Covariant Spectator Theory and an integrated description of the baryon electromagnetic vertices

Gilberto Ramalho (now UFRN, Brasil) Alfred Stadler Elmar Biernat Sofia Leitão Franz Gross

EMMI RRTF 2013

Fock space is truncated

3 constituent quarks with effective size, mass and e.m. form factors, dressed.

E.M. matrix element

E.M. matrix element

•E.M. matrix element in terms of **effective** baryon vertices for a quark-diquark structure -- off-mass-shell quark and + on-mass-shell quark pair (diquark)-- with an average mass.

•Baryon wavefunction reduced to an effective quark-diquark structure.

Baryon "wavefunction"

 $SU(6) \times O(3)$: impose that the combination of diquark and quark symmetries to be anti-symmetric in the exchange of any pair of quarks

$\Psi_{\scriptscriptstyle B} = color \otimes flavor \otimes spin \otimes orbital \otimes radial$

It is written in a covariant form in terms of baryon properties.
Extension to high angular momentum states possible

Nucleon wavefunction

P

 Ψ_B

•A quark + scalar-diquark component

•A quark+ axial vector-diquark component

$$\Psi_{N\lambda_{n}}^{S}(P,k) = \frac{1}{\sqrt{2}} \left[\phi_{I}^{0} u_{N}(P,\lambda_{n}) - \phi_{I}^{1} \varepsilon_{\lambda P}^{\alpha*} U_{\alpha}(P,\lambda_{n}) \right] \times \psi_{N}^{S}(P,k).$$
Phenomenological function
$$U_{\alpha}(P,\lambda_{n}) = \frac{1}{\sqrt{3}} \gamma_{5} \left(\gamma_{\alpha} - \frac{P_{\alpha}}{m_{H}} \right) u_{N}(P,\lambda_{n}),$$

Delta wavefunction

Only quark + axial vector-diquark term contributes

$$\Psi^{S}_{\Delta}(P,k) = -\psi^{S}_{\Delta}(P,k) \tilde{\phi}^{1}_{I} \varepsilon^{\beta*}_{\lambda P} w_{\beta}(P,\lambda_{\Delta})$$

E.M. Current

quark-antiquark ⊕ gluon dressing

Constituent quarks (quark form factors)

$$j_{I}^{\mu} = \left[\frac{1}{6}f_{1+} + \frac{1}{2}f_{1-}\tau_{3}\right]\gamma^{\mu} + \left[\frac{1}{6}f_{2+} + \frac{1}{2}f_{2-}\tau_{3}\right]\frac{i\sigma^{\mu\nu}q_{\nu}}{2M_{N}}$$

Vector meson dominance 2 poles

$$f(Q^{2}) = e + gB(Q^{2})e + gB(Q^{2})gB(Q^{2})e + \dots = e + \frac{gB(Q^{2})e}{1 - gB(Q^{2})}$$

if $gB(Q^{2}) = \frac{\lambda^{2}}{\Lambda^{2} + Q^{2}}$, then $f(Q^{2}) = e + \frac{\lambda^{2}e}{\Lambda^{2} - \lambda^{2} + Q^{2}}$

$$f_{1\pm} = \lambda + \frac{1-\lambda}{1+Q_0^2/m_v^2} + \frac{c_{\pm}Q_0^2/M_h^2}{\left(1+Q_0^2/M_h^2\right)^2}$$
$$f_{2\pm} = \kappa_{\pm} \left(\frac{d_{\pm}}{1+Q_0^2/m_v^2} + \frac{(1-d_{\pm})}{1+Q_0^2/M_h^2}\right)$$

Low-energy behavior encodes high-energy behavior: DIS used to fixed $\ \lambda$

4 parameters

G. Ramalho, M. T. P. and Franz Gross, PHYSICAL REVIEW C 77, 015202 (2008)

Franz Gross, G. Ramalho, M. T. P. PHYSICAL REVIEW D 85, 093006 (2012)

 $|G_M^* = G_M^B + G_M^\pi|$

G. Ramalho, M. T. P. and Gross, EPJS 36, 329 (2008); PRD 78, 114017 (2008)

Is this separation supported by experiment? Best way to determine bare quark core term?

Is this separation supported by experiment? $\gamma N \rightarrow \Delta$ GR and MT Peña PRD 80, 013008 (2009)

Bare quark core dominates
 large Q² region
 Bare quark core results agree
 with EBAC analysis : bare quark
 contributions extracted from the

contributions extracted from the data (meson cloud effects subtracted)

EBAC: Diaz et al., PRC 75, 015205 (2007)

G. Ramalho, M. T. P. and Franz Gross, PHYSICAL REVIEW D 78, 114017 (2008)

Coupled channel dynamical model $\gamma^*N, \pi N, \eta N$, and $\pi \pi N$ that has $\pi \Delta, \rho N$, and σN components

N- Δ transition (G_M^*)

• Magnetic dipole FF

$$G_{M}^{*}(Q^{2}) = \frac{4}{3\sqrt{3}} \frac{M}{M + M_{\Delta}} j_{-} \int \phi_{\Delta} \phi_{N} = 2.07 \int \phi_{\Delta} \phi_{N}$$

• Cauchy-Schwartz inequality (for $Q^2 = 0$):

$$\int \phi_{\Delta} \phi_{N} \leq \sqrt{\int \phi_{N}^{2}} \sqrt{\int \phi_{\Delta}^{2}} = 1$$

 $\Rightarrow \mathbf{G}^*_{M}(\mathbf{0}) \leq 2.07$

$\gamma N \rightarrow \Delta$ D3 0.72% and D1 0.72% of the wavefunction

pion cloud : large N_c limit relations Pascalutsa and Vanderhaeghen,
PRD76 111501(R) (2007)

G. Ramalho, M. T. P. and Franz Gross, PHYSICAL REVIEW D 80, 013008 (2009)

Predictions

$\gamma \Delta \longrightarrow \Delta$

LQCD data: C. Alexandrou et al. Phys. Rev.D 79 014507 (2009);

Nucl. Phys. A 825, 115 (2009);

S. Boinepalli et al Phys. Rev. D 80 054505 (2009).

G. Ramalho, M. T. P. and Franz Gross, Physics Letters B 678 (2009) 355–358

 $N \rightarrow N * (1535)$

 radial wf identical to nucleon's; angular momentum different (P wave)

•EBAC (bare): bare contributions extracted from the data (meson cloud effects subtracted)

bare quark contribution close to **EBAC** analysis

 Meson cloud effects of opposite sign; and above 2 GeV^2 still very important.

G. Ramalho, M. T. P. PHYSICAL REVIEW D 84, 051301(R) (2011)

 $N \rightarrow N * (1520)$

Radial wf identical to nucleon's;
 angular momentum different

(P wave) _ _ _ _

•Good description of high $\,Q^2$ region behavior

•Orthogonality through extra term

•One parameter fit to the data for $Q^2 > 1.5$ GeV²

Meson Cloud

G₁, G₄, G_c

$$\begin{split} A_{3/2} &= 2\sqrt{3}\mathcal{A}G_4, \\ A_{1/2} &= 2\mathcal{A}\left\{G_4 - \left[(M_R - M)^2 + Q^2\right]\frac{G_1}{M_R}\right. \\ S_{1/2} &= -\frac{1}{\sqrt{2}}\frac{|\mathbf{q}|}{M_R}\mathcal{A}\,g_C, \end{split}$$

• $S_{1/2}$ \longrightarrow meson cloud term to G_c is extracted

• $A_{3/2}$ \longrightarrow meson cloud term to G_4 is extracted.

• **A**_{1/2} **mixes** meson contributions to the different form factors

(Aznauryan and Burkert, PRC 85 055202 2012)

• A global fit of the three amplitudes, indirectly constraining A $_{3/2}$ by A $_{1/2}$, is needed.

In the timelike region

Delta Dalitz Decay width

F. Dohrmann et al. ERJA 45 401 2010

$$\Gamma_{\gamma^*N}(q;W) = \frac{\alpha}{16} \frac{(W+M)^2}{M^2 W^3} \sqrt{y_+ y_-} y_- |G_T(q^2,W)|^2$$
$$|G_T(q^2;M_\Delta)|^2 = |G_M^*(q^2;W)|^2 + 3|G_E^*(q^2;W)|^2 + \frac{q^2}{2W^2}|G_C^*(q^2;W)|^2$$

$$\Gamma_{\gamma N}(W) \equiv \Gamma_{\gamma^* N}(0; W)$$

$$\Gamma_{e^+e^- N}(W) = \frac{2\alpha}{3\pi} \int_{2m_e}^{W-M} \Gamma_{\gamma^* N}(q; W) \frac{dq}{q}$$

Running Delta Mass W that may differ from the pole mass

Extension to timelike region

VMD in quark-core current:

$$\frac{m_v^2}{m_v^2 - q^2} \to \frac{m_\rho^2}{m_\rho^2 - q^2 - im_\rho\Gamma_\rho} \\ \to \frac{m_\rho^2 \left[(m_\rho^2 - q^2) + im_\rho\Gamma_\rho \right]}{(m_\rho^2 - q^2)^2 + m_\rho^2\Gamma_\rho^2}$$

$$\Gamma_{\rho}(q^2) = \Gamma_{\rho}^0 \left(\frac{q^2 - 4m_{\pi}^2}{m_{\rho}^2 - 4m_{\pi}^2}\right)^{3/2} \frac{m_{\rho}}{q} \theta(q^2 - 4m_{\pi}^2)$$

H. B. O' Connell, B.C Pearce, A.W. Thomas, A.G Williams, PLB 354 14 (1995)

Model 1 pion CLOUD

$$G_M^{\pi}(Q^2; W) = 3\lambda_{\pi} G_D(Q^2) \left(\frac{\Lambda_{\pi}^2}{\Lambda_{\pi}^2 + Q^2}\right)^2$$

$$G_D(q^2) = \left(\frac{\Lambda_D^2}{\Lambda_D^2 - q^2}\right)^2$$

$$G_D(q^2) \rightarrow \left[\frac{\Lambda_D^2}{(\Lambda_D^2 - q^2)^2 + \Lambda_D^2 \Gamma_D^2}\right]^2 \times$$

$$\left[(\Lambda_D^2 - q^2)^2 - \Lambda_D^2 \Gamma_D^2 + i2(\Lambda_D^2 - q^2)\Lambda_D \Gamma_D\right]$$

Model 2 pion CLOUD

Inspiration:

F. Iachello, A.D. Jackson, and Landé, PL 43, 191 (1973F. Dohrman et al, Eur. Phys. J. A45, 401, (2010)

$$Q^{2} \ge -(W - M)^{2}$$

$$= \frac{1}{2} \int_{0}^{0} \int$$

.

$$|G_M^* = G_M^B + G_M^\pi$$
$$Q^2 \ge -(W - M)^2$$

 $Q^2 \ge -(W - M)^2$

--- Model 1; --- Model 2; ··· const $G^*_M(q^2; W) \equiv G^*_M(0, M_\Delta)$

$$g_{\Delta}(W) \approx \frac{W^2 \Gamma_{tot}(W)}{(W^2 - M_{\Delta}^2)^2 + W^2 \left[\Gamma_{tot}(W)\right]^2}$$

 $\Gamma_{tot}(W) = \Gamma_{\pi N}(W) + \Gamma_{\gamma N}(W) + \Gamma_{e^+e^-N}(W)$

In the timelike region

Courtesy Janus Weil Giessen

G. Ramalho, M. T. P., PHYSICAL REVIEW D 85 113014 (2012)

To understand the pion cloud: Pion form factor

Connection to LQCD Mass function

(reduced) off-shell quark current $j_{R}^{\mu} = f(\gamma^{\mu} + \kappa \frac{i\sigma^{\mu\nu}q_{\nu}}{2m}) + \delta'\Lambda'\gamma^{\mu} + \delta\gamma^{\mu}\Lambda + g\Lambda'\gamma^{\mu}\Lambda$ $\Lambda^{(\prime)} = \frac{M(p^{(\prime)}) - p^{(\prime)}}{2M(p^{(\prime)})}; f, \delta^{(\prime)}, g \text{ chosen such that } j_{R}^{\mu} \text{ satisfies Ward-Takahashi identity}$

Summary

- 1 Spectator quark-diquark model : It is covariant and accomodates angular momentum description.
- At Q² ≈ 0 consistent with EBAC data analysis based on a coupled channel Dynamical Model, and also Large N_c limit.
- 3 At high Q^2 consistent with experimental data, and also LQCD in the large pion mass regime.
- 4 Several applications: Δ(1232), N*(1440), N*(1535), N*(1520), Δ(1600), strange sector, DIS.
- **5** Dilepton mass spectrum sensitive to momentum dependence of G _M

6 To understand the pion cloud is critical This leads to us to calculate the Pion form factor

First results for of CST model in Minkowski space

with dynamical chiral symmetry breaking + covariant generalization of linear & constant vector potential with parameters fixed from Lattice data for mass function.

Pion Form factor independent of pion mass in the high Q² region (Chiral symmetry).

The two strategies, models and LQCD, are made **compatible.**

*

Garrett McNamara, Nazaré, Portugal Photo by Miguel Costa

not The end

Large M

Small M

$$\psi_S(P,k) = \frac{N_0}{m_s(\beta_1 + \chi)(\beta_2 + \chi)},$$

where

$$\chi = \frac{(M - m_s)^2 - (P - k)^2}{Mm_s} = \frac{2P \cdot k}{Mm_s} - 2$$

$$\chi = 2\sqrt{1 + \frac{\mathbf{k}^2}{m_s^2}}\sqrt{1 + \frac{\mathbf{P}^2}{M^2}} - 2\frac{\mathbf{k}\cdot\mathbf{P}}{Mm_s} - 2$$
$$\rightarrow \left(\frac{\mathbf{k}}{m_s} - \frac{\mathbf{P}}{M}\right)^2 \rightarrow \frac{1}{4m_q^2}\left(\mathbf{k} - \frac{2}{3}\mathbf{P}\right)^2$$
$$= \frac{1}{2m_q^2}\chi_{nr}(k, P, 0),$$

N- Δ transition (G_M^*)

• Magnetic dipole FF

$$G_{M}^{*}(Q^{2}) = \frac{4}{3\sqrt{3}} \frac{M}{M + M_{\Delta}} j_{-} \int \phi_{\Delta} \phi_{N} = 2.07 \int \phi_{\Delta} \phi_{N}$$

• Cauchy-Schwartz inequality (for $Q^2 = 0$):

$$\int \phi_{\Delta} \phi_{N} \leq \sqrt{\int \phi_{N}^{2}} \sqrt{\int \phi_{\Delta}^{2}} = 1$$

 $\Rightarrow \mathbf{G}^*_{M}(\mathbf{0}) \leq 2.07$

$$G_M^B(Q^2) = \frac{8}{3\sqrt{3}} \frac{M}{M+W} f_v \int_k \psi_\Delta \psi_N \qquad f_v = f_{1-} + \frac{W+M}{2M} f_{2-}$$

Extension to timelike region

Valence quark model applied for $q^2 = -Q^2$ and $M_{\Delta} \to W$;

$$\frac{m_{\rho}^2}{m_{\rho}^2 - q^2} \rightarrow \frac{m_{\rho}^2}{m_{\rho}^2 - q^2 - im_{\rho}\Gamma_{\rho}}$$

Include ρ -width (2π cut):

$$\Gamma_{\rho}(q^2) = \Gamma_{\rho}^0 \left(\frac{q^2 - 4m_{\pi}^2}{m_{\rho}^2 - 4m_{\pi}^2}\right)^{3/2} \frac{m_{\rho}}{q} \theta(q^2 - 4m_{\pi}^2)$$

Pion cloud?

$$G_{M}^{\pi}(q^{2}) = \lambda_{\pi}(3G_{D}) \left(\frac{\Lambda_{\pi}^{2}}{\Lambda_{\pi}^{2} - q^{2}}\right)^{2}$$

$$G_{D}(q^{2}) = \left(\frac{\Lambda_{N}^{2}}{\Lambda_{N}^{2} - q^{2} - i\Gamma_{N}\Lambda_{N}}\right)^{2}, \quad \Gamma_{N} \equiv \Gamma_{\rho}$$

$$\begin{array}{ccc} & & & & & & \\ \Delta \text{ rest frame} & & & & & \\ P_{\Delta} = (W, 0, 0, 0); & P_{N} = (E_{N}, 0, 0, -|\mathbf{q}|); & q = (\omega, 0, 0, |\mathbf{q}|) \\ \text{Timelike } q^{2} > 0 & & \\ \omega = \frac{W^{2} - M^{2} + q^{2}}{2W} & \omega = \frac{W^{2} - M^{2} - Q^{2}}{2W} \\ |\mathbf{q}|^{2} = \frac{[(W + M) - q^{2}][(W - M)^{2} - q^{2}]}{4W^{2}} & |\mathbf{q}|^{2} = \frac{[(W + M) + Q^{2}][(W - M)^{2} + Q^{2}]}{4W^{2}} \\ E_{N} = \frac{W^{2} + M^{2} - q^{2}}{2W} & E_{N} = \frac{W^{2} + M^{2} + Q^{2}}{2W} \end{array}$$

TL: $q^2 \leq (W - M)^2$

Extension to timelike region $Q^2 < 0$

Valence quark model applied for $q^2 = -Q^2$ and $M_\Delta \to W$;

$$\frac{m_{\rho}^2}{m_{\rho}^2 - q^2} \rightarrow \frac{m_{\rho}^2}{m_{\rho}^2 - q^2 - im_{\rho}\Gamma_{\rho}}$$

Include ρ -width (2π cut):

$$\Gamma_{\rho}(q^2) = \Gamma_{\rho}^0 \left(\frac{q^2 - 4m_{\pi}^2}{m_{\rho}^2 - 4m_{\pi}^2}\right)^{3/2} \frac{m_{\rho}}{q} \theta(q^2 - 4m_{\pi}^2)$$

Pion cloud?

$$G_M^{\pi}(q^2) = \lambda_{\pi}(3G_D) \left(\frac{\Lambda_{\pi}^2}{\Lambda_{\pi}^2 - q^2}\right)^2$$
$$G_D(q^2) = \left(\frac{\Lambda_N^2}{\Lambda_N^2 - q^2 - i\Gamma_N\Lambda_N}\right)^2, \quad \Gamma_N \equiv \Gamma_\rho$$

 \Rightarrow approximated pion vertex function $\Gamma(\mathbf{p}, P) \sim \gamma^5 h(\mathbf{p}^2)$

Chiral symmetry Bare Quark mass =0

Scalar part of 1 body equation and two body equation are identical

A massless pion exists! Goldstone boson.

Constituent quark mass m

 $M(m^2) = m$

Coordinate-space charge density in the x-y plane, for spin projection +3/2.

Total

G. Ramalho, M. T. P. and A. Stadler, PHYSICAL REVIEW D 86 093022 (2012)

Proton and Neutron form factors

 $\chi^2 = 1.36$

G. Ramalho, M. T. P. and Franz Gross, PHYSICAL REVIEW C 77, 015202 (2008)

Franz Gross, G. Ramalho, M. T. P. PHYSICAL REVIEW D 85, 093006 (2012)

Also:

∆(1600), Baryon decuplet DIS

Description of general size and shape of proton and neutron structure functions Model 1- P 18% D 3% No P wave

 $N \rightarrow N * (1440)$

$$N \rightarrow N * (1440)$$

 The orthogonality condition fixes term of the radial excitation.

•Quark core amplitude describes high $\,Q^2\,$ data.

 Pion cloud estimated as difference between MAID fit and the quark core.

 Error bands from error bars in the data

 $N \rightarrow N * (1535)$

N(1535)

$$F_1^*(Q^2) = \frac{1}{2}(3j_1 + j_3)\mathcal{I}_0$$

$$F_2^*(Q^2) = -\frac{1}{2}(3j_2 - j_4)\frac{M_S + M}{2M}\mathcal{I}_0$$

$$A_{1/2} = -2b \left[F_1^* + \frac{M_S - M}{M_S + M} F_2^* \right]$$
$$S_{1/2} = \sqrt{2}b(M_S + M) \frac{|\mathbf{q}|}{Q^2} \left[\frac{M_S - M}{M_S + M} F_1^* - \tau F_2^* \right]$$

$\Gamma^{\beta\mu} = G_1 q^\beta \gamma^\mu + G_2 q^\beta P^\mu + G_3 q^\beta q^\mu - G_4 g^{\beta\mu}$

 $N \rightarrow N*(1520)$

$$\begin{split} G_M &= -F\left(\frac{1}{\sqrt{3}}A_{3/2} - A_{1/2}\right) \\ &= -\mathcal{R}\left[(M_R - M)^2 + Q^2\right]\frac{G_1}{M_R}, \\ G_E &= -F\left(\sqrt{3}A_{3/2} + A_{1/2}\right) \\ &= -\mathcal{R}\left\{2G_4 - \left[(M_R - M)^2 + Q^2\right]\frac{G_1}{M_R}\right\} \end{split}$$

$$G_C = 2\sqrt{2} \frac{M_R}{|\mathbf{q}|} F S_{1/2} = -\mathcal{R}g_C,$$

Coupling core spin states with orbital angular momentum states

$$V_{S}^{\alpha}(P, \lambda_{s}) = \sum_{\lambda} \left\langle \frac{1}{2} \lambda 1 \lambda' | S \lambda_{s} \right\rangle \varepsilon_{\lambda' P}^{\alpha} u_{\Delta}(P, \lambda),$$

$$S = \frac{1}{2}, S = \frac{3}{2}$$

$$J = \frac{3}{2} \implies S = \frac{3}{2} \otimes L = 0; S = \frac{3}{2} \otimes L = 2; S = \frac{1}{2} \otimes L = 2$$

S state **D3** state **D1** state

LQCD data: Gockeler et al. PRD 71, 034508 (2005)

i = 1, 2,

$$j_i = \frac{1}{6}f_{i+}(Q^2) + \frac{1}{2}f_{i-}(Q^2)\tau_3 \tag{21}$$

where $f_{i\pm}$ are the isoscalar and isovector combinations, related to the *u* and *d* quark form factors by

$$\frac{\frac{2}{3}f_{iu}}{-\frac{1}{3}f_{id}} = \frac{\frac{1}{6}f_{i+} + \frac{1}{2}f_{i-}}{\frac{1}{6}f_{i+} - \frac{1}{2}f_{i-}}.$$
(22)

The form factors are normalized (with $n = \{u, d\}$) to

$$f_{1n}(0) = 1 f_{2n}(0) = \kappa_n f_{1\pm}(0) = 1 f_{2\pm}(0) = \kappa_{\pm} (23)$$

where κ_u and κ_d are the *u* and *d* quark anomalous magnetic moments (scaled by the quark charges) and

$$\kappa_{+} = 2\kappa_{u} - \kappa_{d}$$

$$\kappa_{-} = \frac{2}{3}\kappa_{u} + \frac{1}{3}\kappa_{d}.$$
(24)

$$\mu_p = 1 + \frac{1}{6}(\kappa_+ + 5\kappa_-)$$

$$\mu_n = -\frac{2}{3} + \frac{1}{6}(\kappa_+ - 5\kappa_-)$$

$$\kappa_+ = 3(\mu_p + \mu_n) - 1 = 1.639$$

$$\kappa_- = \frac{3}{5}(\mu_p - \mu_n) - 1 = 1.823$$

$$G_E(Q^2) = F_1(Q^2) - \tau F_2(Q^2)$$

= $\frac{1}{2}B(Q^2) \left\{ (f_{1+} + \tau_3 f_{1-}) - \tau (f_{2+} + \tau_3 f_{2-}) \right\}$
 $G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$
= $\frac{1}{6}B(Q^2) \left\{ (f_{1+} + 5\tau_3 f_{1-}) + (f_{2+} + 5\tau_3 f_{2-}) \right\}$

Vector meson dominance

Model β_1	$, \beta_2$	c_{+}, c_{-}	d_{+}, d_{-}	b_E, b_M	λ, r	N_0^2, χ^2
I(4) 0.	057	2.06	-0.444		1.22	10.87
0.	654	2.06^{*}	-0.444^{*}		0.88	9.26
II(5) 0.	049	4.16	-0.686		1.21	11.27
0.	717	1.56	-0.686^{*}		0.87	1.36
III(6) 0.	078	1.91	-0.319	0.163	1.27	12.36
0.	598	1.91^{*}	-0.319^{*}	0.311	0.89	1.85
IV(9) 0.	086	4.48	-0.134	0.079	1.25	8.46
0.	443	2.45	-0.513	0.259	0.89	1.03

Not always # parameters larger means better description

$$\int_{sk} = \underbrace{\int \frac{d\Omega_{\hat{\mathbf{r}}}}{4(2\pi)^3} \int_{4m_q^2}^{\infty} ds \sqrt{\frac{s - 4m_q^2}{s}}}_{\int_s} \underbrace{\int \frac{d^3k}{(2\pi)^3 2E_s}}_{\int_k},$$

$$\begin{split} &\sum_{\lambda_1\lambda_2} \int_s \bar{\Psi}_{\lambda_1\lambda_2,\lambda_+}(P_+,k_1k_2) \otimes \Psi_{\lambda_1\lambda_2;\lambda_-}(P_-,k_1k_2) \\ &\equiv \sum_{\Lambda} \bar{\Psi}_{\Lambda\lambda_+}(P_+,k) \otimes \Psi_{\Lambda\lambda_-}(P_-,k)|_{s=m_s^2}, \end{split}$$

For very large masses $(E_s \to m_s; s \to 4m_q^2)$, we can $m_q m_s \int_{sk} \to \frac{1}{16} \int \frac{d^3 k}{(2\pi)^3} \int \frac{d\Omega_{\hat{\mathbf{r}}}}{(2\pi)^3} \int_{4m_q^2}^{\infty} ds \sqrt{s - 4m_q^2}$ $= \int \frac{d^3 k}{(2\pi)^3} \int \frac{d^3 r}{(2\pi)^3},$

N∆ transition: State D1

State $(2, \frac{1}{2})$ is not orthogonal to $(0, \frac{1}{2})$

In principle:

$$q_{\mu}J^{\mu} = 3(M_{\Delta}-M)j_1\sum_{\lambda}\int_{k}\bar{\Psi}_{\Delta}\Psi_{N}\neq 0.$$

There is a chance that $G_C^* \neq 0$; but $q_\mu J^\mu \neq 0$

Imposing current conservation

$$\begin{aligned} \mathbf{J}_{R}^{\mu} &= 3j_{1}\sum_{\lambda}\int_{k}\bar{\Psi}_{\Delta}\left(\gamma^{\mu}-\frac{\mathbf{q}\mathbf{q}^{\mu}}{\mathbf{q}^{2}}\right)\Psi_{N}+3j_{2}\sum_{\lambda}\int_{k}\bar{\Psi}_{\Delta}\frac{i\sigma^{\mu\nu}\mathbf{q}_{\nu}}{2M}\Psi_{N}\\ \mathbf{q}_{\mu}\mathbf{J}_{R}^{\mu} &= \mathbf{0}, \quad \mathbf{G}_{C}^{*}\;\alpha\;\frac{1}{\mathbf{Q}^{2}}\sum_{\lambda}\int_{k}\bar{\Psi}_{\Delta}\Psi_{N} \end{aligned}$$

To avoid divergence as $Q^2 \rightarrow 0$:

$$\sum_{\lambda} \int_{k} \bar{\Psi}_{\Delta} \Psi_{N} \sim \mathsf{Q}^{2} \quad \text{[Orthogonality]}$$

Delta

$$J^{\mu} = -\bar{w}_{\alpha}(P_{+}) \left\{ \left[F_{1}^{*}(Q^{2})g^{\alpha\beta} + F_{3}^{*}(Q^{2})\frac{q^{\alpha}q^{\beta}}{4M_{\Delta}^{2}} \right] \gamma^{\mu} + \left[F_{2}^{*}(Q^{2})g^{\alpha\beta} + F_{4}^{*}(Q^{2})\frac{q^{\alpha}q^{\beta}}{4M_{\Delta}^{2}} \right] \frac{i\sigma^{\mu\nu}q_{\nu}}{2M_{\Delta}} \right\} w_{\beta}(P_{-})$$

$$G_{E0}(Q^2) = [F_1^* - \tau F_2^*] \left(1 + \frac{2}{3}\tau\right)$$
$$-\frac{1}{3} [F_3^* - \tau F_4^*] \tau (1 + \tau)$$
$$G_{M1}(Q^2) = [F_1^* + F_2^*] \left(1 + \frac{4}{5}\tau\right)$$
$$-\frac{2}{5} [F_3^* + F_4^*] \tau (1 + \tau)$$
$$G_{E2}(Q^2) = [F_1^* - \tau F_2^*]$$
$$-\frac{1}{2} [F_3^* - \tau F_4^*] (1 + \tau)$$
$$G_{M3}(Q^2) = [F_1^* + F_2^*]$$
$$-\frac{1}{2} [F_3^* + F_4^*] (1 + \tau)$$

 $\gamma \Delta \longrightarrow \Delta$

$$J^{\mu} = \bar{w}_{\alpha}(P_{+})\Gamma^{\alpha\beta\mu}(P,q)w(P_{-})_{\beta}(P_{+})$$

$$J^{\mu} = -\bar{w}_{\alpha}(P_{+}) \left\{ \left[F_{1}^{*}(Q^{2})g^{\alpha\beta} + F_{3}^{*}(Q^{2})\frac{q^{\alpha}q^{\beta}}{4M_{\Delta}^{2}} \right] \gamma^{\mu} + \left[F_{2}^{*}(Q^{2})g^{\alpha\beta} + F_{4}^{*}(Q^{2})\frac{q^{\alpha}q^{\beta}}{4M_{\Delta}^{2}} \right] \frac{i\sigma^{\mu\nu}q_{\nu}}{2M_{\Delta}} \right\} w_{\beta}(P_{-})$$

4: $G_{E0}(Q^2)$ $G_{M1}(Q^2)$ $G_{E2}(Q^2)$ $G_{M3}(Q^2)$

PRC77 015202 (2008); PRD78 114017(2008); JPG36 085004 (2009)

$\rightarrow \Delta$ and **b** small

 $\gamma\Delta$

$$G_{E0}(Q^2) = N^2 \tilde{g}_{\Delta} \mathcal{I}_S$$
$$G_{M1}(Q^2) = N^2 \tilde{f}_{\Delta} \left[\mathcal{I}_S + \frac{4}{5} a \mathcal{I}_{D3} - \frac{2}{5} b \mathcal{I}_{D1} \right]$$

$$G_{E2}(Q^2) = 3(aN^2)\tilde{g}_{\Delta}\frac{\mathcal{I}_{D3}}{\tau}$$

D state corrections from overlap Integrals between S and D states

$$G_{M3}(Q^2) = \tilde{f}_{\Delta} N^2 \left[a \frac{\mathcal{I}_{D3}}{\tau} + 2b \frac{\mathcal{I}_{D1}}{\tau} \right]$$

> ∆

a and b small

$$G_{E0}(Q^2) = N^2 \tilde{g}_{\Delta} \mathcal{I}_S$$

$$G_{M1}(Q^2) = N^2 \tilde{f}_{\Delta} \left[\mathcal{I}_S + \frac{4}{5} a \mathcal{I}_{D3} - \frac{2}{5} b \mathcal{I}_{D1} \right]$$

$$G_{E2}(Q^2) = 3(aN^2)\tilde{g}\Delta \frac{\mathcal{I}_{D3}}{\tau}$$

$$G_{M3}(Q^2) = \tilde{f}_{\Delta} N^2 \left[a \frac{\mathcal{I}_{D3}}{\tau} + 2b \frac{\mathcal{I}_{D1}}{\tau} \right]$$

D state corrections from overlap Integrals between S and D states $\gamma \Delta \rightarrow \Delta$

	$\mathcal{Q}_{\Delta}^{\perp}\left(+rac{3}{2} ight)$	$\mathcal{O}_{\Delta}^{\perp}\left(+rac{3}{2} ight)$
Lattice QCD:		
Quenched [6]	$0.83{\pm}0.21$	
Wilson [6]	$0.46{\pm}0.35$	
Hybrid [6]	$0.74{\pm}0.68$	
Spectator quark models:		
Spectator S [15]	0.29	-3.44
Spectator SD [17]	0.92	-3.38

TABLE I: Transverse electric quadrupole moment $\mathcal{Q}_{\Delta}^{\perp}\left(+\frac{3}{2}\right)$ in units of $\frac{e}{M_{\Delta}^2}$, and transverse magnetic octupole moment $\mathcal{O}_{\Delta}^{\perp}\left(+\frac{3}{2}\right)$ in units of $\frac{e}{2M_{\Delta}^3}$, for the Δ^+ .

G. Ramalho, M. T. P., A. Stadler arXiv: 1297.4392, Phys. Rev. D (to appear)

 Helicity states are usually used to define polarization. In the x - z plane: $k = (E_k, k \cos \theta, 0, k \sin \theta)$

$$\xi(0) = \frac{1}{m} \begin{bmatrix} k \\ E_k \sin \theta \\ 0 \\ E_k \cos \theta \end{bmatrix}, \qquad \xi(\pm) = \mp \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ \cos \theta \\ \pm i \\ -\sin \theta \end{bmatrix}$$

 $\xi(\lambda)$ is θ - dependent; $k \cdot \xi = 0$

• Fixed-axis: vector particle is bound to a system with $P = (P_0, 0, 0, P)$:

$$\varepsilon(0) = \frac{1}{M} \begin{bmatrix} P \\ 0 \\ 0 \\ P_0 \end{bmatrix}, \qquad \varepsilon(\pm) = \mp \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \\ \pm i \\ 0 \end{bmatrix}$$

No angular dependence; $P \cdot \varepsilon = 0$

arXiv:0708.0995 [nucl-th]

By design, a quark-diquark system in S wave

 $\xi^{0} = \frac{1}{\sqrt{2}} (ud - du)$ $\xi^{1}_{0} = \frac{1}{\sqrt{2}} (ud + du) = \xi_{z}$ $\xi^{1}_{+} = uu = -\frac{1}{\sqrt{2}} (\xi_{x} + i\xi_{y})$ $\xi^{1}_{-} = dd = \frac{1}{\sqrt{2}} (\xi_{x} - i\xi_{y}) .$ $\phi^{1}_{\frac{1}{2}} = \sqrt{\frac{2}{3}} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \xi^{1}_{+} - \sqrt{\frac{1}{3}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \xi^{1}_{0}$ $\rightarrow \sqrt{\frac{1}{6}} [2d(uu) - u(ud + du)],$

$$\begin{aligned}
\phi_{I}^{0} &= \xi^{0*} \chi^{I} & (2) \\
\phi_{I}^{1} &= -\frac{1}{\sqrt{3}} \tau \cdot \xi^{1*} \chi^{I} \\
&= \frac{1}{\sqrt{6}} \left[\tau_{-} \xi^{1}_{+} - \tau_{+} \xi^{1}_{-} - \sqrt{2} \tau_{3} \xi^{1}_{0} \right] \chi^{I} & (3)
\end{aligned}$$

where $\tau_{\pm} = \tau_x \pm i\tau_y$ are the isospin raising and lowering operators, $I = \pm 1/2$ is the isospin of the quark (or nucleon)

$$\chi^{+\frac{1}{2}} = \begin{pmatrix} 1\\0 \end{pmatrix} = u\left(\operatorname{or} p\right) \quad \chi^{-\frac{1}{2}} = \begin{pmatrix} 0\\1 \end{pmatrix} = d\left(\operatorname{or} n\right), \quad (4)$$

 $\Phi^i \to u_S^{\alpha}(s) = -\frac{1}{\sqrt{3}}\gamma_5\gamma^{\alpha}u(s)$

$m_{\rho} = c_0 + c_1 m_{\pi}^2$,