Quarks, gluons and hadrons from Dyson-Schwinger equations

Christian S. Fischer

Justus Liebig Universität Gießen

9th of October 2013

HELMHOLTZ
GEMEINSCHAFT
HIC $_{\text {FAIR }}$
Helmholtz International Center

Overview

I.Introduction: quarks and gluons
2.Electromagnetic properties of mesons and baryons

3.Gluons, quarks and the QCD phase diagram

Properties of QCD: Dynamical mass generation

Dynamical quark masses via weak and strong force

Nobel prize 2008

F. Englert, P. Higgs,

Nobel prize 2013

		u	d	s	c	b	t
$\mathrm{M}_{\text {weak }}$	$\left[\mathrm{MeV} / \mathrm{c}^{2}\right]$	3	5	80	I 200	4500	176000
$\mathrm{M}_{\text {strong }}$	$\left[\mathrm{MeV} / \mathrm{c}^{2}\right]$	350	350	350	350	350	350
$\mathrm{M}_{\text {total }}$	$\left[\mathrm{MeV} / \mathrm{c}^{2}\right]$	350	350	450	I 500	4800	176000

$$
S^{-1}(p)=\left[i \not p+M\left(p^{2}\right)\right] / Z_{f}\left(p^{2}\right)
$$

Properties of QCD: Dynamical mass generation

Dynamical quark masses via weak and strong force

Nobel prize 2008

F. Englert, P. Higgs,

Nobel prize 2013

Input parameters in $\mathrm{N}_{\mathrm{f}}=2+\mathrm{I}$ QCD

		u	d	s	c	b	t
$\mathrm{M}_{\text {weak }}$	$\left[\mathrm{MeV} / \mathrm{c}^{2}\right]$	3	5	80	$\mathbf{I} 200$	4500	176000
$\mathrm{M}_{\text {strong }}$	$\left[\mathrm{MeV} / \mathrm{c}^{2}\right]$	350	350	350	350	350	350
$\mathrm{M}_{\text {toal }}$	$\left[\mathrm{MeV} / \mathrm{c}^{2}\right]$	350	350	450	1500	4800	176000

Confinement

Color confinement:

We are not detecting quarks and gluons, but baryons, mesons, tetraquarks, glueballs....

Strategies to deal with this situation:

- Effective theories in terms of hadrons
- Nonperturbative QCD: Lattice, Functional methods

Chiral symmetry+confinement: meson clouds

Hadrons

Nonperturbative QCD: Complementary approach

Quarks and gluons

Hadrons

- Lattice simulations
- Ab initio
- Gauge invariant
- Effective theories and models (XPT, chiral mod...)
- Physical degrees of freedom
- Functional approaches (DSE, FRG,Hamilton):
- Chiral symmetry: physical quark masses
- Infinite volume and continuum limit
- Multi-scale problems feasible (e.g. (g-2) ${ }^{\text {) }}$)

Goecke, CF,Williams, PRD 87 (2013) 0340 I

- Chemical potential: no sign problem

QCD in covariant gauge

Quarks and Gluons

$$
\begin{array}{r}
\mathcal{Z}_{Q C D}=\int \mathcal{D}[\Psi, A] \exp \left\{-\int d^{4} x\left(\bar{\Psi}(i \not D-m) \Psi-\frac{1}{4}\left(F_{\mu \nu}^{a}\right)^{2}\right.\right. \\
\text { + gauge fixing })\}
\end{array}
$$

Landau gauge propagators in momentum space,

$$
\begin{aligned}
D_{\mu \nu}^{\text {Gluon }}(p) & =\left(\delta_{\mu \nu}-\frac{p_{\mu} p_{\nu}}{p^{2}}\right) \frac{Z\left(p^{2}\right)}{p^{2}} \\
S^{\text {Quark }}(p) & =Z_{f}\left(p^{2}\right)\left[-i p p+M\left(p^{2}\right)\right]^{-1}
\end{aligned}
$$

The Goal: gauge invariant information in a gauge fixed approach.

DSEs of QCD

DSEs of QCD

DSEs of QCD

Landau gauge gluon propagator

spacelike momenta: excellent agreement with lattice

- deep infrared: 'massive’ behaviour

$$
Z\left(p^{2}\right) / p^{2} \sim \text { const } .
$$

Agsula, Binos, Papapassiliou, PRD 78, 025010 (2008). Cormanal, PRD 26 (1982) 1453.analytic structure: cut at timelike P
positivity violations!
Gluon cannot appear in detector!

CF, Maas, Pawlowski, Annals Phys. 324 (2009) 2408. Huber, von Smekal, JHEP I304 (2013) 149.

Strauss, CF, Kellermann, Phys. Rev. Lett. I09, (2012) 25200 I

Unquenching effects in gluon

- Quantitative agreement with lattice

Overview

I.Introduction: quarks and gluons
2.Electromagnetic properties of mesons and baryons

3.Gluons, quarks and the QCD phase diagram

Mesons and Baryons

General goal:

Experimental observables from nonperturbative quark and gluon structure of QCD

Framework: DSEs, BSEs, FEs

- Dynamics at perturbative and nonperturbative scales
- Dynamical chiral symmetry breaking: connects dynamically generated 'constituent-quark mass' with current quark mass
- Dynamical realization of Goldstone boson nature of pseudoscalar mesons

The DSE for the quark propagator

$$
\begin{aligned}
& -1 \\
& {[S(p)]^{-1}=\left[-i \not p+M\left(p^{2}\right)\right] / Z_{f}\left(p^{2}\right)}
\end{aligned}
$$

Input: • dressed Gluon propagator

- dressed Quark-Gluon-Vertex

Two strategies:
I. calculate gluon and vertex from their DSEs \rightarrow mandatory e.g. for QCD phase diagram
II. use model for quark-gluon interaction \rightarrow ok for some phenomenological applications

Strategy II: model for quark-gluon interaction

Combine gluon with quark-gluon vertex:
Maris-Tandy-model

$$
\alpha\left(k^{2}\right)=\pi \eta^{7}\left(\frac{k^{2}}{\Lambda^{2}}\right) e^{-\eta^{2}\left(\frac{k^{2}}{\Lambda^{2}}\right)}+\alpha_{U V}\left(k^{2}\right)
$$

and fixtwo (related) parameters η and Λ from $f_{\pi}$$\alpha_{U V}$ from perturbation theorymasses $m_{u}=m_{d}$ from m_{π} or m_{ρ}

Strategy II: model for quark-gluon interaction

Maris-Tandy-model

$$
\alpha\left(k^{2}\right)=\pi \eta^{7}\left(\frac{k^{2}}{\Lambda^{2}}\right) e^{-\eta^{2}\left(\frac{k^{2}}{\Lambda^{2}}\right)}+\alpha_{U V}\left(k^{2}\right)
$$

and fix

- two (related) parameters η and Λ from f_{π}

Phenomenology from Maris-Tandy interaction

Summary of light meson results
$m_{u=d}=5.5 \mathrm{MeV}, m_{s}=125 \mathrm{MeV}$ at $\mu=1 \mathrm{GeV}$
Pseudoscalar (PM, Roberts, PRC56, 3369)

	expt.	calc.
$-\langle\bar{q} q\rangle_{\mu}^{0}$	$(0.236 \mathrm{GeV})^{3}$	$\left(0.241^{\dagger}\right)^{3}$
m_{π}	0.1385 GeV	0.138^{\dagger}
f_{π}	0.0924 GeV	0.093^{\dagger}
m_{K}	0.496 GeV	0.497^{\dagger}
f_{K}	0.113 GeV	0.109

Charge radii (PM, Tandy, PRC62, 055204)

r_{π}^{2}	$0.44 \mathrm{fm}^{2}$	0.45
$r_{K^{+}}^{2}$	$0.34 \mathrm{fm}^{2}$	0.38
$r_{K^{0}}^{2}$	$-0.054 \mathrm{fm}^{2}$	-0.086

$\gamma \pi \gamma$ transition (PM, Tandy, PRC65, 045211)

$g_{\pi \gamma \gamma}$	0.50	0.50
$r_{\pi \gamma \gamma}^{2}$	$0.42 \mathrm{fm}^{2}$	0.41

Weak K_{13} decay (PM, Ji, PRD64, 014032)

$\lambda_{+}(e 3)$	0.028	0.027
$\Gamma\left(K_{e 3}\right)$	$7.6 \cdot 10^{6} \mathrm{~s}^{-1}$	7.38
$\Gamma\left(K_{\mu 3}\right)$	$5.2 \cdot 10^{6} \mathrm{~s}^{-1}$	4.90

Vector mesons	(PM, Tandy, PRC60, 055214)	
$m_{\rho / \omega}$	0.770 GeV	0.742
$f_{\rho / \omega}$	0.216 GeV	0.207
$m_{K^{*}}$	0.892 GeV	0.936
$f_{K^{*}}$	0.225 GeV	0.241
m_{ϕ}	1.020 GeV	1.072
f_{ϕ}	0.236 GeV	0.259

Strong decay (Jarecke, PM, Tandy, PRC67, 035202)

$g_{\rho \pi \pi}$	6.02	5.4
$g_{\phi K K}$	4.64	4.3
$g_{K^{*} K \pi}$	4.60	4.1

Radiative decay
(PM, nucl-th/0112022)

$g_{\rho \pi \gamma} / m_{\rho}$	0.74	0.69
$g_{\omega \pi \gamma} / m_{\omega}$	2.31	2.07
$\left(g_{K^{*} К \gamma} / m_{K}\right)^{+}$	0.83	0.99
$\left(g_{K^{*} K \gamma} / m_{K}\right)^{0}$	1.28	1.19

Scattering length (PM, Cotanch, PRD66, 116010)

a_{0}^{0}	0.220	0.170
a_{0}^{2}	0.044	0.045
a_{1}^{1}	0.038	0.036

Quark-photon vertex and pion form factors

Pion form factor:

Krassnigg, Schladming 2011;
good agreement with data
Maris, Tandy NPPS I6I, 2006

- rho/omega pole generated dynamically

Results including pion cloud are under way!

Results: Hadronic vacuum polarisation

five flavors

DSE:

Goecke, CF,Williams, PLB 704 (201 I)

Lattice:

Burger et al. arXiv: I 308.4327

$$
\begin{align*}
a_{\mu}^{\text {had.(1) }}=(744.0 \pm 2) \cdot 10^{-10} & \left(\mathrm{~m}_{\pi}\right) \\
a_{\mu}^{\text {had.(1) }} & =(676.0 \pm 2) \cdot 10^{-10} \quad\left(\mathrm{~m}_{\rho}\right) \\
a_{\mu}^{\text {had.(1) }} & =(674.0 \pm 39) \cdot 10^{-10}
\end{align*}
$$

$$
a_{\mu}^{\text {had. }(1)}=(694.9 \pm 4.3) \cdot 10^{-10}
$$

Dispersive analysis:
Hagiwara et al.JPG 38 (201I) 085003

Faddeev - equation

Faddeev equation:

- neglect irreducible three-body forces (three-gluon interaction!)
- approximate two-body interactions by RL-gluon exchange - same one-parameter-model (MT) for mesons and baryons
- 64 tensor structures for nucleon: s, p, d - wave
- numerically expensive but manageable !

Eichmann, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010)
Eichmann, PRD 84 (201I)
Sanchis-Alepuz ,Eichmann,Villalba-Chavez, Alkofer, PRD (2012)

Faddeev - equation

Faddeev equation:

- neglect irreducible three-body forces (three-gluon interaction!)
- approximate two-body interactions by RL-gluon exchange - same one-parameter-model (MT) for mesons and baryons
- 64 tensor structures for nucleon: s, p, d - wave
- numerically expensive but manageable !

Eichmann, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010)
Eichmann, PRD 84 (201I)
Sanchis-Alepuz ,Eichmann,Villalba-Chavez, Alkofer, PRD (2012)

Baryon masses

- first covariant threebody calculations!
- grosso modo: consistent description of mesons and baryons
- masses dominated by s-waves

Eichmann, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010)
Eichmann, PRD 84 (201I)
Sanchis-Alepuz ,Eichmann,Villalba-Chavez, Alkofer, PRD (2012)

Delta mass:
Sanchis-Alepuz et al., 1109.0199 [hep-ph]

Nucleon mass: GE, PRD 84 (2011)
ρ-meson mass: Maris, Tandy, Nucl. Phys. Proc. Suppl. 161 (2006)

Nucleon EM form factors

-missing pion cloud effects
similar for axial form factors

Eichmann, PRD 84 (201I)
Eichmann and CF, Eur. Phys.J.A48 (2012) 9

Magnetic moments

Magnetic moments (p, n):

Isovector (p-n), isoscalar (p+n):

${ }^{\bullet}$ missing pion cloud effects in isovector moment Kv -no pion cloud effects in isoscalar moment ks

Eichmann, PRD 84 (201I)

Strategy I: Including the pion cloud

- Hadron level: TN N -contributions to nucleon self-energy
- Quark-level: Tr-contributions to quark self-energy

Strategy I: Including the pion cloud

- Hadron level: TN
- Quark-level: Tr-contributions to quark self-energy

Strategy I: Pion effects in quark-gluon interaction

quark-gluon vertex:

CF, Nickel and Wambach, PRD 76 (2007) 094009

quark:

Strategy I: Pion effects in quark-gluon interaction

quark-gluon vertex:

quark:

Strategy I: Pion effects in quark-gluon interaction

quark-gluon vertex:

quark:

Strategy I: Pion effects in quark-gluon interaction

quark-gluon vertex:

quark:

CF, D. Nickel and R. Williams, EPJC 60, 1434 (2008)

Unquenching effects: Light mesons

	RL	3 g	$3 \mathrm{~g}+\pi$	Experiment
M_{π}	138	138	138	138
f_{π}	94	111	105	93
M_{ρ}	758	881	805	776
f_{ρ}	154	176	168	162
M_{σ}	645	884	820	450
$M_{a_{1}}$	926	1055	1040	1230
$M_{b_{1}}$	912	972	940	1229

CF,Williams, PRL 103 (2009), PRD 78 (2008)

- Attractive effects of pion cloud
- Scalar too large or ... too low!

Unquenching effects: Light mesons

	RL	3 g	$3 \mathrm{~g}+\pi$	Experiment
M_{π}	138	138	138	138
f_{π}	94	111	105	93
M_{ρ}	758	881	805	776
f_{ρ}	154	176	168	162
M_{σ}	645	884	820	450
$M_{a_{1}}$	926	1055	1040	1230
$M_{b_{1}}$	912	972	940	1229

- Attractive effects of pion cloud
- Scalar too large or ... too low!

Unquenching effects: Light mesons

	RL	3 g	$3 \mathrm{~g}+\pi$	Experiment
M_{π}	138	138	138	138
f_{π}	94	111	105	93
M_{ρ}	758	881	805	776
f_{ρ}	154	176	168	162
M_{σ}	645	884	820	450
$M_{a_{1}}$	926	1055	1040	1230
$M_{b_{1}}$	912	972	940	1229

- Attractive effects of pion cloud
- Scalar too large or ... too low!

Unquenching effects: Light mesons

	RL	3 g	$3 \mathrm{~g}+\pi$	Experiment
M_{π}	138	138	138	138
f_{π}	94	111	105	93
M_{ρ}	758	881	805	776
f_{ρ}	154	176	168	162
M_{σ}	645	884	820	450
$M_{a_{1}}$	926	1055	1040	1230
$M_{b_{1}}$	912	972	940	1229

CF,Williams, PRL 103 (2009), PRD 78 (2008)

- Attractive effects of pion cloud
- Scalar too large or ... too low!
cp Parganlija, Kovacs,Wolf, Giacosa and Rischke, PRD 87 (2013) 01401 I Heupel, Eichman, CF, PLB 718 (2012) 545-549

Pion cloud effects in baryons

First results:

- Nucleon:

$$
1.05 \rightarrow 0.94 \mathrm{GeV}
$$

- Roper:

$$
1.60 \rightarrow 1.35 \mathrm{GeV}
$$

Next steps:
Sanchis-Alepuz, Kubrak, CF, in prep.

- systematics + precision
- EM form factors w. pion cloud
- Gauge invariant formalism
- Test calculation: pion
in progress
- Extend calculation to nucleon

Nucleon Compton scattering

Nonperturbative description of hadron-photon and hadron-meson scattering on quark-gluon basis

Technical/conceptual progress:

- Derive fermion-two-photon vertex
- consistent with gauge invariance
- free of kinematic singularities
- transverse part: on-shell nucleon Compton amplitude
- Reproduce $\pi \mathrm{Y}$ transition form factor on t-channel pole

Next steps:

- Two-photon contributions to EM form factor
- Polarisabilities

Overview

I.Introduction: quarks and gluons
2.Electromagnetic properties of mesons and baryons

3.Gluons, quarks and the QCD phase diagram

QCD phase transitions

plot by O. Philipsen

QCD phase transitions

plot by O. Philipsen

QCD phase transitions

QCD phase transition: heavy quark limit/quenched

Quark mass dependence:

- Expect: Transitions controlled by deconfinement
- SU(2) second order, SU(3) first order

Transition temperatures, quenched

quenched, DSE

Luecker, C.F., arXiv:1111.0180; C.F., Maas, Mueller, EPJC 68 (2010).

- $\operatorname{SU}(2): T_{c} \approx 305 \mathrm{MeV}$ $\mathrm{SU}(3): T_{c} \approx 270 \mathrm{MeV}$
- $T \leq T_{c}$: increasing condensate due to electric part of gluon
cf. Buividovich, Luschevskaya, Polikarpov, PRD 78 (2008) 074505.
cf. Braun, Gies, Pawlowski, PLB 684 (2010) 262-267.
quark spectral functions Mueller, CF, Nickel, EPC 70 (2010) 1037 -1049

QCD phase transitions: $\mathrm{N}_{\mathrm{f}}=2+1$

- Physical up/down and strange quark masses
- Transition controlled by chiral dynamics
- at $\mu=0$: compare to available lattice results

Unquenched Gluon DSE vs Lattice

-quantitative agreement: DSE prediction verified by lattice
DSE: CF, Luecker, PLB 718 (2013) 1036 [arXiv:I206.5 191]
Lattice: Aouane, Burger, Ilgenfritz, Muller-Preussker and Sternbeck, arXiv:1212.1102

$N_{\mathrm{f}}=2+1$, zero chemical potential

zero chemical potential

Lattice: Borsanyi et al. [Wuppertal-Budapest Collaboration], JHEP I009(2010) 073
DSE: CF, Luecker, PLB 718 (2013) I036, CF, Luecker, Welzbacher, in prep.

- quantitative agreement

$N_{\mathrm{f}}=2+1$, zero chemical potential

Lattice: Borsanyi et al. [Wuppertal-Budapest Collaboration], JHEP I009(20I0) 073
DSE: CF, Luecker, PLB 718 (2013) I036, CF, Luecker, Welzbacher, in prep.

- quantitative agreement

$N f=2+1$: thermal electric gluon mass

- large temperatures: behavior as expected from HTL - first order transition at large chemical potential

Nf=2+1: Condensate and dressed Polyakov Loop

$\mathrm{N}_{\mathrm{f}}=2+1$: Polyakov loop potential at finite μ

- evaluated from Polyakov-Loop potential
- important input for P-models: PQM, PNJL!

$\mathrm{N}_{\mathrm{f}}=2+1$: Polyakov loop and phase diagram

no CEP at $\mu_{c} / T_{c}<I$ in agreement with lattice and FRG

de Forcrand, Philipsen, JHEP 08II (2008) OI2; Nucl Phys. B642 (2002) 290-306
Endrodi, Fodor, Katz, Szabo, JHEP II04 (201I) 001
Braun, Haas, Marhauser and Pawlowski, PRL 106 (201I) 022002

Caveat: baryon effects missing...

Nc=2, PQM: Strodthoff, Schaefer and Smekal, PRD 85 (20I2) 074007

Summary

-Properties of hadrons

- Pion cloud effects in light mesons
- Masses and form factors of baryons
- Current work: charmonia, EM form factors w. pion cloud
-QCD with finite chemical potential
- temperature dependent gluon propagator
- first calculation of Polyakov-loop potential at finite μ
- $N_{f}=2+1: C E P$ at $\mu_{c} / T_{c}>1$
- current work: $\mathrm{N}_{\mathrm{f}}=2+\mathrm{I}+\mathrm{I}$, spectral functions

Backup Slides

Transition form factors

- good agreement with data
- rho/omega pole generated dynamically

Maris, Tandy, Phys. Rev. C 650452 II (2002)

Quenched QCD: quark spectral functions

Idea: Fit spectral representation to quark propagator

Karsch and Kitazawa, PRD 80, 05600 I (2009)

$$
\begin{aligned}
S\left(p_{0}, \vec{p}\right)= & \int d p_{0}^{\prime} \frac{\rho\left(p_{0}^{\prime}, \vec{p}\right)}{p_{0}-\omega^{\prime}} \\
\rho_{ \pm}\left(p_{0}, p\right)= & 2 \pi\left[Z_{1} \delta\left(p_{0} \mp E_{1}\right)+Z_{2} \delta\left(p_{0} \pm E_{2}\right)\right] \\
& +\lambda\left(1-\frac{p_{0}^{2}}{p^{2}}\right) e^{-p_{0}^{2}} \Theta\left(1-\frac{p_{0}^{2}}{p^{2}}\right)
\end{aligned}
$$

- Quark, plasmino and continuum (Landau damping)
- agreement with HTL at $\mathrm{p}=0$

Mueller, CF, Nickel, EPJC 70 (2010) I037-I049

