
G(τ, ~p, T ) =

∞Z
0

dω

2π
ρ(ω, ~p, T )K(τ,ω, T ) K(τ,ω, T ) =

cosh
¡
ω(τ − 1

2T

¢
sinh

¡
ω
2T

¢
Vector correlation functions at high temperature

Gμν(τ, ~x) = hJμ(τ, ~x)J†ν(0,~0)i

Jμ(τ, ~x) = 2κZV ψ̄(τ, ~x)Γμψ(τ, ~x)

Gμν(τ, ~p) =
X
~x

Gμν(τ, ~x)e
i~p~x

local, non-conserved current,
needs to be renormalized

only             used here

(0,0)                               (τ,x)
ΓH ΓH

q

q̄

~p = 0

Lattice observables:

How to extract spectral properties from correlation functions?
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The correlators in quenched formulation Eq. (2.81) and Euclidian time τ ∈ [0, 1/T ] (〈. . .〉
denotes the expectation value at finite T ) have the form

GH(xf , xi) = 〈JH(xf )J †
H(xi)〉

=
1
Z

∫
dUdψ̄dψ

(
ψ̄A(xf )ΓHψB(xf )

) (
ψ̄B(xi)Γ

†
HψA(xi)

)
e−S

=
1
Z

∫
dU Tr

(
M−1(xf , xi)ΓHM−1(xi, xf )Γ

†
H

)
− Tr

(
ΓHM−1(xf , xf )

)
Tr
(
Γ†HM

−1(xi, xi)
)

e−SG(U) (2.152)

= xi �
�
�
�

��
��
��

��
��
��

��

��

xf − xi ��
��
��

��
��
��

��
��
��

��
��
��

xf , (2.153)

where A and B are the different quark flavors, while Tr implies the trace over color and Dirac
indices. The second term describes disconnected diagrams in which each of the quark line
starts and ends at the same point. In case of the correlators with A 6= B the contributions
from the disconnected diagram vanishes. Taking advantage of Eq. (2.102) we then find our
two-point function

GH(xf , xi) =
〈

Tr
(
M−1(xf , xi)ΓHγ5(M−1)†(xf , xi)γ5Γ

†
H

)〉
U
. (2.154)

This corresponds to non-singlet (isovector) channels (I = 1), which we consider from now
on, see Tab. 2.7. Due to translation invariance, we can write GH(xf , xi)=GH(xf − xi, 0)=
GH(x, 0)=GH(x). Note that this Euclidean correlator is an analytic continuation of the real
time correlator D>

H(t)=〈JH(t)JH(0)〉, GH(τ, T )=D>
H(−iτ, T ). In spatial momentum space

this correlator is

GH(τ,p) =
∑
x

GH(τ,x)e−ip·x

=
∑
x

〈0|JH(x)J †
H(0)|0〉e−ip·x

=
∑
x

〈0|eτ̂ Ĥ−iq̂·x̂JH(0)e−τ̂ Ĥ+iq̂·x̂J †
H(0)|0〉e−ip·x

=
∑
x

∑
n

∫
d3q

(2π)32EnH(q)
〈0|eτ̂ Ĥ−iq̂·x̂JH(0)e−τ̂ Ĥ+iq̂·x̂|n,q〉〈n,q|J †

H(0)|0〉e−ip·x

=
∑
n

∫
d3q

(2π)32EnH(q)
〈0|JH(0)|n,q〉〈n,q|J †

H(0)|0〉e−En
H(q)τ

∑
x

e−iqxe−ip·x

=
∑
n

∫
d3q

(2π)3
AnH(q)An†H (q)

2EnH(q)
e−E

n
H(p)τ (2π)3δ(q− p)

=
∑
n

|AnH(p)|3

2EnH(p)
e−E

n
H(p)τ . (2.155)

Here AnH(p)=〈0|JH(0)|n,p〉 is the so called Bethe-Salpeter amplitude, which represents the
overlap of the operator JH(0) with the hadron state |n〉 and momentum p. Note that the
one-meson states having spatial momentum p are normalized as

〈n,p|n,p′〉 = (2π)32Enδ(p− p′). (2.156)



Free theory (massless case):

free non-interacting vector spectral function (infinite temperature):

δ-functions exactly cancel in  ρV (ω)=-ρ00(ω)+ρii(ω) 

With interactions (but without bound states):

while ρ00 is protected, the δ-funtion in ρii gets smeared:

Ansatz:

Ansatz with 3-4 parameters: 

Spectral functions at high temperature

ρ00(ω) = 2πχqωδ(ω)

ρii(ω) = 2χqcBW
ωΓ/2

ω2 + (Γ/2)2
+
3

2π
(1 + κ) ω2 tanh(ω/4T )

(χq), cBW ,Γ,κ

κ =
αs
π

at leading order

[“Thermal dilepton rate and electrical conductivity…”,  
H.T.-Ding, OK et al., PRD83 (2011) 034504]

ρfree00 (ω) = 2πT 2ωδ(ω)

ρfreeii (ω) = 2πT 2ωδ(ω) +
3

2π
ω2 tanh(ω/4T )



Electrical Conductivity               slope of spectral function at ω=0 (Kubo formula)

Using our Ansatz for ρii(ω):

Electrical Conductivity

σ

T
=

Cem
6

lim
ω→0

ρii(ω, ~p = 0, T )

ωT

Cem = e2
nfX
f=1

Q2
f =

5/9 e2 for nf = 2

6/9 e2 for nf = 3

σ

T
=
2

3

χq
T 2

T

Γ
cBW Cem



Continuum extrapolation
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Use our Ansatz for the spectral function

and fit to the continuum extrapolated correlators

Continuum extrapolation



ρ00(ω) = 2πχqωδ(ω)

ρii(ω) = 2χqcBW
ωΓ/2

ω2 + (Γ/2)2
+
3

2π
(1 + κ) ω2 tanh(ω/4T )

Spectral function and electrical conductivity

Use our Ansatz for the spectral function

and fit to the continuum extrapolated correlators

all three temperatures are well described by this rather simple Ansatz

[H.T.-Ding, OK et al., PRD83 (2011) 034504]
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Use our Ansatz for the spectral function

Spectral function and electrical conductivity

ρ00(ω) = 2πχqωδ(ω)

ρii(ω) = 2χqcBW
ωΓ/2

ω2 + (Γ/2)2
+
3

2π
(1 + κ) ω2 tanh(ω/4T )×Θ(ω0,∆ω)

Analysis of the
systematic errors

using truncation of the 
large ω contribution

Θ(ω0,∆ω) =
³
1 + e(ω

2
0−ω2)/ω∆ω

´−1

electrical conductivity

σ

T
=

Cem
6

lim
ω→0

ρii(ω, ~p = 0, T )

ωT

T/Tc

1.1 1.2 1.45



Electrical conductivity

T-dependence of the electrical conductivity:
σ

T
=

Cem
6

lim
ω→0

ρii(ω, ~p = 0, T )

ωT



Electrical conductivity

c

T-dependence of the electrical conductivity:
σ

T
=

Cem
6

lim
ω→0

ρii(ω, ~p = 0, T )

ωT



5

to a infrared divergent spectral function, ρHTL(ω) ∼ 1/ω, which also leads to a divergent vector

correlation function [13].

The limit ω → 0 is sensitive to transport properties in the thermal medium and the spectral

functions need to be linear in ω in order to give rise to a non-vanishing, finite transport coefficient;

in this limit the spatial components of the vector spectral function yield the electrical conductivity

σ

T
=

Cem

6
lim
ω→0

ρii(ω)

ωT
. (II.11)

In the free field, infinite temperature limit also the spatial part of the spectral function contains a

δ-function at the origin. Different from the time-time component, where the δ-function is protected

by current conservation, this δ-function is smeared out at finite temperature and the low energy

part of ρii is expected to be well described by a Breit-Wigner peak [3–5, 7, 8],

ρBW
ii (ω) = χqcBW

ωΓ

ω2 + (Γ/2)2
, (II.12)

which yields σ(T )/Cem = 2χqcBW /(3Γ). In the infinite temperature limit the width of the Breit-

Wigner peak vanishes; at the same time cBW → 1, χq → T 2 and consequently the electrical

conductivity is infinite in the non-interacting case.

In the high temperature regime the time-time component of the spectral function receives per-

turbative corrections, reflecting the perturbative corrections to the quark number susceptibility.

To leading order this gives

ρ00 = −2πT 2ωδ(ω)

(
1− 1

2π2
g2(T )

)
. (II.13)

C. Thermal dilepton and photon rates

The vector spectral function is directly related to the thermal production rate of dilepton pairs

with squared invariant mass ω2 − ~p2,

dNl+l−

dωd3p
= Cem

α2
em

6π3

ρV (ω, ~p, T )

(ω2 − ~p2)(eω/T − 1)
, (II.14)

where αem is the electromagnetic fine structure constant.

The vector spectral function at light-like 4-momentum yields the photon emission rate of a

thermal medium,

ω
dRγ

d3p
= Cem

αem

4π2

ρV (ω = |~p|, T )
eω/T − 1

. (II.15)

The emission rate of soft photons, thus can be related to the electrical conductivity,

lim
ω→0

ω
dRγ

d3p
=

3

2π2
σ(T )Tαem . (II.16)

III. MOMENTS OF THE VECTOR SPECTRAL FUNCTION

In addition to the vector correlation function itself we will calculate its curvature at the largest

Euclidean time separation accessible at non-zero temperature, i.e. at τT = 1/2. The curvature is
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FIG. 12. Thermal dilepton rate in 2-flavor QCD (left). Shown are results from fits without a cut-off on the
continuum contribution (ω0/T = 0) and with the largest cut-off tolerable in our fit ansatz (ω0/T = 1.5).
The HTL curve is for a thermal quark mass mT /T = 1 and the Born rate is obtained by using the
free spectral function. The right hand part of the figure shows the spectral functions that entered the
calculation of the dilepton rate.

In Fig. 12 we show the thermal dilepton rate calculated from Eq. II.14 for two massless (u, d)

flavors. We use the results obtained with our Breit-Wigner plus continuum fit ansatz, Eq. V.2,

as well as results obtained with a truncated continuum term. For the latter we use the case,

ω0/T = 1.5, ∆ω/T = 0.5, which gave a χ2/d.o.f of about 1. These results are compared to

a dilepton spectrum calculated within the hard thermal loop approximation [12] using a thermal

quark mass mT /T = 1. Obviously the results are in good agreement for all ω/T>∼2. For 1<∼ω/T<∼2
differences between the HTL spectral function and our numerical results is about a factor two,

which also is the intrinsic uncertainty in our spectral analysis. At energies ω/T<∼1 the HTL results

grow too rapidly, as is well known.

In the limit ω → 0 the results for ρii(ω)/ω, and thus also for the electrical conductivity, are

sensitive to the choice of fit ansatz. Within the class of ansätze used by us a small value of

ρii(ω)/ω seems to be favored. Our current analysis suggests,

2 <∼ lim
ω→0

ρii(ω)

ωT
<∼ 6 at T ≃ 1.45 Tc . (VI.1)

This translates into an estimate for the electrical conductivity

1/3 <∼
1

Cem

σ

T
<∼ 1 at T ≃ 1.45 Tc . (VI.2)

Using Eq. II.15 this yields for the zero energy limit of the thermal photon rated,

lim
ω→0

ω
dRγ

d3p
= (0.0004 − 0.0013)T 2

c ≃ (1− 3) · 10−5 GeV2 at T ≃ 1.45 Tc . (VI.3)

d Here we used Tc ≃ 165 MeV. This is a value relevant for QCD with 2 light quarks rather than the critical
temperature for a pure SU(3) gauge theory.



Dilepton rates

Hard thermal loop (HTL)
[E.Braaten, R.D.Pisarski, NP B337 (1990) 569]

dW

dωd3p
=
5α2

54π3
1

ω2(eω/T − 1) ρV(ω,T)

Dileptonrate directly related to vector spectral function:



ρ00(ω) = 2πχqωδ(ω)

ρii(ω) = 2χqcBW
ωΓ/2

ω2 + (Γ/2)2
+
3

2π
(1 + κ) ω2 tanh(ω/4T )

Spectral function and electrical conductivity



Electrical conductivity

T-dependence of the electrical conductivity:

Ding et al.:     Quenched on isotropic lattices + continuum limit
Aarts et al.:    2+1-flavor dynamical Wilson fermions on anisotropic lattices (Ns=24-32 Nt=16-48)

(cut-off effects and energy resolution determined by spatial lattice spacing)
Brandt et al.:  2-flavour dynamical  Wilson fermions on isotropic lattices (Ns=64 Nt=16)

σ

T
=

Cem
6

lim
ω→0

ρii(ω, ~p = 0, T )

ωT

G.Aarts et al., arXiv 1307.6763

G.Aarts et al., arXiv 1307.6763



cut-off effects and energy resolution determined by spatial lattice spacing

no continuum limit in NRQCD, asMÀ1 continuum limit straight forward, but expensive

only small energy region accessible transport properties accessible

Lattice cut-off effects – free spectral functions
[G.Aarts et al., JHEP11(2011)103]
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T-dependence of the electrical conductivity:

Ding et al.:     Quenched on isotropic lattices + continuum limit
Aarts et al.:    2+1-flavor dynamical Wilson fermions on anisotropic lattices (Ns=24-32 Nt=16-48)
Brandt et al.:  2-flavor dynamical  Wilson fermions on isotropic lattices (Ns=64 Nt=16)

Electrical conductivity

σ

T
=

Cem
6

lim
ω→0

ρii(ω, ~p = 0, T )

ωT

Brandt et al., 2012

G.Aarts et al., arXiv 1307.6763

zero-T contribution subtracted
+ using sum rules



Two-flavour lattice QCD correlation functions in the deconfinement transition region Anthony Francis

1. Introduction

The properties of strongly interacting matter under extreme conditions are the subject of in-
tensive experimental and theoretical investigation. A comprehensive picture of a state of matter
requires not only the knowledge of equilibrium properties such as the equation of state and static
susceptibilities, but also an understanding of its transport properties.

Here we report on recent progress in determining the Euclidean isovector vector correlation
function using dynamical light quarks in the high temperature phase of QCD. This enables the first
analysis of its underlying spectral function with unquenched quarks. We are able to determine the
gross features of the thermal spectral function by analyzing directly the difference of the thermal
and vacuum correlators. This difference can be further constrained using a recently derived sum
rule [1]. In addition we employ an approach followed recently in a quenched study to determine
the spectral function directly from the thermal correlator based on an appropriate Ansatz [2 – 4].

Note, this proceedings article represents a shortened version of [5] and we refer the reader to
this publication for a more in depth discussion.

2. Basic definitions and expectations

Our primary observables are the Euclidean vector current correlators and their spectral repre-
sentation:

Gµν(τ,T ) =
∫

d3x 〈Jµ(τ,~x) Jν(0)†〉 =
∫

∞

0

dω

2π
ρµν(ω,T )

cosh[ω(β/2− τ)]

sinh(ωβ/2)
(2.1)

with Jµ(x)≡ 1√
2

(
ū(x)γµu(x)− d̄(x)γµd(x)

)
the isospin current. For a given function ρ(ω,T ), the

reconstructed correlator is defined as

Grec(τ,T ;T ′)≡
∫

∞

0

dω

2π
ρ(ω,T ′)

cosh[ω(β

2 − τ)]

sinh(ωβ/2)
. (2.2)

It can be interpreted as the Euclidean correlator that would be realized at temperature T if the
spectral function was unchanged between temperature T and T ′. For T ′ = 0 it can be directly
obtained from the zero-temperature Euclidean correlator via [6]

Grec(τ,T )≡ Grec(τ,T ;0) = ∑
m∈Z

G(|τ +mβ |,T = 0). (2.3)

In the thermodynamic limit, the subtracted vector spectral function obeys a sum rule (see [1] sec.
3.2), ∫

∞

−∞

dω

ω
∆ρ(ω,T ) = 0, ∆ρ(ω,T )≡ ρii(ω,T )−ρii(ω,0). (2.4)

The electrical conductivity of QCD, connected to the isospin diffusion constant D, is given by
a Kubo formula in terms of the low-frequency behavior of the spectral function, (where Cem =

∑ f=u,d Q2
f = 5/9)

σ =CemDχs =
Cem

6
lim
ω→0

ρii(ω,T )
ω

. (2.5)

2



T-dependence of the electrical conductivity:

Ding et al.:     Quenched on isotropic lattices + continuum limit
Aarts et al.:    2+1-flavor dynamical Wilson fermions on anisotropic lattices (Ns=24-32 Nt=16-48)
Brandt et al.:  2-flavor dynamical  Wilson fermions on isotropic lattices (Ns=64 Nt=16)

Electrical conductivity

σ

T
=

Cem
6

lim
ω→0

ρii(ω, ~p = 0, T )

ωT

Brandt et al., 2012

G.Aarts et al., arXiv 1307.6763



Non-zero momentum
[M.Müller et al., preliminary 2013]

indications for non-trivial behavior of spectral functions at small frequencies: 

[Hong+Teaney, PRC82 (2010)044908]
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Non-zero momentum
[M.Müller et al., preliminary 2013]

indications for non-trivial behavior of spectral functions at small frequencies: 

[Hong+Teaney, PRC82 (2010)044908]
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Pseudo-scalar channel

in contrast to the vector channel

no transport peak expected in the pseudo-scalar channel

still strong correlations visible in the pseudo-scalar channel

spectral function still needs to be determined!  



Chapter 7 Notes on the Pseudo Scalar and Other Spectral Functions
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Figure 7.5: Results of a MEM analysis on the pseudo scalar correlator. Left: The low
frequency region of ρ(ω)/ωT is shown. Right: The full spectral function is
given in units 1/ω2. Note the index in ρMEM

PS,index shows which default model

was used as input.

spectral function and a Breit-Wigner type contribution. Here we choose the free lattice
spectral functions in order to minimize any effects originating from the large frequency
region of the spectral function.
In Fig. 7.5 we show the default models and their respective results, whereby the input
parameters of the Breit-Wigner were also varied in order to test default models with
peaks ranging from very broad to very narrow∗. On the left of the figure we show the
spectral functions scaled by frequency and temperature in the low frequency regime,
while on the right the spectral functions by frequency squared is given.

With both types of default model the intermediate and high frequency region exhibit
essentially the same form, especially in the frequency region ω/T ≃ (5 − 20) the result
spectral functions possess a similar peak structure, regardless of the default model.
Indeed this peak structure is seen to dominate the low to intermediate shape of the
spectral function.
Note however that this peak structure from the Breit-Wigner default models seems to
be slightly shifted. This shift can be accounted for by noticing that throughout all Breit-
Wigner default models the transport contribution is highly suppressed, if not entirely
deleted from the result. The remnant peak in some default models cannot be further
canceled by MEM due to the accuracy of the data and subsequently it compensates for
the existence of the peak in the higher frequency regions. Even so MEM suppresses
the Breit Wigner contribution of the default models by more than 75% throughout all
Breit-Wigner default models tested. Within the resolution of MEM this is a clear and
significant sign that a peak contribution at low frequencies is absent.

∗Only a representative selection is shown in Fig. 7.5
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