T_c* ≈ 270 MeV
- T ≤ T_c: increasing condensate due to electric part of gluon

cf. Buividovich, Luschevskaya, Polikarpov, PRD 78 (2008) 074505. cf. Braun, Gies, Pawlowski, PLB 684 (2010) 262-267.

•quark spectral functions

Mueller, CF, Nickel, EPJC 70 (2010) 1037-1049

Christian Fischer (University of Gießen)

Quarks, gluons and hadrons

QCD phase transitions: N_f=2+1

Physical up/down and strange quark masses
 Transition controlled by chiral dynamics
 at μ=0: compare to available lattice results

Unquenched Gluon DSE vs Lattice

•quantitative agreement: DSE prediction verified by lattice

DSE: CF, Luecker, PLB 718 (2013) 1036 [arXiv:1206.5191]

Lattice:

 $CI, EUECKEI, FEB 718 (2013) 1030 [ar <math>\times 10.1208.5171$]

e: Aouane, Burger, Ilgenfritz, Muller-Preussker and Sternbeck, arXiv:1212.1102

Christian Fischer (University of Gießen)

Quarks, gluons and hadrons

$N_f=2+1$, zero chemical potential

Lattice: Borsanyi *et al.* [Wuppertal-Budapest Collaboration], JHEP 1009(2010) 073 DSE: CF, Luecker, PLB 718 (2013) 1036, CF, Luecker, Welzbacher, in prep.

quantitative agreement

$N_f=2+1$, zero chemical potential

Lattice: Borsanyi *et al.* [Wuppertal-Budapest Collaboration], JHEP 1009(2010) 073 DSE: CF, Luecker, PLB 718 (2013) 1036, CF, Luecker, Welzbacher, in prep.

quantitative agreement

Nf=2+1: thermal electric gluon mass

large temperatures: behavior as expected from HTL
 first order transition at large chemical potential

Nf=2+1: Condensate and dressed Polyakov Loop

Christian Fischer (University of Gießen)

Quarks, gluons and hadrons

$N_f=2+1$: Polyakov loop potential at finite μ

CF, Fister, Luecker, Pawlowski, arXiv:1306.6022

- evaluated from Polyakov-Loop potential
- important input for P-models: PQM, PNJL !

N_f=2+1: Polyakov loop and phase diagram

CF, Fister, Luecker, Pawlowski, arXiv:1306.6022

• no CEP at $\mu_c/T_c < I$ in agreement with lattice and FRG

de Forcrand, Philipsen, JHEP 0811 (2008) 012; Nucl Phys. B642 (2002) 290-306 Endrodi, Fodor, Katz, Szabo, JHEP 1104 (2011) 001 Braun, Haas, Marhauser and Pawlowski, PRL 106 (2011) 022002

Caveat: baryon effects missing...

Nc=2, PQM: Strodthoff, Schaefer and Smekal, PRD 85 (2012) 074007

Christian Fischer (University of Gießen)

Quarks, gluons and hadrons

Summary

- Properties of hadrons
 - Pion cloud effects in light mesons
 - Masses and form factors of baryons
 - Current work: charmonia, EM form factors w. pion cloud

QCD with finite chemical potential

- temperature dependent gluon propagator
- first calculation of Polyakov-loop potential at finite μ
- $N_f = 2 + I: CEP \text{ at } \mu_c/T_c > I$
- current work: N_f=2+1+1, spectral functions

Backup Slides

Christian Fischer (University of Gießen)

Quarks, gluons and hadrons

Transition form factors

- good agreement with data
- rho/omega pole generated dynamically

Maris, Tandy, Phys. Rev. C 65 045211 (2002)

Quenched QCD: quark spectral functions

Idea: Fit spectral representation to quark propagator

Karsch and Kitazawa, PRD 80, 056001 (2009)

$$S(p_0, \vec{p}) = \int dp'_0 \frac{\rho(p'_0, \vec{p})}{p_0 - \omega'}$$

$$\rho_{\pm}(p_0, p) = 2\pi \left[Z_1 \delta(p_0 \mp E_1) + Z_2 \delta(p_0 \pm E_2) \right]$$

$$+ \lambda \left(1 - \frac{p_0^2}{p^2} \right) e^{-p_0^2} \Theta \left(1 - \frac{p_0^2}{p^2} \right)$$

 Quark, plasmino and continuum (Landau damping)
 agreement with HTL at p=0

Mueller, CF, Nickel, EPJC 70 (2010) 1037-1049