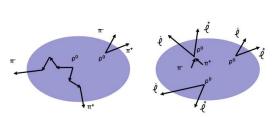
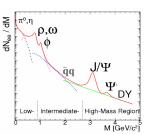

Stephan Endres

(in collab. with M. Bleicher, H. van Hees, J. Weil)

Frankfurt Institute for Advanced Studies

Rapid Reaction Task Force, GSI Darmstadt
October 2013





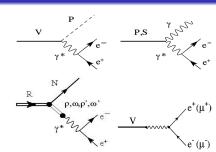
Overview

- Introduction
- 2 Transport Calculations and their Difficulties
- 3 Coarse Grained Transport Aproach
- 4 First Results
- Outlook

- Dileptons represent a clean and penetrating probe of hot and dense nuclear matter
- Reflect the whole dynamics of a collision
- Once produced they do not interact with the surrounding matter (no strong interactions)
- Aim of studies
 - In-medium modification of vector meson properties
 - Chiral symmetry restoration

Coarse Graining Approach

Outlook

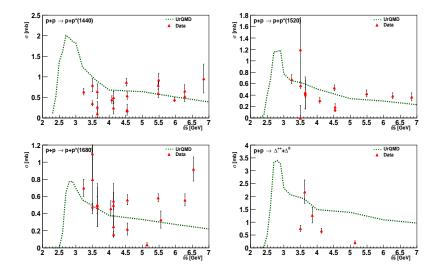

Ultra-relativistic Quantum Molecular Dynamics

- Hadronic non-equilibrium transport approach
- Includes all baryons and mesons with masses up to 2.2 GeV
- Two processes for resonance production in UrQMD (at low energies)
 - Collisions (e.g. $\pi\pi \to \rho$)
 - Higher resonance decays (e.g. $N^* \rightarrow N + \rho$
- Resonances either decay after a certain time or are absorbed in another collision (e.g. $\rho + N \rightarrow N_{1520}^*$)
- No explicit in-medium modifications!

Resonance	Mass	Width
N ₁₄₄₀ *	1.440	350
N_{1520}^{*}	1.515	120
N_{1535}^*	1.550	140
N_{1650}^{*}	1.645	160
N_{1675}^*	1.675	140
N_{1680}^{*}	1.680	140
N_{1700}^*	1.730	150
N_{1710}^*	1.710	500
N_{1720}^{*}	1.720	550
N_{1900}^*	1.850	350
N_{1990}^*	1.950	500
N_{2080}^*	2.000	550
N_{2190}^*	2.150	470
N_{2220}^*	2.220	550
N_{2250}^*	2.250	470
Δ_{1232}	1.232	115
Δ_{1600}^{*}	1.700	350
Δ_{1620}^{*}	1.675	160
Δ_{1700}^{*}	1.750	350
Δ_{1900}^{*}	1.840	260
Δ_{1905}^{*}	1.880	350
Δ_{1910}^{*}	1.900	250
Δ_{1920}^{*}	1.920	200
Δ_{1930}^{*}	1.970	350
Δ_{1950}^{*}	1.990	350

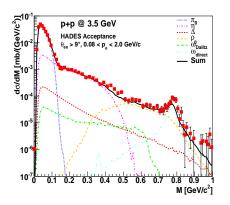
Dilepton sources in UrQMD

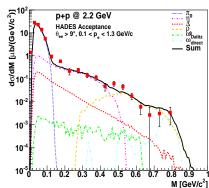
- Dalitz Decays $\Rightarrow \pi^0, \eta, \eta', \omega, \Delta$ $P \rightarrow \gamma + e^+ e^ V \rightarrow P + e^+ e^-$
- Direct Decays $\Rightarrow \rho^0, \omega, \phi$


- Dalitz decays are decomposed into the corresponding decays into a virtual photon and the subsequent decay of the photon via electromagnetic conversion
- Form factors for the Dalitz decays are obtained from the vector-meson dominance model
- Assumption: Resonance can continuously emit dileptons over its whole lifetime (Time Integration Method / "Shining")

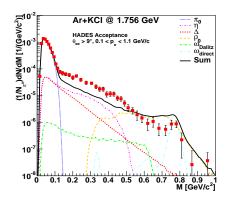
The Resonance "Mess"

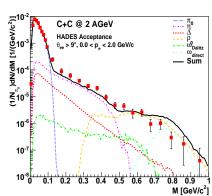
Resonance	Mass	Width	$N\pi$	$N\eta$	$N\omega$	$N\varrho$	$N\pi\pi$	$\Delta_{1232}\pi$	$N_{1440}^*\pi$	ΛK	ΣK	f_0N	a_0N
N* 1440	1.440	350	0.65				0.10	0.25					
N_{1520}^*	1.515	120	0.60			0.15	0.05	0.20					
N_{1535}^{*}	1.550	140	0.60	0.30			0.05		0.05				
N_{1650}^*	1.645	160	0.60	0.06		0.06	0.04	0.10	0.05	0.07	0.02		
N* 1675	1.675	140	0.40					0.55	0.05				
N_{1680}^*	1.680	140	0.60			0.10	0.10	0.15	0.05				
N_{1700}^*	1.730	150	0.05			0.20	0.30	0.40	0.05				
N_{1710}^*	1.710	500	0.16	0.15		0.05	0.21	0.20	0.10	0.10	0.03		
N_{1720}^*	1.720	550	0.10			0.73	0.05			0.10	0.02		
N_{1900}^*	1.850	350	0.30	0.14	0.39	0.15				0.02			
N_{1990}^*	1.950	500	0.12			0.43	0.19	0.14	0.05	0.03		0.04	
N ₂₀₈₀	2.000	550	0.42	0.04	0.15	0.12	0.05	0.10		0.12			
N_{2100}^{*}	2.150	470	0.29			0.24	0.10	0.15	0.05	0.12			
N**	2.220	550	0.29		0.05	0.22	0.17	0.20		0.12			
N** N** 2250	2.250	470	0.18			0.25	0.20	0.20	0.05	0.12			
Δ_{1232}	1.232	115	1.00										
Δ_{1600}^{+}	1.700	350	0.10					0.65	0.25				
Δ_{1620}^{*}	1.675	160	0.15			0.05		0.65	0.15				
Δ_{1700}^{+}	1.750	350	0.20			0.25		0.55					
Δ_{1900}^{*}	1.840	260	0.25			0.25		0.25	0.25				
Δ^{*}_{1905}	1.880	350	0.18			0.80		0.02					
Δ_{1910}^{*}	1.900	250	0.30			0.10		0.35	0.25				
Δ_{1920}^{*}	1.920	200	0.27					0.40	0.30	0.03			
Δ^{*}_{1930}	1.970	350	0.15			0.22		0.20	0.28	0.15			
Δ^*_{1950}	1.990	350	0.38			0.08		0.20	0.18	0.12			0.04


- Which **resonances** do I have to include?
- Which resonance is produced with which probability?
- What is the actual **branching ratio** (e.g. to the ρ)?
- → Many parameters one can "play" with, as they are not fixed...

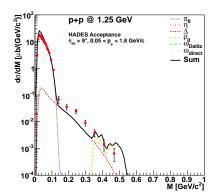

Example: Exclusive Resonance Cross-Sections

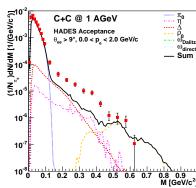
Transport Results


 p+p Results look quite nice after adjusting resonance production and branching ratio



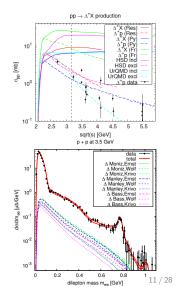
Transport Results


 \bullet We see an excess in heavy-ion collisions (e.g. Ar+KCl @ 1.76 AGeV) not yet described by the model



Transport Results

- At low energies around $E_{kin} = 1$ GeV, a pure transport description becomes difficult as well
- Processes like NN and πN bremsstrahlung become dominant, especially for p+n interactions (How avoid double counting?)
- Δ form factor? Which / how to dertermine?



Coarse Graining Approach

The Transport Status Quo

- There has been a lot of improvement, especially concerning the exact comparison and adjustment of the many parameters, cross-sections, branching ratios (compare GiBUU results by Janus)
- However, this is a hard job and one has to be careful
- Still the models show big differences in some details

Challenges

- Cross-sections not implemented explicitly but intermediate baryonic resonances are used
- Some cross-sections are even unmeasured or unmeasurable (especially for ρ and Δ lack of data)
- General difficulties of the transport approach at high density:
 - Off-shell effects
 - Multi-particle collisions
- ⇒ How can we avoid these problems?

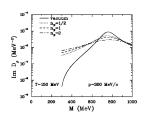
Coarse Graining

- We take an ensemble of UrQMD events and span a grid of small space time cells.
- For those cells we determine baryon and energy density and use Eckart's definition to determine the **rest frame** properties \rightarrow use EoS to calculate T and μ_B
- For the Rapp Spectral function, we also extract pion and kaon chemical potential via simple Boltzmann approximation
- At SIS, an equation of state for a free hadron gas without any phase transition is used [D. Zschiesche et al., Phys. Lett. B547, 7 (2002)]
- A Chiral EoS is used for the NA60 calculation (including chiral symmetry restoration and phase transition)

[[]J. Steinheimer et al., J. Phys. G38 (2011)]

Dilepton Rates

- Lepton pair emission is calculated for each cell of 4-dim. grid, using thermal equilibrium rates per four-volume and four-momentum from a bath at T and μ_B .
- The ρ dilepton emission (similar for ω , ϕ) of each cell is accordingly calculated using the expression


[R. Rapp, J. Wambach, Adv. Nucl. Phys. 25, 1 (2000)]

$$\frac{\mathsf{d}^8\mathsf{N}_{\rho\to\mathsf{II}}}{\mathsf{d}^4\mathsf{x}\mathsf{d}^4\mathsf{q}} = -\frac{\alpha^2\mathsf{m}_\rho^4}{\pi^3\mathsf{g}_\rho^2}\frac{\mathsf{L}(\mathsf{M}^2)}{\mathsf{M}^2}\mathsf{f}_\mathsf{B}(\mathsf{q}_0;\mathsf{T})\mathsf{Im}\mathsf{D}_\rho(\mathsf{M},\mathsf{q};\mathsf{T},\mu_\mathsf{B})$$

• The 4π lepton pair production can be determined from the electromagnetic spectral function extracted in e^+e^- annihilation [Z. Huang, Phys. Lett. B361, 131 (1995)]

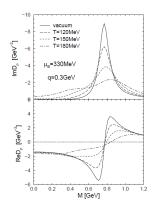
$$\frac{d^{8}N_{4\pi\to II}}{d^{4}xd^{4}q} = \frac{4\alpha^{2}}{(2\pi)^{2}}e^{-q_{0}/T}\frac{M^{2}}{16\pi^{3}\alpha^{2}}\sigma(e^{+}e^{-}\to 4\pi)$$

• QGP contribution is evaluated according to Cleymans et al.

Introduction

Resonance	Mass (GeV)	Width (GeV)	Branching ratio $(\rho N \text{ or } \rho \pi)$		
N(1700)	1.737	0.249	0.13		
N(1720)	1.717	0.383	0.87		
N(1900)	1.879	0.498	0.44		
N(2000)	1.903	0.494	0.60		
N(2080)	1.804	0.447	0.26		
N(2090)	1.928	0.414	0.49		
N(2100)	1.885	0.113	0.27		
N(2190)	2.127	0.547	0.29		
$\Delta(1700)$	1.762	0.599	0.08		
$\Delta(1900)$	1.920	0.263	0.38		
$\Delta(1905)$	1.881	0.327	0.86		
$\Delta(1940)$	2.057	0.460	0.35		
$\Delta(2000)$	1.752	0.251	0.22		
$\phi(1020)$	1.020	0.0045	0.13		
$h_1(1170)$	1.170	0.36	1		
$a_1(1260)$	1.230	0.40	0.68		
$\pi(1300)$	1.300	0.40	0.32		
$a_2(1320)$	1.318	0.107	0.70		
$\omega(1420)$	1.419	0.174	1		

ullet In-medium self energies of the ho


$$\Sigma_
ho = \Sigma^0 + \Sigma^{
ho\pi} + \Sigma^{
ho\mathsf{N}}$$

were calculated using empirical scattering amplitudes from **resonance dominance**

[V. L. Eletsky et al., Phys. Rev. C64, 035303 (2001)]

- For ρ N scattering N^* and Δ^* resonances from Manley and Saleski
- Additional inclusion of the Δ₁₂₃₂ and the N₁₅₂₀ subthreshold resonances
 ⇒ Important, as they significantly contribute!

Rapp Spectral Function

• Includes finite temperature propagators of ω , ρ and ϕ meson

[R. Rapp, J. Wambach, Eur.Phys.J. A6, 415-420 (1999)]

$$ullet$$
 Medium modifications of the ho propegator

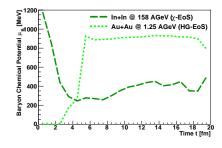
$$\mathsf{D}_{
ho} \propto rac{1}{\mathsf{M}^2 - \mathsf{m}_{
ho}^2 - \Sigma^{
ho\pi\pi} - \Sigma^{
ho\mathsf{M}} - \Sigma^{
ho\mathsf{B}}}$$

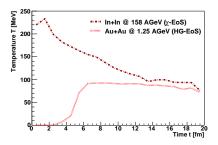
include interactions with pion cloud with hadrons $(\Sigma^{\rho\pi\pi})$ and direct scatterings off mesons and baryons $(\Sigma^{\rho M}, \Sigma^{\rho B})$

• Pion cloud modification approximated by using effective nucleon density $\rho_{\text{eff}} = \rho_N + \rho_{\bar{N}} + 0.5(\rho_{R^* + \bar{R}^*})$

Previous Calculations

- Previous calculations were done with a fireball model
 [H. van Hees, R. Rapp, Nucl. Phys. A806, 339 (2008)]
- The zone of hot and dense matter is described by an isentropic expanding cylindrical volume

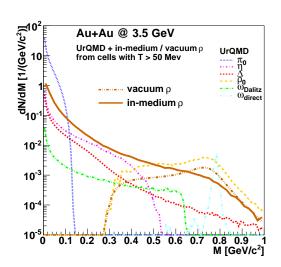

$$V_{\mathrm{FB}}(t) = \pi \left(r_{\perp,0} + \frac{1}{2} a_{\perp} t^2 \right)^2 \left(z_0 + v_{z,0} t + \frac{1}{2} a_z t^2 \right)$$

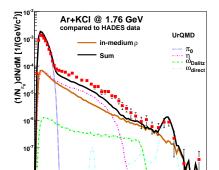

- *Problem*: How to choose parameters? Is it a plausible description or a too simple picture?
- ⇒ Make calculations with better constrained input...

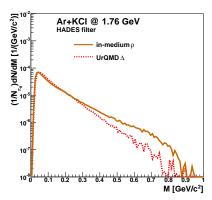
Introduction

Outlook

Temperature and Chemical Potential from Coarse Graining

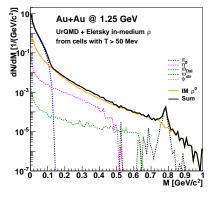


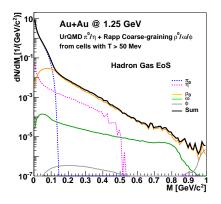

- For a central cell in an Au+Au collision @ 1.25 AGeV we get very high μ_B up to 1000 MeV and a maximum temperature of \approx 100 MeV
- For In+In at NA60 energy, the baryon density decreases very fast after the start of the collision, the temperature reaches a maximum of 230 MeV


Au+Au @ 3.5 AGeV

- The UrQMD ρ contribution as well as the coarse-graining results for the vacuum and in-medium spectral functions are shown
- In-medium ρ "melts" away at the pole mass while it becomes dominant at lower masses

Coarse Graining Approach

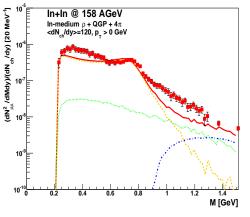



Coarse Graining Approach

- Comparison of Eletsky spectral funktion to existing HADES data shows that the in-medium ρ is dominated by the Δ_{1232} contribution
- Still below the data for intermediate mass region

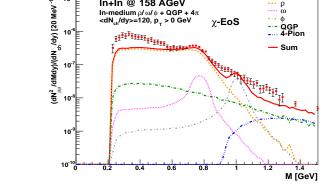
M [GeV/c²]

Au + Au @ 1.25 AGeV

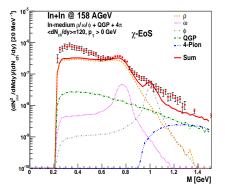


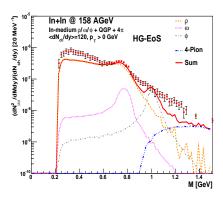
- Eletsky and Rapp spectral function agree quite well here
- The Dalitz- ω from the Rapp spectral function lies on the UrQMD result, while we don't see a significant (direct-) ω peak in the coarse-grained result

Coarse Graining Approach

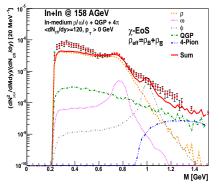

Looking at NA60 - Eletsky Spectral Function

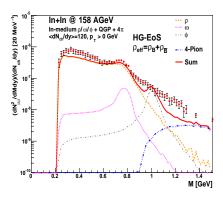
- In-medium ρ contribution (orange) to dimuon excess was calculated with the Eletsky spectral function for a **chiral EoS**
- 4π (blue) and QGP (green) contribution are included as well, they are negligible mostly at low masses, but dominate above 1 GeV
- ⇒ Eletsky spectral function gives a good overall agreement, but can not describe the low-mass tail of the excess dimuons completely


In+In @ 158 AGeV


Rapp Spectral Function for NA60

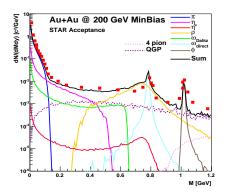
- Calcuation for Rapp spectral function (with ρ , ω and ϕ included) and additional QGP and 4π contribution
- Fits the data quite well at the ρ pole mass, but is too low in the low mass tail

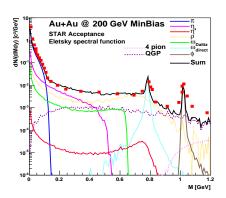

Comparison of EoS



- With the Hadron Gas EoS we get a better agreement at low masses
- The lack of QGP lowers the result at high masses

Dependence on Baryon Density

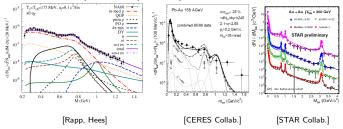




Coarse Graining Approach

- An increase in baryon density (take $\rho_{\it eff} = \rho_{\it B} + \rho_{\it \bar{B}}$) leads to a better description
 - → Baryons crucial for description of low mass tail

Some Rapid plots for RHIC



• comparison between pure transport and transport + in-medium ρ from coarse-graining

Outlook

Introduction

 Coarse-graining to be done at other energies and compared to further NA60, CERES, RHIC, LHC data

- Investigation of diffent equations of state
- Further dilepton calculations with hybrid model (transport + hydro)
- Using different input from transport (e.g. from GiBUU)

Summary

- New approach to combine realistic transport caluclations with in-medium modified spectral functions for vector mesons
- Non-equilibrium treatment highly non-trivial ⇒ Use
 equilibrium rates for a coarse-grained transport dynamics
- First calculations show that we get a good description of the invariant mass spectrum, the coarse-graining is applicable for all energy regimes
- Explanation of dilepton measurements is still a challenge for theory ⇒ Need for more experimental input!
- Waiting for HADES Au+Au data and for the pion beam!
- Further work in progress...!