David Richards
 Jefferson Laboratory/Hadron Spectrum Collaboration

EMMI RRTF, GSI, October 2013

LQCD: Issues

- Spectroscopy Recipe Book
- Spectroscopy
- Baryons, Mesons, flavor content of isoscalars
- Resonances in LQCD: Extraction of Phase Shifts
- To-do list - inelastic + multihadron decays
- Form factors of Stable Hadrons
- Pion form factor
- Nucleon Form factor
- In-medium effects....
- Transition form factors
- "Stable" Delta form factors
- Photo-couplings between mesons
- Form Factors of Resonances
- Time-like form factors - two-photon width?
- Asymptotic Form Factors - large Q^{2}

Low-lying Hadron Spectrum

Benchmark of LQCD

$$
\begin{aligned}
C(t)=\sum_{\vec{x}}\langle 0| N(\vec{x}, t) \bar{N}(0)|0\rangle & =\sum_{n, \vec{x}}\langle 0| e^{i p \cdot x} N(0) e^{-i p \cdot x}|n\rangle\langle n| \bar{N}(0)|0\rangle \\
& =|\langle n| N(0)| 0\rangle\left.\right|^{2} e^{-E_{n} t}=\sum_{n} A_{n} e^{-E_{n} t}
\end{aligned}
$$

Durr et al., BMW Collaboration

Science 2008
Control over:

- Quark-mass dependence
- Continuum extrapolation
- finite-volume effects (pions, resonances)

Variational Method

Subleading terms \rightarrow Excited states

Construct matrix of correlators with judicious choice of operators

$$
\begin{aligned}
C_{\alpha \beta}\left(t, t_{0}\right) & =\langle 0| \mathcal{O}_{\alpha}(t) \mathcal{O}_{\beta}^{\dagger}\left(t_{0}\right)|0\rangle \\
& \longrightarrow \sum_{n} Z_{\alpha}^{n} Z_{\beta}^{n \dagger} e^{-M_{n}\left(t-t_{0}\right)}
\end{aligned}
$$

Delineate contributions using variational method: solve

$$
\begin{aligned}
& C(t) u\left(t, t_{0}\right)=\lambda\left(t, t_{0}\right) C\left(t_{0}\right) u\left(t, t_{0}\right) \\
& \lambda_{i}\left(t, t_{0}\right) \rightarrow e^{-E_{i}\left(t-t_{0}\right)}\left(1+O\left(e^{-\Delta E\left(t-t_{0}\right)}\right)\right)
\end{aligned}
$$

Eigenvectors, with metric $\mathrm{C}\left(\mathrm{t}_{0}\right)$, are orthonormal and project onto the respective states
\Rightarrow Resolve energy dependence - anisotropic lattice
\Rightarrow Judicious construction of interpolating operators - cubic symmetry

Challenges

Anisotropic lattices

To appreciate difficulty of extracting excited states, need to understand signal-to-noise ratio in two-point functions. Consider correlation function:

$$
C(t)=\langle 0| \mathcal{O}(t) \mathcal{O}(0)^{\dagger}|0\rangle \longrightarrow e^{-E t}
$$

Then the fluctuations behave as
DeGrand, Hecht, PRD46 (1992)

$$
\sigma^{2}(t) \simeq\left(\langle 0|\left|\mathcal{O}(t) \mathcal{O}(0)^{\dagger}\right|^{2}|0\rangle-C(t)^{2}\right) \longrightarrow e^{-2 m_{\pi} t}
$$

Signal-to-noise ratio degrades with increasing E - Solution: anisotropic lattice with $a_{t}<a_{s}$
Cubic symmetry of lattices

J	irreps, $\Lambda(\operatorname{dim})$
$\frac{1}{2}$	$G_{1}(2)$
$\frac{3}{2}$	$H(4)$
$\frac{5}{2}$	$H(4) \oplus G_{2}(2)$
$\frac{7}{2}$	$G_{1}(2) \oplus H(4) \oplus G_{2}(2)$
$\frac{9}{2}$	$G_{1}(2) \oplus{ }^{1} H(4) \oplus{ }^{2} H(4)$

Glueball Spectroscopy - I

Morningstar, Peardon 97,99

Glueball Spectrum - II

This is the pure Yang-Mills spectrum. Predicts existence of bound states.

2+1 flavor staggered - can mix with two-pi states - not a smoking gun for gluonic excitations!

Anisotropic Clover

Low-lying spectrum: agrees with experiment to 10%
$\mathrm{N}_{\mathrm{f}}=\mathbf{2 + 1}$ Hadron Spectrum: NN Leading Order Extrapolation

Meson Operators

Aim: interpolating operators of definite (continuum) JM : $\mathrm{O}^{J M}$
Starting point $\quad \bar{\psi}(\vec{x}, t) \Gamma D_{i} D_{j} \ldots \psi(\vec{x}, t)$

$$
\langle 0| O^{J M}\left|J^{\prime}, M^{\prime}\right\rangle=Z^{J} \delta_{J, J^{\prime}} \delta_{M, M^{\prime}}
$$

Introduce circular basis: $\overleftrightarrow{D}_{m=-1}=\frac{i}{\sqrt{2}}\left(\overleftrightarrow{D}_{x}-i \overleftrightarrow{D}_{y}\right)$

$$
\begin{aligned}
\overleftrightarrow{D}_{m=0} & =i \overleftrightarrow{D}_{z} \\
\overleftrightarrow{D}_{m=+1} & =-\frac{i}{\sqrt{2}}\left(\overleftrightarrow{D}_{x}+i \overleftrightarrow{D}_{y}\right) .
\end{aligned}
$$

Straighforward to project to definite spin: $J=0,1,2$

$$
\left(\Gamma \times D_{J=1}^{[1]}\right)^{J, M}=\sum\left\langle 1, m_{1} ; 1, m_{2} \mid J, M\right\rangle \bar{\psi} \Gamma_{m_{1}} \overleftrightarrow{D}_{m_{2}} \psi
$$

Use projection formula to find subduction under irrep. of cubic group operators are closed under rotation!

$$
\begin{aligned}
O_{\Lambda \lambda}^{[J]}(t, \vec{x}) & =\frac{d_{\Lambda}}{g_{O h}^{D}} \sum_{R \in O_{h}^{D}} D_{\lambda \lambda}^{(\Lambda) *}(R) U_{R} O^{J, M}(t, \vec{x}) U_{R}^{\dagger} \\
& =\sum_{M} S_{\Lambda, \lambda}^{J, M} O^{J, M} \quad \uparrow \quad \text { Action of } \mathrm{R}
\end{aligned}
$$

Meson Operators

Aim: interpolating operators of definite (continuum) JM : $\mathrm{O}^{J M}$
Starting point $\quad \bar{\psi}(\vec{x}, t) \Gamma D_{i} D_{j} \ldots \psi(\vec{x}, t)$
Introduce circular basis: $\overleftrightarrow{D}_{m=-1}=\frac{i}{\sqrt{2}}\left(\overleftrightarrow{D}_{x}-i \overleftrightarrow{D}_{y}\right)$

$$
\begin{aligned}
\overleftrightarrow{D}_{m=0} & =i \overleftrightarrow{D}_{z} \\
\overleftrightarrow{D}_{m=+1} & =-\frac{i}{\sqrt{2}}\left(\overleftrightarrow{D}_{x}+i \overleftrightarrow{D}_{y}\right)
\end{aligned}
$$

Straighforward to project to definite spin: $J=0,1,2$

$$
\left(\Gamma \times D_{J=1}^{[1]}\right)^{J, M}=\sum\left\langle 1, m_{1} ; 1, m_{2} \mid J, M\right\rangle \bar{\psi} \Gamma_{m_{1}} \overleftrightarrow{D}_{m_{2}} \psi
$$

Use projection formula to find subduction under irrep. of cubic group operators are closed under rotation!

$$
\begin{aligned}
\underset{\wedge \lambda}{\uparrow} & =\frac{d_{\Lambda}}{g_{O h}^{D}} \sum_{R \in O_{h}^{D}} D_{\lambda \lambda}^{(\Lambda) *}(R) U_{R} O^{J, M}(t, \vec{x}) U_{R}^{\dagger} \\
{ }_{\text {Irrep, Row }}^{[J]} & =\sum_{M} S_{\Lambda, \lambda}^{J, M} O^{J, M}
\end{aligned} \uparrow_{\text {Action of } \mathrm{R}}
$$

Meson Operators

Aim: interpolating operators of definite (continuum) JM : $\mathrm{O}^{J M}$
Starting point $\quad \bar{\psi}(\vec{x}, t) \Gamma D_{i} D_{j} \ldots \psi(\vec{x}, t)$
Introduce circular basis: $\overleftrightarrow{D}_{m=-1}=\frac{i}{\sqrt{2}}\left(\overleftrightarrow{D}_{x}-i \overleftrightarrow{D}_{y}\right)$

$$
\begin{aligned}
\overleftrightarrow{D}_{m=0} & =i \overleftrightarrow{D}_{z} \\
\overleftrightarrow{D}_{m=+1} & =-\frac{i}{\sqrt{2}}\left(\overleftrightarrow{D}_{x}+i \overleftrightarrow{D}_{y}\right) .
\end{aligned}
$$

Straighforward to project to definite spin: $J=0,1,2$

$$
\left(\Gamma \times D_{J=1}^{[1]}\right)^{J, M}=\sum\left\langle 1, m_{1} ; 1, m_{2} \mid J, M\right\rangle \bar{\psi} \Gamma_{m_{1}} \overleftrightarrow{D}_{m_{2}} \psi
$$

Use projection formula to find subduction under irrep. of cubic group operators are closed under rotation!

$$
\begin{aligned}
O_{\Lambda \lambda}^{[J]}(t, \vec{x}) & =\frac{d_{\Lambda}}{g_{O}^{D}} \sum_{R \in O_{h}^{D}} D_{\lambda \lambda}^{(\Lambda) *}(R) U_{R} O^{J, M}(t, \vec{x}) U_{R}^{\dagger} \\
\uparrow & \uparrow \\
\text { Irrep, Row } & =\sum_{M} S_{\Lambda, \lambda}^{J, M} O_{\text {I }}^{J, M ~} \uparrow \\
\text { Irrep of } \mathrm{R} \text { in } \Lambda & \text { Action of } \mathrm{R}
\end{aligned}
$$

Identification of Spin

Hadspec collab. (dudek et al), 1004.4930, PRD82, 034508

$\begin{array}{llll}0.4 & 0.6 & 0.8 & 1.0\end{array}$

Isovector Meson Spectrum - I

PRL 103:262001 (2009)

Isovector spectrum with quantum numbers reliably identified

Exotic

Interpretation of Meson Spectrum

In each Lattice Irrep, state dominated by operators of
 particular J

Interpretation of Meson Spectrum

$J=0$	$\square\left(a_{1} \times D_{J=1}^{[1]}\right)^{J=0}$	$\square\left(a_{1} \times D_{J_{13}=2, J=1}^{[3]}\right)^{J=0}$
$J=1$	$\square(\rho)^{J=1} \square\left(a_{1} \times D_{J=1}^{[1]}\right)^{J=1} \square\left(\rho \times D_{J=2}^{[2]}\right)^{J=1} \square\left(\pi \times D_{J=1}^{[2]}\right)^{J=1}$	
$J=2$	$\square\left(a_{1} \times D_{J=1}^{[1]}\right)^{J=2} \quad \square\left(\rho \times D_{J=2}^{[2]}\right)^{J=2} \quad\left(a_{1} \times D_{J_{13}=2, J=3}^{[3]}\right)^{J=2}$	
$J=3$	$\square\left(\rho \times D_{J=2}^{[2]}\right)^{J=3} \square\left(a_{0} \times D_{J_{13}=2, J=3}^{[3]}\right)^{J=3} \square\left(a_{1} \times D_{J_{13}=2, J=3}^{3]}\right)^{J=3}$	
$J=4$	$\square\left(a_{1} \times D_{J_{13}=2, J=3}^{[3]}\right)^{J=4}$	

In each Lattice Irrep, state dominated by operators of
 particular J

1-

look at the 'overlaps' $Z_{n}^{\boldsymbol{\Gamma}}=\langle n| \bar{\psi} \boldsymbol{\Gamma} \psi|0\rangle$

Anti-commutator of covariant derivative: vanishes for unit gauge!

Use lattice QCD to build phenomenology of bound states
1^{--}

look at the 'overlaps' $Z_{n}^{\boldsymbol{\Gamma}}=\langle n| \bar{\psi} \mathbf{\Gamma} \psi|0\rangle$

$$
\begin{aligned}
& \underbrace{\rho} \quad \\
& \left(\rho \times D_{J=2}^{[2]}\right)^{J=1} \\
& \left(\begin{array}{ll}
3 \\
S_{1} \\
\left(\pi \times D_{J=1}^{[2]}\right)^{J=1} & \text { hybrid? }
\end{array}\right. \\
& \begin{array}{l}
\text { Anti-commutator of covariant } \\
\text { derivative: vanishes for unit gauge! }
\end{array}
\end{aligned}
$$

Use lattice QCD to build phenomenology of bound states

1-

1-

Isoscalar Meson Spectrum

Diagonalize in 2×2 flavor space
$C=\left(\begin{array}{c}-\mathcal{C}^{\ell \ell}+2 \mathcal{D}^{\ell \ell} \\ \sqrt{2} \mathcal{D}^{s \ell}\end{array}\right.$

- Spin-identified single-particle spectrum: states of spin as high as four
- Hidden flavor mixing angles extracted except $0^{-+}, 1^{++}$near ideal mixing
- First determination of exotic isoscalar states: comparable in mass to isovector
J. Dudek et al., PRD73, 11502

Isoscalar Meson Spectrum

Diagonalize in 2×2 flavor space
$C=\left(\begin{array}{c}-\mathcal{C}^{\ell \ell}+2 \mathcal{D}^{\ell \ell} \\ \sqrt{2} \mathcal{D}^{s \ell}\end{array}\right.$

- Spin-identified single-particle spectrum: states of spin as high as four
- Hidden flavor mixing angles extracted except $0^{-+}, 1^{++}$near ideal mixing
- First determination of exotic isoscalar states: comparable in mass to isovector
J. Dudek et al., PRD73, 11502

Excited Baryon Spectrum - I

Construct basis of 3-quark interpolating operators in the continuum:

$$
\left(N_{\mathrm{M}} \otimes\left(\frac{3}{2}^{-}\right)_{\mathrm{M}}^{1} \otimes D_{L=2, \mathrm{~S}}^{[2]}\right)^{J=\frac{7}{2}}
$$

Subduce to lattice irreps:

Excited Baryon Spectrum - I

Construct basis of 3-quark interpolating operators in the continuum:

$$
\left(N_{\mathrm{M}} \otimes\left(\frac{3}{2}^{-}\right)_{\mathrm{M}}^{1} \otimes D_{L=2, \mathrm{~S}}^{[2]}\right)^{J=\frac{7}{2}} \quad \text { "Flavor" } \mathbf{x} \text { Spin } \mathbf{x} \text { Orbital }
$$

Subduce to lattice irreps:

Spectral Overlaps

- $\left(N_{M} \otimes\left(\frac{3^{-}}{2}\right)_{M}^{1} \otimes D_{L-2,5}^{[1]}\right)^{J=\frac{7}{2}}$

$G_{2 u}$

Excited Baryon Spectrum - II

Broad features of $\mathrm{SU}(6) \mathrm{xO}(3)$ symmetry.
Counting of states consistent with NR quark model.
Inconsistent with quark-diquark picture or parity doubling.
$\mathbf{N}^{1 / 2+}$ sector: need for complete basis to faithfully extract states

Excited Baryon Spectrum - II

$\mathbf{N}^{1 / 2+}$ sector: need for complete basis to faithfully extract states

Hybrid Baryon Spectrum

Original analysis ignore hybrid operators of form $D_{l=1, M}^{[2]}$

Putting it Together

Subtract ρ

Subtract N

Putting it Together

Common mechanism in meson and baryon hybrids: chromomagnetic field with $E_{g} \sim 1.2-1.3 \mathrm{GeV}$

Subtract ρ
Subtract N

The elephant in the room...

Meson spectrum on two volumes: dashed lines denote expected (noninteracting) multi-particle energies.

Allowed two-particle contributions governed by cubic symmetry of volume

Calculation is incomplete.

The elephant in the room...

Calculation is incomplete.
Meson spectrum on two volumes: dashed lines denote expected (noninteracting) multi-particle energies.

Allowed two-particle contributions governed by cubic symmetry of volume

The elephant in the room...

Calculation is incomplete.
States unstable under strong interactions

Meson spectrum on two volumes: dashed lines denote expected (noninteracting) multi-particle energies.

Allowed two-particle contributions governed by cubic symmetry of volume

Momentum-dependent I = $2 \pi \pi$ Phase Shift

Dudek et al., Phys Rev D83, 071504 (2011)

Luescher: energy levels at finite volume \leftrightarrow phase shift at corresponding k

Operator basis $\quad \mathcal{O}_{\pi \pi}^{\Gamma, \gamma}(|\vec{p}|)=\sum_{m} \mathcal{S}_{\Gamma, \gamma}^{\ell, m} \sum_{\hat{p}} Y_{\ell}^{m}(\hat{p}) \mathcal{O}_{\pi}(\vec{p}) \mathcal{O}_{\pi}(-\vec{p})$
Total momentum zero - pion momentum $\pm p$

Energy Levels for Scattering States

Slide: J. Dudek

Momentum-dependent I = $2 \pi \pi$ Phase Shift

Dudek et al., Phys Rev D83, 071504 (2011)
Luescher: energy levels at finite volume \leftrightarrow phase shift at corresponding k
$\underset{\text { Matrix in } l \boldsymbol{\pi}}{\operatorname{det}}\left[e^{2 i \boldsymbol{\delta}(k)}-\mathbf{U}_{\Gamma}\left(k \frac{L}{2 \pi}\right)\right]=0$

$$
4 \pi \text { at } m_{\pi}=396 \mathrm{MeV}
$$

Momentum-dependent I = $2 \pi \pi$ Phase Shift

- More sophisticated analysis Dudek, Edwards, Thomas, arXiv:1203.6041
- Moving ппт system \rightarrow far more momenta below inelastic threshold
- Optimized single-pion interpolating operators \rightarrow more precise determination of energies
- Investigation of thermal effects

Resonant I = $1 \pi \pi$ Phase Shift

Avoided level crossings...

Mohler, Lattice 2012

Resonant I = $1 \pi \pi$ Phase Shift

Extend to inelastic channels: Guo et al, Briceno et al.,

Paradigm: Pion EM form factor

$$
\left\langle\pi\left(\vec{p}_{f}\right)\right| V_{\mu}(0)\left|\pi\left(\vec{p}_{i}\right)\right\rangle=\left(p_{i}+p_{f}\right)_{\mu} F\left(Q^{2}\right)
$$

where

$$
\begin{aligned}
V_{\mu} & =\frac{2}{3} \bar{u} \gamma_{\mu} u-\frac{1}{3} \bar{d} \gamma_{\mu} d \\
-Q^{2} & =\left[E_{\pi}\left(\vec{p}_{f}\right)-E_{\pi}\left(\vec{p}_{i}\right)\right]^{2}-\left(\vec{p}_{f}-\vec{p}_{i}\right)^{2}
\end{aligned}
$$

Anatomy of a Matrix Element Calculation - I

Pion Interpolating Operator

$$
\begin{aligned}
& \Gamma_{\pi^{+} \mu \pi^{+}}\left(t_{f}, t ; \vec{p}, \vec{q}\right)=\sum_{\vec{x}, \vec{y}}\langle 0| \phi\left(\vec{x}, t_{f}\right) V_{\mu}(\vec{y}, t) \phi^{\dagger}(\overrightarrow{0}, 0)|0\rangle e^{-i \vec{p} \cdot \vec{x}} e^{-i \vec{q} \cdot \vec{y}}, \\
& \text { form factor }
\end{aligned}
$$

Spacelike form factor
Resolution of unity - insert states

$$
\langle 0| \phi(0)|\pi, \vec{p}+\vec{q}\rangle\langle\pi, \vec{p}+\vec{q}| V_{\mu}(0)|\pi, \vec{p}\rangle\langle\pi, \vec{p}| \phi^{\dagger}|0\rangle e^{-E\left(\vec{p}\left(t-t_{i}\right)\right.} e^{-E(\vec{p}+\vec{q})\left(t_{f}-t\right)}
$$

Pion Form Factor - I

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { LHPC, Bonnet et al, } \\
\text { Phys.Rev. D72 (2005) } 054506 \\
F\left(Q^{2}\right)
\end{array}=\frac{1}{1+Q^{2} / M_{\mathrm{VMD}^{2}}} \\
& Q_{\max } \left\lvert\, \simeq \frac{1}{a}\right.
\end{aligned}
$$

Quark distribution amplitudes
Charge radius

$$
\left\langle r^{2}\right\rangle=\left.6 \frac{d F\left(q^{2}\right)}{d q^{2}}\right|_{q^{2}=0}
$$

Pion Form Factor - II

Isovector Form Factor

DWF valence/Asqtad sea

> J.D.Bratt et al (LHPC), arXiv:0810.1933

Data well described by dipole form - but example of notable finite-volume effect:

Isovector Charge Radius

Medium modification of structure

- How is the structure of a hadron modified "in medium" - EMC effect?
- First attempt - momentum fraction carried by quarks in Bose-condensed pion gas.

W Detmold, H-W Lin, arXiv:1112.5682
Proof of concept

Transition Form Factors

Form factors of excited states, and transition form factors to excited states, provide additional insight into nature of QCD. Precise electro-production data

Program of computations looking at Δ form factor, and $N_{\gamma} \rightarrow \Delta$ transition form factors N.B. $\Delta \rightarrow N \pi$ is p-wave decay, suppressed at zero momentum.

Admits three multipoles: magnetic dipole, electric quadrupole and Coulomb quadrupole: $G_{M 1}, G_{E 2}, G_{C 2}$

Free of disconnected contributions

Transition Form Factors

Form factors of excited states, and transition form factors to excited states, provide additional insight into nature of QCD. Precise electro-production data

Program of computations looking at Δ form factor, and $\mathrm{N} \mathrm{\gamma} \rightarrow \Delta$ transition form factors $N . B . \Delta \rightarrow N \pi$ is p-wave decay, suppressed at zero momentum.
Admits three multipoles: magnetic dipole, electric quadrupole and Coulomb quadrupole: $G_{M 1}, G_{E 2}, G_{C 2}$

Alexandrou et al, DWF + DWF valence/Asqtad sea

Free of disconnected contributions

$\mathbf{N}-\mathbf{\Delta}$ Transition Form Factor

$$
R_{E M}=-\frac{G_{E 2}\left(Q^{2}\right)}{G_{M 1}\left(Q^{2}\right)}
$$

$$
R_{S M}=-\frac{|\vec{q}|}{2 m_{\Delta}} \frac{G_{C 2}\left(Q^{2}\right)}{G_{M 1}\left(Q^{2}\right)}
$$

Non-zero values: sphericity in either \mathbf{N} or Δ - zero quadrupole moment for spin-1/2 system

P11-N Form Factors

Matrix Elements for Scattering States

Slide: J. Dudek

General formalism: Bernard, Hoya, Meisner, Rusetsky, arXiv:1204.4642

Radiative Transitions in Mesons

Radiative Transitions in Mesons - II

Look at radiative decays in charmonium - wealth of experimental data. Lots of transitions below threshold!

$$
\Gamma\left(\chi_{c 0} \rightarrow J / \psi \gamma\right)=\frac{1}{8 \pi} \frac{|\vec{q}|}{m_{S}^{2}} 2\left(2 e_{c}\right)^{2}\left|E_{1}(0)\right|^{2}
$$

Quenched, anisotropic Wilson-fermion action

$$
a_{t} m_{q}<\mathcal{O}(1)
$$

Lattice spacing from static quark potential

Dudek, Edwards, DGR - 2006 Chen et al (TMQCD), 2011

Transitions from Excited States?

Many of these radiative widths have been measured...

Can Access time-like form factors!

$$
\Gamma\left(\eta_{c 1} \rightarrow J / \psi \gamma\right)=115(16) \mathrm{keV}
$$

Large for M1 transition - large production of exotics at JLab if true in light-quark sector

Time-Like Form Factors

Ji and Jung, PRL86, 208 (2001) and PRD64, 034506;
Dudek and Edwards, Phys.Rev.Lett. 97, 172001 (2006);
Cohen and Lin, arXiv:1302.0874; Meyer, arXiv:1303.0138
Photon Structure function and two-photon decays of neutral mesons - defined in Minkowski space:

$$
\begin{aligned}
& \left\langle\gamma\left(q_{1}, \lambda_{1}\right) \gamma\left(q_{2}, \lambda_{2}\right) \mid M(p)\right\rangle=-\lim _{\substack{q_{1}^{\prime} q_{1} \\
q_{2}^{\prime} \rightarrow q_{2}}} \epsilon_{\mu}^{*}\left(q_{1}, \lambda_{1}\right) \epsilon_{\nu}^{*}\left(q_{2}, \lambda_{2}\right) \\
\times & q_{1}^{\prime 2} q_{2}^{\prime 2} \int d^{4} x d^{4} y e^{i q_{1}^{\prime} \cdot y+i q_{2}^{\prime} \cdot x}\langle 0| T\left\{A^{\mu}(y) A^{\nu}(x)\right\}|M(p)\rangle,
\end{aligned}
$$

Analytically continue to Euclidean space providing photons not sufficiently off-shell to produce on-shell hadrons $\quad Q^{2}=|\vec{q}|^{2}-\omega^{2}>-m_{H}^{2}$

First example: two-photon with in charmonium - Dudek, Edwards

Time-Like Form Factors - II

Time-like pion form factor: H. Meyer, PRL 107, 072002 (2011)

Form factors at High $\mathbf{Q}^{\mathbf{2}}$

- For exclusive processes at sufficiently high Q^{2}, can describe processes in terms of quark distribution amplitudes, e.g. for $\mathrm{N}\left(^{*}\right)$

$$
|N, \uparrow\rangle=f_{N} \int \frac{[\mathrm{~d} x] \varphi\left(x_{i}\right)}{2 \sqrt{24 x_{1} x_{2} x_{3}}}\left\{\left|u^{\uparrow}\left(x_{1}\right) u^{\downarrow}\left(x_{2}\right) d^{\uparrow}\left(x_{3}\right)\right\rangle-\left|u^{\uparrow}\left(x_{1}\right) d^{\downarrow}\left(x_{2}\right) u^{\uparrow}\left(x_{3}\right)\right\rangle\right\} .
$$

- Can compute low moments of quark distribution amplitudes

$$
\varphi^{l m n}=\int[\mathrm{d} x] x_{1}^{l} x_{2}^{m} x_{3}^{n} \varphi\left(x_{1}, x_{2}, x_{3}\right) . \quad \text { QCDSF, arXiv:1112.0473 }
$$

Form factors at High $\mathbf{Q}^{\mathbf{2}}$

V.Braun, arXiv:1008.5228

Helicity amplitudes from DA

SUMMARY

- Remarkable progress at understanding the excited-state spectrum of QCD - resonance properties
- In principle, extension to EM properties of resonances straightforward, but need to do the work
- I haven't discussed chiral extrapolations - focus is on understanding decays at calculated masses
- Euclidean-space at finite volume is a blessing, not a curse

Hybrids - lattice + expt

$\pi 1$ (1600) in pion production at BNL

No clear evidence in photoproduction at CLAS

Hybrids - lattice + expt

Beyond "bump hunting"!

$\pi 1(1600)$ in pion production at BNL

No clear evidence in photoproduction at CLAS

Glueball Spectroscopy - I

Improved anisotropic pure-gauge action Morningstar, Peardon 97,99 $S[U]=\beta \xi\left\{\frac{5}{3 U_{s}^{4}} P_{s s^{\prime}}+\frac{4}{3 \xi^{2} u_{s}^{2} u_{t}^{2}} P_{s t}-\frac{1}{12 u_{s}^{6}} R_{s s^{\prime}}-\frac{1}{12 \xi^{2} u_{s}^{4} u_{t}^{2}} R_{s t}\right\}$

Operators: closed Wilson loops

ξ is bare anisotropy $\mathrm{a}_{\mathrm{s}} / \mathrm{a}_{\mathrm{t}}$
Obtain renormalized anisotropy by comparing different Wilson Loops

$$
\begin{gathered}
W_{x t}\left(I a_{s}, J a_{t}\right) \xrightarrow{J \rightarrow \infty} Z_{x t} e^{-J a_{t} V\left(I a_{s}, 0,0\right)}, \\
W_{x y}\left(I a_{s}, J a_{s}\right) \xrightarrow{J \rightarrow \infty} Z_{x y} e^{-J a_{s}\left[V\left(I a_{s}, 0,0\right)+V_{0}\right]}
\end{gathered}
$$

Ratio at large J gives ξ
Morningstar, 96

Challenges - II

- States at rest are characterized by their behavior under rotations - SO(3)
Lattice does not possess full symmetry of the continuum allowed energies characterised by cubic symmetry, or the octahedral point group O_{h}
- 24 elements
- 5 conjugacy classes/5 irreducible representations
- $\mathrm{O}_{\mathrm{h}} \times \mathrm{I}_{\mathrm{s}}$: rotations + inversions (parity)

Anisotropic Clover Generation - I

Tuning performed for three-flavor theory

Challenge: setting scale and strange-quark mass

$$
\begin{aligned}
& \text { Lattice coupling fixed } \\
& s_{X}=(9 / 4)\left[2 m_{K}^{2}-m_{\pi}^{2}\right] / m_{X}^{2}
\end{aligned}
$$

Express physics in (dimensionless) (I, s) coordinates

H-W Lin et al (Hadron Spectrum Collaboration), PRD79, 034502 (2009)

Anisotropic Clover Generation - I

Tuning performed for three-flavor theory

Challenge: setting scale and strange-quark mass
Lattice coupling fixed
Proportional to m_{s} to LO ChPT

$$
s_{\text {Omega }} \xrightarrow{(9 / 4)\left[2 m_{K}^{2}-m_{\pi}^{2}\right] / m_{X}^{2}}
$$

Express physics in (dimensionless) (I,s) coordinates

H-W Lin et al (Hadron Spectrum Collaboration), PRD79, 034502 (2009)

Anisotropic Clover Generation - I

Tuning performed for three-flavor theory

Challenge: setting scale and strange-quark mass
Lattice coupling fixed
Proportional to m_{s} to LO ChPT

$$
s_{\text {Omega }}=(9 / 4)\left[2 m_{K}^{2}-m_{\pi}^{2}\right] / m_{X}^{2}
$$

Express physics in (dimensionless) (I, s) coordinates

H-W Lin et al (Hadron Spectrum Collaboration), PRD79, 034502 (2009) Proportional to m_{l} to LO ChPT

Anisotropic Clover - II

$\mathrm{N}_{\mathrm{f}}=\mathbf{2 + 1}$ Hadron Spectrum: NN Leading Order Extrapolation

Low-lying spectrum: agrees with experiment to 10%

Correlation functions: Distillation

- Use the new "distillation" method.
- Observe

$$
L^{(J)} \equiv\left(1-\frac{\kappa}{n} \Delta\right)^{n}=\sum_{i=1} f\left(\lambda_{i}\right) v^{(i)} \otimes v^{*(i)}
$$

Eigenvectors of
\downarrow Laplacian

- Truncate sum at sufficient i to capture relevant physics modes - we use 64: set "weights" f to be unity
- Meson correlation function

$$
C_{M}\left(t, t^{\prime}\right)=\langle 0| \bar{d}\left(t^{\prime}\right) \Gamma^{B}\left(t^{\prime}\right) u\left(t^{\prime}\right) \bar{u}(t) \Gamma^{A}(t) d(t)|0\rangle
$$

- Decompose using "distillation" operator as
M. Peardon et al., PRD80,054506

$$
\begin{equation*}
C_{M}\left(t, t^{\prime}\right)=\operatorname{Tr}\left\langle\phi^{A}\left(t^{\prime}\right) \tau\left(t^{\prime}, t\right) \Phi^{B}(t) \tau^{\dagger}\left(t^{\prime}, t\right),\right\rangle \tag{2009}
\end{equation*}
$$

where

Perambulators

$$
\begin{aligned}
\Phi_{\alpha \beta}^{A, i j} & =v^{*(i)}(t)\left[\Gamma^{A}(t) \gamma_{5}\right]_{\alpha \beta} v^{(j)}\left(t^{\prime}\right) \\
\tau_{\alpha \beta}^{i j}\left(t, t^{\prime}\right) & =v^{*(i)}\left(t^{\prime}\right) M_{\alpha \beta}^{-1}\left(t^{\prime}, t\right) v^{(j)}(t) .
\end{aligned}
$$

Correlation functions: Distillation

- Use the new "distillation" method.
- Observe

$$
L^{(J)} \equiv\left(1-\frac{\kappa}{n} \Delta\right)^{n}=\sum_{i=1} f\left(\lambda_{i}\right) v^{(i)} \otimes v^{*(i)}
$$

Eigenvectors of
Laplacian

- Truncate sum at sufficient i to capture relevant physics modes - we use 64: set "weights" f to be unity
- Meson correlation function

$$
C_{M}\left(t, t^{\prime}\right)=\langle 0| \bar{d}\left(t^{\prime}\right) \Gamma_{\uparrow}^{B}\left(t^{\prime}\right) u\left(t^{\prime}\right) \bar{u}(t) \Gamma_{\uparrow}^{A}(t) d(t)|0\rangle
$$

- Decompose using "distillation" operator as
M. Peardon et al., PRD80,054506

$$
\begin{equation*}
C_{M}\left(t, t^{\prime}\right)=\operatorname{Tr}\left\langle\phi^{A}\left(t^{\prime}\right) \tau\left(t^{\prime}, t\right) \Phi^{B}(t) \tau^{\dagger}\left(t^{\prime}, t\right),\right\rangle \tag{2009}
\end{equation*}
$$

where

Perambulators

$$
\begin{aligned}
\Phi_{\alpha \beta}^{A, i j} & =v^{*(i)}(t)\left[\Gamma^{A}(t) \gamma_{5}\right]_{\alpha \beta} v^{(j)}\left(t^{\prime}\right) \\
\tau_{\alpha \beta}^{i j}\left(t, t^{\prime}\right) & =v^{*(i)}\left(t^{\prime}\right) M_{\alpha \beta}^{-1}\left(t^{\prime}, t\right) v^{(j)}(t) .
\end{aligned}
$$

