Heavy Ion Collisions

In Medium Dileptons

- Intro (VK)
- From pp to pA to AA (Tetyana)
- Various details of the in medium rho/omega spectral function calculation (Ralf)
- Transport (Theory vs reality) Stefan
- Ingredients to the Gumbo (how dileptons are calculated in a transport code) Janus
- Effects of time evolution (Hendrik)
- Photons and v₂ (Hendrik)
- What do we need to declare success (VK, all)

Thermodynamics and Resonances

Resonances are nothing but interactions among the long lived particles (pions, nucleons):

Virial Expansion a la Beth Uhlenbeck (see e.g. Landau, Stat.Mech, or Prakash et al. PLB 245 (1990))

$$\Delta P = \frac{\int d^3 q}{(2\pi)^3} \int d\epsilon \exp(-\beta \sqrt{q^2 + \epsilon^2}) \sum_i \frac{1}{\pi} g_i \frac{\partial \delta_i(\epsilon)}{\partial \epsilon}$$

Limit of narrow width
Phase shift resonance $\delta(E) = \frac{\pi}{2} + \arctan\left(\frac{E - M_R}{\Gamma/2}\right) \rightarrow \pi \delta(M_R - E)$

$$\Delta P \rightarrow \sum_{i} g_{i} \int \frac{d^{3} q}{(2\pi)^{3}} \exp(-\beta \sqrt{q^{2} + M_{R}}) \qquad \text{Appears just as a gas of resonances}$$

Necessary ingredients: Narrow witdh, "proper" resonances

Thermodynamics and Resonances

Resonances and the EOS

Wuppertal/Budpest LQCD

EOS reasonably well described by HRG up to $T \sim T_c$ For T>T_c QCD predicts **LESS** degrees of freedom than HRG

Dilepton The versatile photon

The Dilepton production landscape

Dileptons (dis) advantages

- Good:
 - Penetrating probe
 - Dynamic range (M, p_t)
- Bad:
 - Penetrating probe: Measure only time integrals
 - Rare

Production channels

- Quark annihilation (the holy grail?)
- Pion annihilation (the dull background?)
- Resonance decays
 - N(1520), a1, ω, etc. (Note: many are 3 body decay)
- Multi-particle channels
- Exotica
 - DCC, collective Bremsstrahlung
- Drell-Yan
- "c-c_{bar} decays"

Elementary Production channels

Low mass dileptons

Chiral symmetry restoration:

QCD vacuum: Chiral symmetry spontaneously broken!

/home/vkoch/Documents/conferences/EMMI_TASK_OCT_2013/in medium discuss.odp

Dileptons and chiral symmetry

Dileptons measure both isovector-vector and isoscalar vector current Good!! Not so good

Dileptons do NOT measure the isovector AXIAL current

/home/vkoch/Documents/conferences/EMMI_TASK_OCT_2013/in medium discuss.odp

Calculating Dilepton Production

- Elementary production channels
- Many body (medium) effects
- Collision / Expansion dynamics

e

/home/vkoch/Documents/conferences/EMMI_TASK_OCT_2013/in medium discuss.odp

Many body / medium effects

General approache:

 Calculate dilepton production from current-current correlator (e.g. Gale&Kapusta)

Manybody physics

In medium correlator

Dressing of the rho

- microscopic calculation of self energy (C. Song et al, Chanfray et al, Leupold et al,...
 - dominant channel: coupling to N(1520) (Mosel et al)
 - support from photo absorption data
- impulse/low density approximation for rho optical potential (Kapusta et al.)

$$\Pi_{ab}(\mathbf{E},\mathbf{p}) = -4\pi \int \frac{d^3 k}{(2\pi)^3} n_{b}(\omega) \frac{\sqrt{s}}{\omega} f_{ab}^{(\mathrm{cm})}(\mathbf{s})$$

Non-relativistically:: $\Pi_{ab} = -4\pi f_{ab}^{(b \text{ rest frame})} \rho_b$

Expansion dynamics

- Fireball, constrained by entropy
 - V(t), T(t), $\mu(t)$
 - constant T, μ , $\mu_{\pi} \mu_{K,eta,...}$ over Volume
 - NO longitudinal flow field
- Hydro (valid at SPS energies ?)
- Transport

NA 60 favors broadening

Melting/Broadening of Resonances

- Deconfinement
- Change of hadronic part of the wave function
 - Example $\Lambda(1405)$, rho?
- Mixing with other hadrons
 - Example rho

Broadening of Resonances

"Chiral restoration" in real life

Low mass dileptons

- Well explained by broadening of rho
 - Baryons are essential
- Dropping masses dis-favored

• What about chiral symmetry?

Closing the deal

- Are we done ? SPS RHIC (PHENIX?) described by in medium spectral function
- HADES? Looks as if resonances play important role (see Tetayana's talk)
- What do we need to declare success?
 - Expansion dynamics controlled
 - Channels controlled
 - Are we treating the resonances correctly?
 - Re-tune spectral function approach to incorporate p-p, p-A, pi-N

Resonance $\rightarrow N_{o}$ Branching Ratios

	GiBUU12	UrQMD09	KSU12	KSU92	BnGa12	CLAS12	PDG12	
N(1520)3/2-	21	15	20.9(7)	21(4)	10(3)	12.7(4.3)	20(5)	D13
N(1720)3/2+	87	73	1.4(5)	87(5)	10(13)	47.5(21.5	77.5(7.5)	P13
∆(1620)1/2⁻	29	5	26(2)	25(6)	12(9)	37(12)	16(9)	S31
∆(1905)5/2⁺	87	80	<6	86(3)	42(8)		>60	F35

Partial courtesy of Piotr Salabura, Sept 2013

CLAS12: V. Mokeev et al, Phys Rev C 86, 035203 (2012); V. Mokeev, PC
BnGa12: A.V, Anisovich et al, Eur Phys J A 48, 15 (2012)
GiBUU12: J. Weil et al, Eur Phys J A 48, 111 (2012); J. Weil, PC
KSU92: D.M. Manley and E.M. Saleski, Phys Rev D 45, 055203 (1992)
KSU12: M. Shrestha and D.M. Manley, Phys Rev D 86, 055203 (2012)
PDG12: J. Beringer et al [RPP] Phys Rev D 86, 010001 (2012)
UrQMD09: K. Schmidt et al, Phys Rev C 79, 4002 (2009)

Results for ppe+e- channel

"QED" : point like $R \rightarrow N\gamma^*$ vertex

- Significant contribution from higher (than Δ) mass resonances
- Addtional strength below VM pole needed off shell ρ meson coupling ! extended interaction vertex
- low mass resonances : Δ(1232), N(1440), N(1520) ?

e+e- sources in pp @ 3.5 GeV

Many uncertainties: inclusive cross sections π, Δ, η, ω/ρ (fixed now by HADES)
 Δ--pe+e- transition (Dalitz decay); rates, em. Transition Form-Factors
 ρ - spectral function !

 $p+p \rightarrow p \Delta^+ \rightarrow p$ pe+e- Dalitz decay

Intermediate mass

Intermediate mass

- Contributions from both q-qbar and multi-pion (a1 etc) channels
 - Can we disentangle this?

Intermediate Mass M>1GeV

van Hess, Rapp "multi pion"

VS

Renk, Rupert QGP

NA60 p_t slopes

Renk, Ruppert et al

van Hees and Rapp

So what is it?

q-q_bar annihilation ?

Multi-pion hadronic reactions?

Meet Bob (aka Duality)

Rate(QGP) = Rate(Hadrons) = **Bob**

Renk, Rupert et al: Bob Q-qbar

Van Hees and Rapp: Bob Multipion

Duality

Extract from e⁺e⁻ or tau-decay data (Z. Huang PLB 95)

Production Rate

Duality

Dilepton and the QCD CP

- Massless "modes" at CP since it is a second order phase transition
- Mode is mixture of "sigma" amd "omega"
- However these may likely be space-like modes

 $- M^2 \rightarrow O^-$

Nambu model (Fuji et al, hep-ph/0401028,0403039)

Sigma remains massive at CP; CP driven by spacelike p-h exitations

Fig. 2. (a) Spectral function in the scalar channel (solid) with $|\mathbf{q}|/\Lambda = 0.1$ at a CEP with $m/\Lambda = 0.01$. The free gas spectrum (dashed) is also shown for reference. (b) Typical processes contributing to the spectrum.

CP is and the chiral transition

Dileptons and Critical Point

- Not accessible since fluctuations are space-like
- Same for charge fluctuations!
- May provide model constraints

•

The Dilepton production landscape

