EMMI RRTF - TOP3 short summary

Vitaly Shklyar

Vitaly Shklyar EMMI RRTF - TOP3 short summary

In-medium physics

- heavy ion physics: in-medium physics, vector mesons (dilepton spectra)
- consistent treatment of ρ , N^{*}, Δ^* is important: $\Gamma_{\Delta \to \pi N} \neq \text{const}$
- model uncertanties (N^{*} couplings, $\Gamma_{N^* \to \rho N} = ?$)

Baryon spectroscopy

- reaction theory: understand elementary reactions in terms of meson and baryon degrees of freedom
- baryon spectroscopy: properties of baryon resonances
- bridge between LQCD, DSE, Quark model and experiment

Main questions

Properties and decay strength of N^{*} and Δ^{*}:

•
$$N^*, \Delta^* \to \rho N$$
,

• $N^*, \Delta^* o \Delta(1232)\pi$,

•
$$N^* \to \omega N$$

Resonance $\rightarrow \mathcal{N}\rho$ Branching Ratios

	GiBUU12	UrQMD09	KSU12	KSU92	BnGa12	CLAS12	PDG12	
N(1520)3/2-	21	15	20.9(7)	21(4)	10(3)	12.7(4.3)	20(5)	D13
N(1720)3/2+	87	73	1.4(5)	87(5)	10(13)	47.5(21.5	77.5(7.5)	P13
∆(1620)1/2⁻	29	5	26(2)	25(6)	12(9)	37(12)	16(9)	S31
∆(1905)5/2 ⁺	87	80	<6	86(3)	42(8)		>60	F35

Partial courtesy of Piotr Salabura, Sept 2013

Vitaly Shklyar

CLAS12: V. Mokeev *et al*, Phys Rev C **66**, 035203 (2012); V. Mokeev, PC Bn6312: A.V., Anisovich *et al*, Eur Phys J A **8**, 15 (2012) GIBUU12: J. Weil *et al*, Eur Phys J A **8**, 111 (2012); J. Weil, PC KSU32: D.M. Manley and E.M. Saleki, Phys Rev D **8**, 055203 (1992) KSU12: M. Shrestha and D.M. Manley, Phys. Rev D **8**, 055203 (2012) PDG12: J. Beringer *et al* (IRP) Phys Rev D **8**, 010001 (2012) UrQMD098: K.Schmidt *et al*, Phys Rev C 7**9**, 4002 (2009)

RRTF Workshop, Darmstadt, Germany, Oct 2013

EMMI RRTF - TOP3 short summary

Pion-induced reactions:

$$\pi^+ p \to \pi^0 \pi^+ p, \ \pi^+ p \to \pi^+ \pi^+ n$$

 $\pi^- p \to \pi^+ \pi^- n, \ \pi^- p \to \pi^+ \pi^- n$
 $\pi^- p \to \pi^0 \pi^0 n \ (...1.5 \text{ GeV Crytal}$
Ball)

- Isospin decomposition : 4 independent isospin amplitudes (in isobar approximation)
- optical theorem $ImT_{\pi N \to \pi N}^{JP} = \frac{k^2}{4\pi} (\sigma_{\pi N \to \pi N}^{JP} + \sigma_{\pi N \to 2\pi N}^{JP} + ...)$

Photon-induced reactions:

$$\gamma p
ightarrow \pi^+ \pi^- n$$
, $\gamma p
ightarrow \pi^0 \pi^- p$,
 $\gamma p
ightarrow \pi^0 \pi^0 p$

- No isospin decomposition is possible (separation between *I* = ¹/₂ and ³/₂ states is more difficult)
- difficulties with the gauge invariance
- need input from hadronic reactions

Previous $\pi N \rightarrow \pi \pi N$ Measurements

Manley, Arndt, Goradia, Teplitz PRD30,(1984) 904.

• isobar appoximation $\pi N \rightarrow 2\pi N$ via σN , ρN , $\pi \Delta \rightarrow 2\pi$

$$T^{JP}_{\pi N \to 2\pi N} = T^{JP}_{\pi N \to \Delta \pi}(\sqrt{s}) S_{\Delta}(p_{\Delta}, m_{\Delta}) \Gamma_{\Delta \pi N}(q'_{\pi_2}, N')$$

- no three-body unitarity
- no dependence on isobar mass (momentum)
- poor database based on 240000 events from old bubble-chamber experiments W = 1.2...2 GeV: ≈ 9000 events per energy/angular (θ, φ) bin for π⁻p → π⁺π⁻n, π⁻p → π⁰π⁻p, π⁺p → π⁰π⁺p, π⁺p → π⁰π⁺p, α⁺p → π⁺π⁺n ≈ 2000...3000 events per energy bin for each reaction θ = 0...π and φ = 0...2π

π -p \rightarrow N π π statistics for energy scan

p=0.7 - 2 GeV/c W=1.48 - 2.15 GeV Energy scan in steps of 25 MeV (26 points) 80 evts/bin (8000 bins cos(θππ), Mπ+N, Mπ-N)

	π-p→ pπ- π0	π-p→ nπ+ π-
Time for 26 points in W	21 shifts (~ 7 days)

In total

- \sim 21 106 π+π-(114 000 existing)
- \sim 15 106 π 0 π (72 000 existing)

Other interesting and accessible channels ✓ on and other strange channels

- (Laura)
- ✓ multiparticle production

e.g. $\Delta 0\eta \rightarrow p\pi$ - η (missing resonances study)

 \checkmark and with an EMC: $\pi 0 \pi 0 n$, ηn , ωn ,

...

TOP3 short summary: What HADES can do

What HADES can do

 ρN dynamics: N(1520) $\frac{3}{2}^{-}$, N(1720) $\frac{3}{2}^{+}$, D(1620) $\frac{1}{2}^{-}$, D(1905) $\frac{5}{2}^{++}$

- $\pi^- p \rightarrow \pi^+ \pi^- n$
- $\pi^- p \rightarrow \pi^+ \pi^0 p$
- $\pi^- p \rightarrow \pi^- \eta p$

direct access to time-like E.M. formfactors

•
$$\pi^- p \rightarrow e^+ e^- n$$

PDG: indications for new N^* states from $\gamma p \rightarrow K^+ \Lambda$

• $\pi^- p \to K^0 \Lambda^0$: great impact on hadron spectroscopy

VITALY Shklyar EMMI RRTF - TOP3 short summary

ωN -meson in-medium properties

Building block: ωN scattering amplitude

$\omega \textit{N}$ scattering length

- $\bar{a} = -0.026 + i0.28$ fm, Giessen (coupled-channel) NPA780 187
- $\bar{a} = -0.44 + i0.20$ fm, Lutz, et al(coupled-channel, low partial waves) NPA706:431
- $\bar{a} = +1.60 + i0.30$ fm, Kling, Weise (single channel) NPA630:299

Common feature of above analysis:

- constrained by the $\pi N \rightarrow \omega N$ experimental data
- agrees on the value of the imaginary part of the scattering lengths

low density theorem: i0.28 corresponds to \approx 60 MeV broading but too small to explain the strong absorption of ω in medium

- theory: take in-medium corrections into account
- experiment: is everything clear with old $\pi N \rightarrow \omega N$ data?

Giessen model. Results for the $(\pi, \gamma)N \rightarrow \omega N$ reactions

 ωN : coupled channel analysis Shklyar et al PRC 71:055206: Aim: extract resonance coupling to ωN

$\pi N \rightarrow \omega N$ database

- W=1.72 to 1.76 GeV: H. Karami, et al NPB154 503 (1979) : 80 datapoints threshold region
- W=1.8 to 2.1 GeV: J.S. Danburg, PR2, 2564(1970) from $\pi^+D \rightarrow \pi^+\pi^-\pi^0 p(p)$: 41 datapoints Fermi-motion, final state interaction!

Shklyar et al, PRC 71:055206,2005

Difficulties:

- ωN has three helicities: need
 ω-polarization measurements
- Karami data close to threshold
- region 1.76...2.0 GeV is almost empty - standard PWA not possible
- no polarization measurements
- Problem: N* extraction ...

 $\gamma \boldsymbol{\rho} \rightarrow \boldsymbol{\rho} \omega$

BnGa Analysis

- Pomeron exchange is large overall.
- At threshold, $\frac{3}{2}^{-}$ wave is equivalent to Pomeron exchange.
- $\frac{3}{2}^+$ and $\frac{5}{2}^-$ waves are significant.

Earlier Analyses Threshold Contributions

V. Shklyar *et al.*,Phys. Rev. C **71** (2005) 055206. $N(1675)\frac{5}{2}^-$, $N(1680)\frac{5}{2}^+$ M. Williams *et al.* Phys. Rev. C **80** (2009) 065209. $N(1700)\frac{3}{2}^-$, $N(1685)\frac{5}{2}^+$

Labeled with incoming photon energy.

Vitaly Shklyar

Giessen model. Results for $(\pi, \gamma) N \rightarrow \omega N$

Giessen model, Shklyar et al, PRC 71:055206,2005

- *P*₁₃: interference between resonance and background
- strong $N^*(\frac{5}{2})$ coupling to ωN
- D₁₃ shows minor influence

- strong Born and π^0 -exchange contributions
- D_{13} is due to π^0 -exchange
- ⇒ hard to see any resonance contribution !

Vitaly Shklyar

$(\pi/\gamma)N \to \omega N$

Summary of $(\pi/\gamma)N \rightarrow \omega N$ reactions

- γp → ωp: strong t-channel background → other reaction mechanisms are shadowed: hard to see any resonance contributions
- πN → ωN: almost NO data in the region region 1.76...2.0 GeV - standard PWA not possible
- contributions from many groups: Lutz, Wolf, Friman, Titov, Sibirtsev, Zhao, Shklyar, Mosel, Penner - no general conclusion on N* contributions

NEED $\pi^- p \rightarrow \omega p$ measurements in order to

- get information on N^* couplings to ωN fill white pages in PDG
- construct microscopical model of ω-dynamics in nuclear medium; explain large collisional broading

Vitaly Shklyar