David Richards Jefferson Laboratory/Hadron Spectrum Collaboration

EMMI RRTF, GSI, October 2013

LQCD: Issues

- Spectroscopy Recipe Book
- Spectroscopy
 - Baryons, Mesons, flavor content of isoscalars
 - Resonances in LQCD: Extraction of Phase Shifts
 - To-do list inelastic + multihadron decays
- Form factors of Stable Hadrons
 - Pion form factor
 - Nucleon Form factor
 - In-medium effects....
- Transition form factors
 - "Stable" Delta form factors
 - Photo-couplings between mesons
 - Form Factors of Resonances
 - Time-like form factors two-photon width?
 - Asymptotic Form Factors large Q²

Low-lying Hadron Spectrum

Benchmark of LQCD $C(t) = \sum_{\vec{x}} \langle 0 \mid N(\vec{x}, t) \bar{N}(0) \mid 0 \rangle = \sum_{n, \vec{x}} \langle 0 \mid e^{ip \cdot x} N(0) e^{-ip \cdot x} \mid n \rangle \langle n \mid \bar{N}(0) \mid 0 \rangle$ $= |\langle n \mid N(0) \mid 0 \rangle |^2 e^{-E_n t} = \sum_{n} A_n e^{-E_n t}$

Durr et al., BMW Collaboration

Science 2008

Control over:

- Quark-mass dependence
- Continuum extrapolation
 - finite-volume effects (pions, resonances)

Jefferson Lab

Variational Method

Subleading terms → *Excited* states

Construct matrix of correlators with judicious choice of operators

$$C_{\alpha\beta}(t,t_0) = \langle 0 \mid \mathcal{O}_{\alpha}(t)\mathcal{O}_{\beta}^{\dagger}(t_0) \mid 0 \rangle$$

$$\longrightarrow \sum Z_{\alpha}^n Z_{\beta}^{n\dagger} e^{-M_n(t-t_0)}$$

Delineate contributions using variational method: solve

$$C(t)u(t,t_0) = \lambda(t,t_0)C(t_0)u(t,t_0)$$

$$\lambda_i(t,t_0) \to e^{-E_i(t-t_0)} \left(1 + O(e^{-\Delta E(t-t_0)})\right)$$

Eigenvectors, with metric $C(t_0)$, are orthonormal and project onto the respective states

- Resolve energy dependence *anisotropic lattice*
- ➡ Judicious construction of interpolating operators *cubic symmetry*

Challenges

Anisotropic lattices

To appreciate difficulty of extracting excited states, need to understand signal-to-noise ratio in two-point functions. Consider correlation function:

$$C(t) = \langle 0 \mid \mathcal{O}(t)\mathcal{O}(0)^{\dagger} \mid 0 \rangle \longrightarrow e^{-Et}$$

Then the fluctuations behave as DeGrand, Hecht, PRD46 (1992)

 $\sigma^{2}(t) \simeq \left(\langle 0 \mid |\mathcal{O}(t)\mathcal{O}(0)^{\dagger}|^{2} \mid 0 \rangle - C(t)^{2} \right) \longrightarrow e^{-2m_{\pi}t}$

Signal-to-noise ratio degrades with increasing E - Solution: anisotropic lattice with $a_t < a_s$

Cubic symmetry of lattices

Glueball Spectroscopy - I

Morningstar, Peardon 97,99

Glueball Spectrum - II

This is the pure Yang-Mills spectrum. Predicts existence of bound states.

2+1 flavor staggered - can mix with two-pi states - not a smoking gun for gluonic excitations!

Anisotropic Clover

Low-lying spectrum: *agrees with experiment to 10%*

N_f=2+1 Hadron Spectrum: NN Leading Order Extrapolation

Meson Operators

Aim: interpolating operators of *definite* (continuum) JM: O^{JM} $\langle 0 \mid O^{JM} \mid J', M' \rangle = Z^J \delta_{J,J'} \delta_{M,M'}$ Starting point $\bar{\psi}(\vec{x}, t) \Gamma D_i D_j \dots \psi(\vec{x}, t)$ Introduce circular basis: $\overleftarrow{D}_{m=-1} = \frac{i}{\sqrt{2}} \left(\overleftarrow{D}_x - i \overleftarrow{D}_y \right)$ $\overleftarrow{D}_{m=0} = i \overleftarrow{D}_z$ $\overleftarrow{D}_{m=+1} = -\frac{i}{\sqrt{2}} \left(\overleftarrow{D}_x + i \overleftarrow{D}_y \right)$. Straighforward to project to definite spin: J = 0, 1, 2

$$(\Gamma \times D_{J=1}^{[1]})^{J,M} = \sum_{m_1,m_2} \langle 1, m_1; 1, m_2 | J, M \rangle \,\overline{\psi} \Gamma_{m_1} \overleftrightarrow{D}_{m_2} \psi.$$

Use projection formula to find subduction under irrep. of cubic group - operators are closed under rotation!

Meson Operators

Aim: interpolating operators of *definite* (continuum) JM: O^{JM} $\langle 0 \mid O^{JM} \mid J', M' \rangle = Z^J \delta_{J,J'} \delta_{M,M'}$ Starting point $\bar{\psi}(\vec{x},t)\Gamma D_i D_j \dots \psi(\vec{x},t)$ Introduce circular basis: $\overleftrightarrow{D}_{m=-1} = \frac{i}{\sqrt{2}} \left(\overleftrightarrow{D}_x - i \overleftrightarrow{D}_y \right)$ $\overleftrightarrow{D}_{m=0} = i\overleftrightarrow{D}_{z}$ $\overleftarrow{D}_{m=+1} = -\frac{i}{\sqrt{2}} \left(\overleftarrow{D}_x + i \overleftarrow{D}_y \right).$ Straighforward to project to definite spin: J = 0, 1, 2 $(\Gamma \times D_{J=1}^{[1]})^{J,M} = \sum \langle 1, m_1; 1, m_2 | J, M \rangle \overline{\psi} \Gamma_{m_1} \overleftrightarrow{D}_{m_2} \psi.$ Use projection formula to find subduction under irrep. of cubic group operators are closed under rotation!

Meson Operators

Aim: interpolating operators of *definite* (continuum) JM: O^{JM} $\langle 0 \mid O^{JM} \mid J', M' \rangle = Z^J \delta_{J,J'} \delta_{M,M'}$ Starting point $\bar{\psi}(\vec{x},t)\Gamma D_i D_j \dots \psi(\vec{x},t)$ Introduce circular basis: $\overleftrightarrow{D}_{m=-1} = \frac{i}{\sqrt{2}} \left(\overleftrightarrow{D}_x - i \overleftrightarrow{D}_y \right)$ $\overleftrightarrow{D}_{m=0} = i\overleftrightarrow{D}_{z}$ $\overleftrightarrow{D}_{m=+1} = -\frac{i}{\sqrt{2}} \left(\overleftrightarrow{D}_x + i \overleftrightarrow{D}_y \right).$ Straighforward to project to definite spin: J = 0, 1, 2 $(\Gamma \times D_{J=1}^{[1]})^{J,M} = \sum \langle 1, m_1; 1, m_2 | J, M \rangle \overline{\psi} \Gamma_{m_1} \overleftrightarrow{D}_{m_2} \psi.$

Use projection formula to find subduction under irrep. of cubic group - operators are closed under rotation!

Identification of Spin

Isovector Meson Spectrum - I

Interpretation of Meson Spectrum

In each Lattice Irrep, state dominated by operators of particular J

Interpretation of Meson Spectrum

In each Lattice Irrep, state dominated by operators of particular J

 ${}^{3}S_{1}$

1.6

Isoscalar Meson Spectrum

Diagonalize in 2x2 *flavor space*

$$C = \begin{pmatrix} -\mathcal{C}^{\ell\ell} + 2\,\mathcal{D}^{\ell\ell} & \sqrt{2}\,\mathcal{D}^{\ell s} \\ \sqrt{2}\,\mathcal{D}^{s\ell} & -\mathcal{C}^{ss} + \mathcal{D}^{ss} \end{pmatrix}$$

- Spin-identified single-particle spectrum: states of spin as high as four
- Hidden flavor mixing angles extracted except 0⁻⁺, 1⁺⁺ near ideal mixing
- First determination of exotic isoscalar states: comparable in mass to isovector

J. Dudek et al., PRD73, 11502

Isoscalar Meson Spectrum

Diagonalize in 2x2 *flavor space*

$$C = \begin{pmatrix} -\mathcal{C}^{\ell\ell} + 2\,\mathcal{D}^{\ell\ell} & \sqrt{2}\,\mathcal{D}^{\ell s} \\ \sqrt{2}\,\mathcal{D}^{s\ell} & -\mathcal{C}^{ss} + \mathcal{D}^{ss} \end{pmatrix}$$

- Spin-identified single-particle spectrum: states of spin as high as four
- Hidden flavor mixing angles extracted except 0⁻⁺, 1⁺⁺ near ideal mixing
- First determination of exotic isoscalar states: comparable in mass to isovector

J. Dudek et al., PRD73, 11502

Excited Baryon Spectrum - I

Construct basis of 3-quark interpolating operators in the continuum:

$$\left(N_{\mathsf{M}}\otimes ig(rac{3}{2}^{-}ig)^{1}_{\mathsf{M}}\otimes D^{[2]}_{L=2,\mathsf{S}}
ight)^{J=rac{7}{2}}$$

Subduce to lattice irreps:

$$\mathcal{D}_{n\Lambda,r}^{[J]} = \sum_{M} \mathcal{S}_{n\Lambda,r}^{J,M} \mathcal{O}^{[J,M]} : \Lambda = G_{1g/u}, H_{g/u}, G_{2g/u}$$

R.G.Edwards et al., arXiv:1104.5152

 $16^3 \times 128$ lattices $m_{\pi} = 524,444$ and 396 MeV

Observe remarkable realization of rotational symmetry at hadronic scale: *reliably determine spins up to 7/2, for the first time in a lattice calculation*

Excited Baryon Spectrum - I

Construct basis of 3-quark interpolating operators in the continuum:

 $\left(N_{\mathsf{M}}\otimes \left(\frac{3}{2}^{-}\right)_{\mathsf{M}}^{1}\otimes D_{L=2,\mathsf{S}}^{[2]}
ight)^{J=\frac{\ell}{2}}$ "Flavor" x Spin x Orbital

Subduce to lattice irreps:

 $\mathcal{O}_{n\Lambda,r}^{[J]} = \sum_{M} \mathcal{S}_{n\Lambda,r}^{J,M} \mathcal{O}^{[J,M]} : \Lambda = G_{1g/u}, H_{g/u}, G_{2g/u}$

R.G.Edwards et al., arXiv:1104.5152

 $16^3 \times 128$ lattices $m_{\pi} = 524,444$ and 396 MeV

Observe remarkable realization of rotational symmetry at hadronic scale: reliably determine spins up to 7/2, for the first time in a lattice calculation

Spectral Overlaps

Excited Baryon Spectrum - II

Broad features of SU(6)xO(3) symmetry.

Counting of states consistent with NR quark model.

Inconsistent with quark-diquark picture or parity doubling.

N ^{1/2+} sector: need for complete basis to faithfully extract states

Excited Baryon Spectrum - II

Broad features of SU(6)xO(3) symmetry.

Counting of states consistent with NR quark model.

Inconsistent with quark-diquark picture or parity doubling.

 $[70, 0^+], [56, 2^+], [70, 2^+], [20, 1^+]$

N ^{1/2+} sector: need for complete basis to faithfully extract states

Hybrid Baryon Spectrum

Original analysis ignore hybrid operators of form $D_{l=1,M}^{[2]}$

Dudek, Edwards, arXiv:1201.2349 Δ^{\star}

Putting it Together

Putting it Together

Common mechanism in meson and baryon hybrids: chromomagnetic field with $E_g \sim 1.2 - 1.3 \text{ GeV}$

The elephant in the room...

Meson spectrum on two volumes: dashed lines denote expected (noninteracting) multi-particle energies.

Allowed two-particle contributions governed by cubic symmetry of volume

Calculation is incomplete.

The elephant in the room...

Meson spectrum on two volumes: dashed lines denote expected (noninteracting) multi-particle energies.

Allowed two-particle contributions governed by cubic symmetry of volume

Calculation is incomplete.

The elephant in the room...

Calculation is incomplete.

Jefferson Lab

Momentum-dependent I = 2 $\pi\pi$ **Phase Shift**

Dudek et al., Phys Rev D83, 071504 (2011)

Luescher: energy levels at finite volume \leftrightarrow phase shift at corresponding k

Energy Levels for Scattering States

Momentum-dependent I = 2 $\pi\pi$ **Phase Shift**

Momentum-dependent I = 2 $\pi\pi$ Phase Shift

- More sophisticated analysis Dudek, Edwards, Thomas, arXiv:1203.6041
 - Moving $\pi\pi$ system \rightarrow far more momenta below inelastic threshold
 - Optimized single-pion interpolating operators → more precise determination of energies
 - Investigation of thermal effects

Avoided level crossings...

Mohler, Lattice 2012

Resonant I = 1 $\pi\pi$ **Phase Shift**

Dudek, Edwards, Thomas, Phys. Rev. D 87, 034505 (2013)

Extend to inelastic channels: Guo et al, Briceno et al.,

Paradigm: Pion EM form factor

$$\langle \pi(\vec{p}_f) \mid V_{\mu}(0) \mid \pi(\vec{p}_i) \rangle = (p_i + p_f)_{\mu} F(Q^2)$$

where

$$V_{\mu} = \frac{2}{3}\bar{u}\gamma_{\mu}u - \frac{1}{3}\bar{d}\gamma_{\mu}d$$

$$-Q^{2} = [E_{\pi}(\vec{p}_{f}) - E_{\pi}(\vec{p}_{i})]^{2} - (\vec{p}_{f} - \vec{p}_{i})^{2}$$

Anatomy of a Matrix Element Calculation - I

Pion Form Factor - I

Charge radius

$$\langle r^2 \rangle = 6 \left. \frac{dF(q^2)}{dq^2} \right|_{q^2 = 0}$$

Pion Form Factor - II

J.D.Bratt et al (LHPC), arXiv:0810.1933

Data well described by dipole form - but example of notable finite-volume effect:

r F

Isovector Charge Radius

Medium modification of structure

- How is the structure of a hadron modified "in medium"
 EMC effect?
- First attempt momentum fraction carried by quarks in Bose-condensed pion gas.

Transition Form Factors

Form factors of excited states, and transition form factors to excited states, provide additional insight into nature of QCD. Precise electro-production data

Program of computations looking at Δ form factor, and N $\gamma \rightarrow \Delta$ transition form factors *N.B.* $\Delta \rightarrow N\pi$ is p-wave decay, suppressed at zero momentum.

Admits *three* multipoles: magnetic dipole, electric quadrupole and Coulomb quadrupole: G_{M1}, G_{E2}, G_{C2}

Transition Form Factors

Form factors of excited states, and transition form factors to excited states, provide additional insight into nature of QCD. Precise electro-production data

Program of computations looking at Δ form factor, and N $\gamma \rightarrow \Delta$ transition form factors *N.B.* $\Delta \rightarrow N\pi$ is p-wave decay, suppressed at zero momentum.

Admits *three* multipoles: magnetic dipole, electric quadrupole and Coulomb quadrupole: G_{M1}, G_{E2}, G_{C2}

N- Δ Transition Form Factor

HYB, $m_{\pi} = 353$ MeV

DWF, $m_{\pi} = 297$ MeV

0.2

Bates-OOPS

JLab-CLAS

0.4

MAMI-A1

PDG \star

 Q^2 (GeV²)

0.6

0.8

Non-zero values: sphericity in either N or Δ - zero quadrupole moment for spin-1/2 system

-8

-10

-12

0

P11-N Form Factors

Lin, Cohen et al., PRD78, 114508 (2008)

Matrix Elements for Scattering States

General formalism: Bernard, Hoya, Meisner, Rusetsky, arXiv:1204.4642

Radiative Transitions in Mesons

Thomas Jefferson National Accelerator Facility

Saturday June 25, 2011

Radiative Transitions in Mesons - II

Look at radiative decays in charmonium - wealth of experimental data. Lots of transitions below threshold!

Transitions from Excited States?

Many of these radiative widths have been measured...

Can Access time-like form factors!

 $\Gamma(\eta_{c1} \rightarrow J/\psi\gamma) = 115(16) \text{ keV}$

Large for M1 transition - large production of exotics at JLab if true in light-quark sector

Saturday June 25, 2011

Jefferson Lab

Time-Like Form Factors

Ji and Jung, PRL86, 208 (2001) and PRD64, 034506; Dudek and Edwards, Phys.Rev.Lett. 97, 172001 (2006); Cohen and Lin, arXiv:1302.0874; Meyer, arXiv:1303.0138

Photon Structure function and two-photon decays of neutral mesons - *defined in Minkowski space:*

$$\begin{split} &\langle \gamma(q_1,\lambda_1)\gamma(q_2,\lambda_2)|M(p)\rangle = -\lim_{\substack{q_1'\to q_1\\q_2'\to q_2}} \epsilon^*_{\mu}(q_1,\lambda_1)\epsilon^*_{\nu}(q_2,\lambda_2) \\ &\times q_1'^2 q_2'^2 \int d^4x d^4y \, e^{iq_1'.y+iq_2'.x} \langle 0|T\{A^{\mu}(y)A^{\nu}(x)\}|M(p)\rangle, \end{split}$$

Analytically continue to Euclidean space *providing* photons not sufficiently off-shell to produce on-shell hadrons $Q^2 = \mid \vec{q} \mid^2 - \omega^2 > -m_H^2$

First example: two-photon with in charmonium - Dudek, Edwards

Time-Like Form Factors - II

Time-like pion form factor: H. Meyer, PRL 107, 072002 (2011)

Form factors at High Q²

• For exclusive processes at sufficiently high Q², can describe processes in terms of quark distribution amplitudes, e.g. for N(*)

$$N,\uparrow\rangle = f_N \int \frac{[\mathrm{d}x]\varphi(x_i)}{2\sqrt{24x_1x_2x_3}} \{ |u^\uparrow(x_1)u^\downarrow(x_2)d^\uparrow(x_3)\rangle - |u^\uparrow(x_1)d^\downarrow(x_2)u^\uparrow(x_3)\rangle \}.$$

Can compute low moments of quark distribution amplitudes

 $\varphi^{lmn} = \int [dx] x_1^l x_2^m x_3^n \varphi(x_1, x_2, x_3).$ QCDSF, arXiv:1112.0473

Form factors at High Q²

Helicity amplitudes from DA

SUMMARY

- Remarkable progress at understanding the excited-state spectrum of QCD **resonance properties**
- In principle, extension to EM properties of resonances straightforward, but need to do the work
- I haven't discussed chiral extrapolations focus is on understanding decays at calculated masses
- Euclidean-space at finite volume is a blessing, not a curse

Hybrids - lattice + expt

Hybrids - lattice + expt

Glueball Spectroscopy - I

Operators: closed Wilson loops

ξ is bare anisotropy a_s/a_t

Obtain renormalized anisotropy by comparing different Wilson Loops

Ratio at large J gives ξ

Morningstar, 96

Challenges - II

 States at rest are characterized by their behavior under rotations - SO(3)

Lattice does not possess full symmetry of the continuum - allowed energies characterised by cubic symmetry, or the octahedral point group O_h

- 24 elements
- 5 conjugacy classes/5 irreducible representations
- *O_h x I_s:* rotations + inversions (parity)

Anisotropic Clover Generation - I

H-W Lin et al (Hadron Spectrum Collaboration), PRD79, 034502 (2009)

Anisotropic Clover Generation - I

H-W Lin et al (Hadron Spectrum Collaboration), PRD79, 034502 (2009)

Anisotropic Clover Generation - I

H-W Lin et al (Hadron Spectrum Collaboration), PRD79, 034502 (2009)

Anisotropic Clover – II

Low-lying spectrum: *agrees with experiment to 10%*

N_f=2+1 Hadron Spectrum: NN Leading Order Extrapolation

Correlation functions: Distillation

- Use the new "distillation" method.
 - Observe $L^{(J)} \equiv (1 \frac{\kappa}{n}\Delta)^n = \sum_{i=1} f(\lambda_i)v^{(i)} \otimes v^{*(i)}$
- Truncate sum at sufficient i to capture relevant physics modes we use 64: set "weights" f to be unity
- Meson correlation function

$$C_M(t,t') = \langle 0 \mid \bar{d}(t')\Gamma^B(t')u(t')\bar{u}(t)\Gamma^A(t)d(t)|0\rangle$$

Decompose using "distillation" operator as

M. Peardon *et al.*, PRD80,054506 $C_M(t,t') = \text{Tr}\langle \phi^A(t')\tau(t',t)\Phi^B(t)\tau^{\dagger}(t',t), \rangle$ (2009) where

$$\begin{split} \Phi^{A,ij}_{\alpha\beta} &= v^{*(i)}(t) [\Gamma^A(t)\gamma_5]_{\alpha\beta} v^{(j)}(t') \\ \textbf{Perambulators} &\longrightarrow \tau^{ij}_{\alpha\beta}(t,t') &= v^{*(i)}(t') M^{-1}_{\alpha\beta}(t',t) v^{(j)}(t). \end{split}$$

•

Eigenvectors of

Includes displacements

Correlation functions: Distillation

Use the new "distillation" method.

Eigenvectors of Laplacian $L^{(J)} \equiv (1 - \frac{\kappa}{n}\Delta)^n = \sum_{i=1}^{n} f(\lambda_i) v^{(i)} \otimes v^{*(i)}$

- Truncate sum at sufficient i to capture relevant physics modes we use ٠ 64: set "weights" f to be unity
- Meson correlation function •

Observe

•

$$C_M(t,t') = \langle 0 \mid \bar{d}(t')\Gamma^B(t')u(t')\bar{u}(t)\Gamma^A(t)d(t)|0\rangle$$

Decompose using "distillation" operator as

 $C_M(t,t') = \operatorname{Tr} \langle \phi^A(t') \tau(t',t) \Phi^B(t) \tau^{\dagger}(t',t), \rangle$ M. Peardon *et al.*, PRD80,054506 (2009)where

$$\begin{split} \Phi^{A,ij}_{\alpha\beta} &= v^{*(i)}(t) [\Gamma^A(t)\gamma_5]_{\alpha\beta} v^{(j)}(t') \\ \textbf{Perambulators} &\longrightarrow \tau^{ij}_{\alpha\beta}(t,t') &= v^{*(i)}(t') M^{-1}_{\alpha\beta}(t',t) v^{(j)}(t). \end{split}$$

Includes displacements