Baryon TFFs

Whys and Hows of Baryon Transition Form Factors

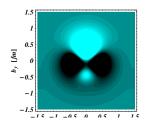
Stefan Leupold

Department of Physics and Astronomy, Uppsala University

EMMI RRTF meeting, GSI, October 2013

Baryon TFFs

The Rapid Reaction Task Force


Transition form factors (TFFs) — why?

• amplitude for reaction $A \rightarrow B \ e^+e^-$ (or $A \ e^- \rightarrow B \ e^-$) can be decomposed:

$$\mathcal{M} = \textit{F}_{AB} \cdot \mathcal{M}_{A,B ext{ pointlike}}$$

with form factor F_{AB}

- \hookrightarrow F_{AB} tells about intrinsic structure
 - in general: electromagnetic probes are a good tool to look inside of strongly interacting "matter" (single hadron, hadronic matter, quark-gluon plasma, ...)

*p-N**(1520) (polarized) Tiator et al., Eur. Phys. J. ST 198 (2011) 141

TFFs — kinematically accessible regions

- q^2 : invariant mass of virtual photon
- s: (square of) reaction energy in cms
- R: baryon resonance with mass M_R

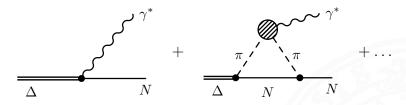
•
$$e^-N \rightarrow e^-R$$

$$-rac{1}{s}\left(s^2+M_N^2\,M_R^2-s\,M_N^2-s\,M_N^2
ight) < q^2 < 0$$

- $R \leftrightarrow N\gamma$: $q^2 = 0$
- $R \to N e^+ e^-$: $0 < q^2 < (M_R M_N)^2$
- $e^+e^- \rightarrow R\bar{N} \ (\bar{R}N)$: $s = q^2 > (M_R + M_N)^2$
- i.e. dilepton production kinematically close to space-like region!
 → similar physics(?)

TFFs — how? \rightsquigarrow general remarks:

- 2 → 2 reactions and three-body decays have two free kinematic variables (e.g. Mandelstam's s, t)
- \hookrightarrow Dalitz plots, partial-wave analysis ($t \rightarrow l$), ...
- \hookrightarrow scattering/decay amplitudes are analytic functions (in *s*) except for cuts $\hat{=}$ inelasticities
- \hookrightarrow <u>iff</u> all inelasticities are known one can reconstruct amplitude dispersively up to subtraction constant(s)

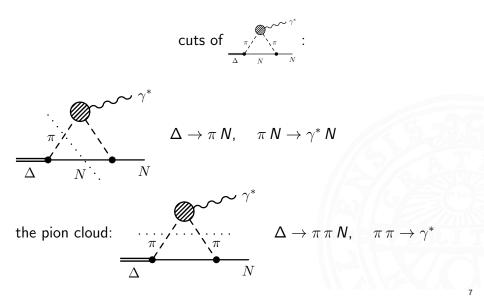

$$\mathcal{M}_{l}(s) = \mathcal{M}_{l}(0) + rac{s}{\pi} \int\limits_{-\infty}^{\infty} ds' \, rac{\mathrm{Im}\mathcal{M}_{l}(s')}{s'(s'-s-i\epsilon)}$$

- \hookrightarrow obtain inelasticities from hadron theory or data
- \hookrightarrow subtraction constant(s) from matching to perturbative QCD or lattice or Dyson-Schwinger or quark model ...

Example: TFF of a Δ resonance

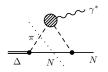
• consider $\Delta
ightarrow N \; e^+ e^-$ (or $N \; e^-
ightarrow \Delta \; e^-$)

 \hookrightarrow presumably πN loop is important

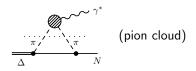


 \hookrightarrow study cuts (\doteq inelasticities) of loop diagram(s) \rightsquigarrow next slide

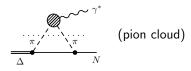
- note: first diagram is essentially pure number, related to subtraction constants and to real photon
- \hookrightarrow everything settled for real photon, i.e. $\Delta \to N \gamma$?


Baryon TFFs

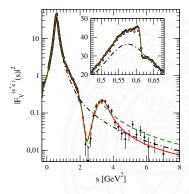
Example: TFF of a Δ resonance


Baryon TFFs

Where to get the information from?


- $\Delta \rightarrow \pi N$: clear, just a number
- \hookrightarrow from data or microscopic approaches (quark models, Dyson-Schwinger, lattice-QCD, ...)
 - $\pi N \leftrightarrow \gamma^* N$:
- \hookrightarrow time-like: HADES pion beam
- \hookrightarrow space-like $\hat{=}$ electroproduction of pions (MAMI, JLAB)

Where to get the information from?



- $\Delta \rightarrow \pi \pi N$:
- \hookrightarrow e.g. from data on $\pi N \to \Delta \to \pi \pi N$
- ↔ HADES pion beam can improve data basis
 - $\pi \pi \to \gamma^*$:
- $\begin{array}{l} \hookrightarrow \mbox{ pion form factor,} \\ \mbox{ very well known} \end{array}$

Where to get the information from?

- $\Delta \rightarrow \pi \pi N$:
- \hookrightarrow e.g. from data on $\pi N \to \Delta \to \pi \pi N$
- ↔ HADES pion beam can improve data basis
 - $\pi \pi \rightarrow \gamma^*$:
- \hookrightarrow pion form factor, very well known

Hanhart, Phys.Lett. B715 (2012) 170

Some open questions

- what can we learn about time-like region, $\pi N \rightarrow N e^+ e^-$, from space-like data, $e^- N \rightarrow e^- \pi N$ (MAMI, JLAB)?
- challenging: partial-wave analysis of $\pi \ N \to \Delta \to \pi \pi \ N$
- \hookrightarrow model dependence/independence?
 - everything settled for real photon, i.e. $\Delta \rightarrow N \gamma$?
- → contradicting basic formulae in literature? (see Krivoruchenko/Fässler, Phys.Rev. D65 (2002) 017502)
 - if hadronic and microscopic models are fused: double counting?
- $\hookrightarrow \rho$ -meson appears in pion form factor
- \hookrightarrow part of pion cloud

Some open questions, cont.

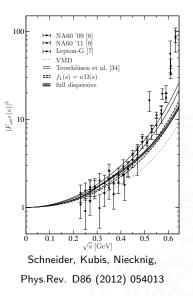
specific models:

- prediction for π N → N e⁺e⁻ from Rapp/Wambach model? (should be possible, γ N → X already done)
- anaive translation of a model for space-like region (lacello) to time-like region seems to create ρ bump at wrong position
 → on the other hand: accessible invariant masses of dilepton:

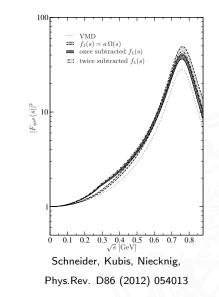
$$m_{e^+e^-} \le m_\Delta - m_N \approx (1232 - 940) \,\mathrm{MeV} \ll m_\rho$$

 \hookrightarrow Is it meaningful to talk about an offshell Δ and its transition form factor?

Some open questions, cont.

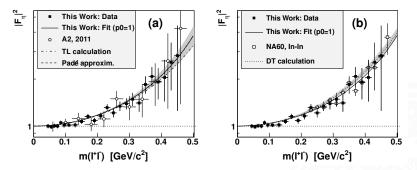

connection to in-medium physics:

- which baryon resonances are important for dilepton production in vector-meson region? Δ(1232)? N*(1520)? ...
- how to pin down their properties?


Baryon TFFs

Meson TFFs and VMD

How good is vector meson dominance (VMD)? $\omega \rightarrow \pi \ e^+ e^-$


How good is VMD?

 $\phi \rightarrow \pi \ e^+ e^$ dispersive calculation $\rightarrow \phi$ data from KLOE(?)

Baryon TFFs

 $\eta \to \gamma \, {\rm e}^+ {\rm e}^-$

A2 collaboration, arXiv:1309.5648 [hep-ex]

DT: Hanhart, Kupsc, Meissner, Stollenwerk, Wirzba, arXiv:1307.5654 [hep-ph], TL: essentially VMD