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Fock	  space	  is	  truncated	  

3	  cons1tuent	  quarks	  with	  effec1ve	  size,	  mass	  and	  e.m.	  	  form	  
factors,	  dressed.	  



E.M.	  matrix	  element	  	  

Q2=-‐q2>0	  



	  
�E.M.	  matrix	  element	  in	  terms	  of	  effecGve	  baryon	  ver1ces	  for	  a	  
quark-‐diquark	  structure	  -‐-‐	  off-‐mass-‐shell	  quark	  and	  +	  on-‐mass-‐
shell	  quark	  pair	  (diquark)-‐-‐	  with	  an	  average	  mass.	  
	  
�Baryon	  wavefuncGon	  reduced	  to	  an	  effec1ve	  quark-‐diquark	  
structure.	  
	  

E.M.	  matrix	  element	  	  



Baryon	  “wavefunc1on”	  

SU(6)	  ×	  O(3)	  :	  impose	  that	  the	  combina1on	  of	  diquark	  and	  quark	  
symmetries	  to	  be	  an1-‐symmetric	  in	  the	  exchange	  of	  any	  pair	  of	  quarks	  	  

�It	  is	  wriYen	  in	  a	  covariant	  form	  	  in	  terms	  of	  baryon	  proper1es.	  

ΨB = color⊗ flavor⊗ spin⊗ orbital⊗ radial

�Extension	  to	  high	  angular	  momentum	  states	  possible	  



Nucleon	  wavefunc1on	  
	  

�A	  quark	  +	  scalar-‐diquark	  component	  
	  
�A	  quark+	  axial	  vector-‐diquark	  component	  	  
	  
	  
	  
	  
	  

	  
	  
	  

Delta	  wavefunc1on	  
	  

�Only	  quark	  +	  axial	  vector-‐diquark	  term	  contributes	  
	  

Phenomenological	  func1on	  



E.M.	  Current	  



Low-‐energy	  behavior	  encodes	  	  high-‐energy	  behavior:	  	  	  
DIS	  used	  to	  fixed	  	  	  λ	  

Vector	  meson	  dominance	  	  	  	  2	  poles	  

4	  parameters	  

−

−



Proton	  and	  Neutron	  form	  factors	   χ 2 =1.36

PHYSICAL	  REVIEW	  C	  77,	  015202	  (2008)	  G.	  Ramalho,	  M.	  T.	  P.	  and	  Franz	  Gross,	  

PHYSICAL	  REVIEW	  D	  85,	  093006	  (2012)	  Franz	  Gross,	  G.	  Ramalho,	  M.	  T.	  P.	  	  



cloud	  	  
supressed	  for	  high	  Q2	  
	  
	  

-‐Bare	  Quark	  core	  
coupling	  

1
Q4

γ

π

1
Q4suppressed	  with	  extra	  

pQCD	  	  
C.	  Carlson,	  FBS	  Supp	  11	  10	  (1999)	  



	  

Is	  this	  separa1on	  supported	  by	  experiment?	  
Best	  way	  to	  determine	  bare	  quark	  core	  term?	  

G.	  Ramalho,	  M.	  T.	  P.	  and	  Gross,	  
EPJS	  36,	  329	  (2008);	  
PRD	  78,	  114017	  (2008)	  



γN→Δ

EBAC:	  Diaz	  et	  al.,	  PRC	  75,	  015205	  (2007)	  

G*
M (0) ≅ 3

GB
M (0)
3GD

≤ 0.7

PHYSICAL	  REVIEW	  D	  78,	  114017	  (2008)	  G.	  Ramalho,	  M.	  T.	  P.	  and	  Franz	  Gross,	  

�Bare	  quark	  core	  dominates	  

large	  	  	  	  	  	  	  	  	  region	  

�Bare	  quark	  core	  results	  agree	  
with	  EBAC	  analysis	  :	  bare	  quark	  
contribu1ons	  extracted	  from	  the	  
data	  (meson	  cloud	  effects	  
subtracted)	  

	  

Q2

Is	  this	  separa1on	  supported	  by	  experiment?	  



B. JULIÁ-DÍAZ et al. PHYSICAL REVIEW C 80, 025207 (2009)

N N*

. . .

FIG. 1. Graphical illustration of the contri-
bution to the πN intermediate state to the dressed
γ ∗N → N∗ vertex defined by Eq. (4).

dressed γ ∗N → N∗ vertex function defined by

#̄J
N∗,λγ λN

(q,W,Q2)

= #J
N∗,λγ λN

(q,Q2) +
∑

M ′B ′

∑

L′S ′

∫
k′2dk′#̄J

N∗,L′S ′M ′B ′(k′,W )

×GM ′B ′(k′,W )vJ
L′S ′M ′B ′,λγ λN

(k′, q,Q2). (4)

The second term of Eq. (4) is due to the mechanism where
the nonresonant electromagnetic meson production takes place
before the dressed N∗ states are formed. This is illustrated in
Fig. 1 for the contribution due to the M ′B ′ = πN intermediate
state. Similar to what was defined in Ref. [7,8], we call this
contribution the meson cloud effect to define precisely what
will be presented in this article. We emphasize here that the
meson cloud term in Eq. (4) is the necessary consequence
of the unitarity conditions. How this term and the assumed
bare N∗ states are interpreted is obviously model dependent.
This issue as well as the questions concerning the extractions
of form factors at resonance pole positions will be discussed
elsewhere and will not be addressed here.

Within the one-photon exchange approximation, the differ-
ential cross sections of pion electroproduction can be written

as
dσ 5

dEe′d&e′d&∗
π

= #γ [σT + εσL +
√

2ε(1 + ε)σLT cos φ∗
π

+ εσT T cos 2φ∗
π

+he

√
2ε(1 − ε)σLT ′ sin φ∗

π ]. (5)

Here #γ = [α/(2π2Q2)](Ee′/Ee)[|&qL|/(1 − ε)]; ε is de-
fined by the electron scattering angle θe and the photon
three-momentum &qL in the laboratory frame as ε = [1 +
2(|&qL|2/Q2) tan2(θe/2)]−1; he is the helicity of the incoming
electron; φ∗

π is the angle between the π -N plane and the
plane of the incoming and outgoing electrons. The quantities
associated with the electrons are defined in the laboratory
frame. However, structure functions of γ ∗N → πN pro-
cess, σα = σα(W,Q2, cos θ∗

π ) (α = T ,L,LT , T T ,LT ′), are
defined in the final πN center-of-mass system. The formula
for calculating σα from the amplitudes defined by Eqs. (1)–(3)
are given in Ref. [9].

In this first-stage investigation, we consider only the data of
structure functions σα of p(e,e′π0)p [10,11] and p(e,e′π+)n
[12,13] up to W = 1.6 GeV and Q2 = 1.45 (GeV/c)2. The
availability of the data in the corresponding (W,Q2) region is
found in Table I. The resulting parameters are then confirmed
against the original fivefold differential cross-section data [14].

TABLE I. Available structure function data at Q2 ! 1.45 (GeV/c)2.

Q2 (GeV/c)2 γ ∗p → π 0p γ ∗p → π+n

0.3 – σT + εσL, σLT , σT T [12]
0.4 σT + εσL, σLT , σT T [10]; σLT ′ [11] σT + εσL, σLT , σT T [12]; σLT ′ [13]
0.5 – σT + εσL, σLT , σT T [12]a

0.525 σT + εσL, σLT , σT T [10] –
0.6 – σT + εσL, σLT , σT T [12]b

0.65 σT + εσL, σLT , σT T [10]; σLT ′ [11] σLT ′ [13]
0.75 σT + εσL, σLT , σT T [10] –
0.9 σT + εσL, σLT , σT T [10] –
1.15 σT + εσL, σLT , σT T [10] –
1.45 σT + εσL, σLT , σT T [10] –

aThe data are available up to W = 1.51 GeV.
bThe data are available up to W = 1.41 GeV.
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E-08028 Barcelona, Spain
3Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

4Department of Physics, Shizuoka University, Shizuoka 422-8529, Japan
5Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

(Received 13 April 2009; published 24 August 2009)

We have performed a dynamical coupled-channels analysis of available p(e,e′π )N data in the region of
W ! 1.6 GeV and Q2 ! 1.45 (GeV/c)2. The channels included are γ ∗N, πN, ηN , and ππN that has π$, ρN ,
and σN components. With the hadronic parameters of the model determined in our previous investigations of
πN → πN, ππN reactions, we have found that the available data in the considered W ! 1.6 GeV region can
be fitted well by only adjusting the bare γ ∗N → N∗ helicity amplitudes for the lowest N∗ states in P33, P11, S11,
and D13 partial waves. The sensitivity of the resulting parameters to the amount of data included in the analysis
is investigated. The importance of coupled-channels effect on the p(e,e′π )N cross sections is demonstrated. The
meson cloud effect, as required by the unitarity conditions, on the γ ∗N → N∗ form factors are also examined.
Necessary future developments, both experimentally and theoretically, are discussed.
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I. INTRODUCTION

The electromagnetic parameters characterizing the excited
nucleons (N∗), in particular the γ ∗N → N∗ form factors, are
important information for understanding the hadron structure
within quantum chromodynamics (QCD). With the efforts
in recent years, as reviewed in Ref. [1], the world data of
γ ∗N → $(1232) form factors are now considered along with
the electromagnetic nucleon form factors as the benchmark
data for developing hadron structure models and testing
predictions from lattice QCD calculations (LQCD). The main
objective of this work is to explore the extent to which the
available p(e,e′π )N data in W ! 1.6 GeV can be used to
extract the γ ∗N → N∗ form factors for the N∗ states up to the
so-called second resonance region.

We employed a dynamical coupled-channels model devel-
oped in Refs. [2–6]. This work is an extension of our analysis
[4] of pion photoproduction reactions. We therefore will only
recall equations that are relevant to the coupled-channels
calculations of p(e,e′π )N cross sections. In the helicity-LSJ
mixed-representation where the initial γN state is specified
by its helicities λγ and λN and the final MB states by the
(LS)J angular-momentum variables, the reaction amplitude
of γ ∗($q,Q2) + N (−$q) → π ($k) + N (−$k) at invariant mass
W and momentum transfer Q2 = −qµqµ = $q 2 − ω2 can be
written within a Hamiltonian formulation [2] as (suppress the
isospin quantum numbers)

T J
LSNπN,λγ λN

(k, q,W,Q2)

= tJLSN πN,λγ λN
(k, q,W,Q2) + tR,J

LSNπN,λγ λN
(k, q,W,Q2),

(1)

where SN = 1/2 is the nucleon spin, W = ω + EN (q) is
the invariant mass of the γ ∗N system, and the nonresonant

amplitude is

tJLSNπN,λγ λN
(k, q,W,Q2)

= vJ
LSN πN,λγ λN

(k, q,Q2)

+
∑

M ′B ′

∑

L′S ′

∫
k′2dk′tJLSNπN,L′S ′M ′B ′(k, k′,W )

×GM ′B ′(k′,W )vJ
L′S ′M ′B ′,λγ λN

(k′, q,Q2). (2)

In the above equation, GM ′B ′ (k′,W ) are the meson-baryon
propagators for the channels M ′B ′ = πN, ηN,π$, ρN, σN .
The matrix elements vJ

LSMB,λγ λN
(k, q,Q2), which describe the

γN → MB transitions, are calculated from tree diagrams
of a set of phenomenological Lagrangians describing the
interactions among γ ,π, η, ρ,ω, σ, N , and $(1232) fields.
The details are given explicitly in Appendix F of Ref. [2]. The
hadronic nonresonant amplitudes tJLSNπ N,L′S ′M ′B ′(k, k′,W ) are
generated from the model constructed from analyzing the data
of πN → πN,ππN reactions [3,6].

The resonant amplitude in Eq. (1) is

tR,J
LSNπN,λγ λN

(k, q,W,Q2) =
∑

N∗
i ,N∗

j

[
)̄J

N∗
i ,LSN πN (k,W )

]∗

×Di,j (W ))̄J
N∗

j ,λγ λN
(q,W,Q2),

(3)

where the dressed N∗ → πN vertex )̄J
N∗

i ,LSN πN (k,W ) and N∗

propagator Di,j (W ) have been determined and given explicitly
in Ref. [4]. The quantity relevant to our later discussions is the
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I. INTRODUCTION

The electromagnetic parameters characterizing the excited
nucleons (N∗), in particular the γ ∗N → N∗ form factors, are
important information for understanding the hadron structure
within quantum chromodynamics (QCD). With the efforts
in recent years, as reviewed in Ref. [1], the world data of
γ ∗N → $(1232) form factors are now considered along with
the electromagnetic nucleon form factors as the benchmark
data for developing hadron structure models and testing
predictions from lattice QCD calculations (LQCD). The main
objective of this work is to explore the extent to which the
available p(e,e′π )N data in W ! 1.6 GeV can be used to
extract the γ ∗N → N∗ form factors for the N∗ states up to the
so-called second resonance region.

We employed a dynamical coupled-channels model devel-
oped in Refs. [2–6]. This work is an extension of our analysis
[4] of pion photoproduction reactions. We therefore will only
recall equations that are relevant to the coupled-channels
calculations of p(e,e′π )N cross sections. In the helicity-LSJ
mixed-representation where the initial γN state is specified
by its helicities λγ and λN and the final MB states by the
(LS)J angular-momentum variables, the reaction amplitude
of γ ∗($q,Q2) + N (−$q) → π ($k) + N (−$k) at invariant mass
W and momentum transfer Q2 = −qµqµ = $q 2 − ω2 can be
written within a Hamiltonian formulation [2] as (suppress the
isospin quantum numbers)

T J
LSNπN,λγ λN

(k, q,W,Q2)

= tJLSN πN,λγ λN
(k, q,W,Q2) + tR,J

LSNπN,λγ λN
(k, q,W,Q2),

(1)

where SN = 1/2 is the nucleon spin, W = ω + EN (q) is
the invariant mass of the γ ∗N system, and the nonresonant

amplitude is

tJLSNπN,λγ λN
(k, q,W,Q2)

= vJ
LSN πN,λγ λN

(k, q,Q2)

+
∑

M ′B ′

∑

L′S ′

∫
k′2dk′tJLSNπN,L′S ′M ′B ′(k, k′,W )

×GM ′B ′(k′,W )vJ
L′S ′M ′B ′,λγ λN

(k′, q,Q2). (2)

In the above equation, GM ′B ′ (k′,W ) are the meson-baryon
propagators for the channels M ′B ′ = πN, ηN,π$, ρN, σN .
The matrix elements vJ

LSMB,λγ λN
(k, q,Q2), which describe the

γN → MB transitions, are calculated from tree diagrams
of a set of phenomenological Lagrangians describing the
interactions among γ ,π, η, ρ,ω, σ, N , and $(1232) fields.
The details are given explicitly in Appendix F of Ref. [2]. The
hadronic nonresonant amplitudes tJLSNπ N,L′S ′M ′B ′(k, k′,W ) are
generated from the model constructed from analyzing the data
of πN → πN,ππN reactions [3,6].

The resonant amplitude in Eq. (1) is

tR,J
LSNπN,λγ λN

(k, q,W,Q2) =
∑

N∗
i ,N∗

j

[
)̄J

N∗
i ,LSN πN (k,W )

]∗

×Di,j (W ))̄J
N∗

j ,λγ λN
(q,W,Q2),

(3)

where the dressed N∗ → πN vertex )̄J
N∗

i ,LSN πN (k,W ) and N∗

propagator Di,j (W ) have been determined and given explicitly
in Ref. [4]. The quantity relevant to our later discussions is the
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Coupled	  channel	  dynamical	  model	  

EBAC	  
Data	  analysis	  





D3	  0.72%	  	  	  and	  	  	  	  D1	  0.72	  %	  	  of	  the	  wavefunc1on	  

pion	  cloud	  :	  large	  N_c	  limit	  rela1ons	  	  Pascalutsa	  and	  Vanderhaeghen,	  
PRD76	  111501(R)	  (2007)	  

γN→Δ

PHYSICAL	  REVIEW	  D	  80,	  013008	  (2009)	  G.	  Ramalho,	  M.	  T.	  P.	  and	  Franz	  Gross,	  



PredicGons	  
	  	  	  	  	  	  	  	  	  	  	  



LQCD	  data:	  	  C.	  Alexandrou	  et	  al.	  Phys.	  Rev.D	  79	  014507	  (2009);	  

	  Nucl.	  Phys.	  A	  825,	  115	  (2009);	  

	  S.	  Boinepalli	  et	  al	  Phys.	  Rev.	  D	  80	  054505	  (2009).	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

γΔ→Δ

Physics	  LeYers	  B	  678	  (2009)	  355–358	  

	  

G.	  Ramalho,	  M.	  T.	  P.	  and	  Franz	  Gross,	  



�radial	  wf	  iden1cal	  to	  	  nucleon’s;	  
angular	  momentum	  different	  (P	  wave)	  	  

 

�EBAC	  (bare):	  bare	  contribu1ons	  
extracted	  from	  the	  data	  (meson	  cloud	  
effects	  subtracted)	  

bare	  quark	  contribu1on	  close	  to	  EBAC	  
analysis	  

�Meson	  cloud	  effects	  of	  opposite	  sign;	  
and	  above	  2	  GeV^2	  s1ll	  very	  important.	  

	  

N→ N *(1535)

PHYSICAL	  REVIEW	  D	  84,	  051301(R)	  (2011)	  G.	  Ramalho,	  M.	  T.	  P.	  	  



N→ N *(1520)

�Good	  descrip1on	  of	  high	  
region	  behavior	  
	  	  	  	  	  	  	  	  	  	  

Q2

�Radial	  wf	  iden1cal	  to	  	  nucleon’s;	  	  

angular	  momentum	  different	  	  

(P	  wave)	  	  

�Orthogonality	  through	  extra	  
term	  	  	  

	  �One	  parameter	  fit	  to	  the	  data	  
	  for	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  GeV2	  Q2 >1.5



Meson	  Cloud	  
	  

� S1/2	  	  	  	  	  	  	  	  	  	  	  	  	  meson	  cloud	  term	  to	  Gc	  is	  
extracted	  
� 	  A	  3/	  	  2	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  meson	  cloud	  term	  to	  G4	  is	  
extracted.	  
	  
� A1/2	  mixes	  meson	  contribu1ons	  to	  the	  
different	  form	  factors	  
	  (Aznauryan	  and	  Burkert,	  PRC	  85	  055202	  
2012)	  
	  
� A	  global	  fit	  	  of	  the	  three	  amplitudes,	  
indirectly	  constraining	  	  A	  3/2	  by	  A1/2,	  is	  
needed.	  
	  
.	  
	  
	  
	  

G1,	  G4,	  Gc	  
	  
	  



In	  the	  1melike	  region	  
	  	  	  	  	  	  	  	  	  	  	  



Delta	  Dalitz	  Decay	  width	  
F.	  Dohrmann	  et	  al.	  ERJA	  45	  401	  2010	  

Running	  Delta	  Mass	  W	  that	  may	  differ	  from	  the	  pole	  mass	  



Extension	  to	  1melike	  region	  

4

where fi− (i = 1, 2) are the quark (isovector) form
factors, that parameterize the electromagnetic photon-
quark coupling [5, 6, 8]. The fi± parameterizations will
be discussed in more detail in the next subsection.
The pion cloud parametrization Gπ

M was established in
the physical regime using the factorization [7]

Gπ
M (Q2;W ) = 3λπGD(Q2)

(

Λ2
π

Λ2
π +Q2

)2

, (3.5)

where GD =
(

1 + Q2

0.71

)−2
, with Q2 in GeV2, has the

usual dipole functional form, and λπ and Λπ are pa-
rameters that define the strength and the falloff of the
pion cloud effects. In particular we take λπ = 0.441 and
Λ2
π = 1.53 GeV2 following Refs. [7, 12]. More details

of the model in the physical regime (W = M∆) can be
found in Refs. [6, 7]. Since the pion cloud parameteri-
zation given by the right-hand-side of Eq. (3.5) has no
explicit dependence on M∆, in its extension to W != M∆

we consider no explicit dependence on W either. Then,
for W != M∆ our choice was to keep Gπ

M independent of
W , that is Gπ

M (Q2;W ) = Gπ
M (Q2;M∆), and the variable

W could have been dropped in the Eq. (3.5).
A general comment about the decomposition (3.1) is in

order. In the spectator framework the component GB
M ,

given by Eq. (3.2), is limited by the condition I(0) ≤ 1,
which follows from the normalization of the nucleon and
∆ radial wave functions and the Cauchy-Schwartz-Hölder
inequality. This implies that GB

M (0,M∆) ≤ 2.07 [6].
Since the experimental value is G∗

M (0,M∆) # 3 it fol-
lows that the description of the reaction near Q2 = 0 is
not possible, unless the contribution of the pion cloud is
significant: more than 30% of the total result. The under-
estimation of G∗

M (0,M∆) is a result common to several
models based on constituent quark degrees of freedom
alone [6].

A. Quark current

In the spectator quark model the electromagnetic in-
teraction with the quarks is represented in terms of Dirac
and Pauli electromagnetic form factors, f1± (Dirac) and
f2± respectively, for the quarks [5, 6, 8]. Using the vector
meson dominance (VMD) mechanism, those form factors
are parametrized as

f1±(q
2) = λq + (1− λq)

m2
v

m2
v − q2

− c±
M2

hq
2

(M2
h − q2)2

f2±(q
2) = κ±

{

d±
m2

v

m2
v − q2

+ (1 − d±)
M2

h

M2
h − q2

}

,

(3.6)

where mv is a light vector meson mass, Mh is a mass of
an effective heavy vector meson, κ± are quark anomalous
magnetic moments, c±, d± are mixture coefficients and
λq a parameter related with the quark density number in

deep inelastic scattering [5]. In the applications we take
mv = mρ (# mω), to include the physics associated with
the ρ-meson, and Mh = 2M (twice the nucleon mass) for
effects of meson resonances with a larger mass than the
ρ. Note that both functions f1− and f2− have a pole at
q2 = mρ and at q2 = M2

h . Hereafter we will refer to these
poles as ρ-poles and Mh poles, respectively.
The parametrization (3.6) is particularly useful for

applications of the model to the lattice QCD space-
like regime. In fact, the decomposition of the current
into contributions from the vector meson poles (mρ and
Mh = 2M) is very convenient for a extension of the model
to a regime where those poles can be replaced by the mρ

and M values given by the lattice calculations, without
introducing any additional parameters. Examples of suc-
cessful applications to the lattice regime can be found in
Refs. [8, 12, 13, 18]. In Refs. [12, 13], in particular, one
can see how well the model describes the lattice data
from Ref. [40] for the γ∗N → ∆ reaction, particularly
for pion masses mπ > 400 MeV where the pion cloud
effects Gπ

M are suppressed. The valence quark contribu-
tion [7, 13] is also compatible with the estimation of the
bare contribution from the EBAC model [41]. The suc-
cessful description of the G∗

M lattice data shows that the
valence quark calibration of our model is under control.
To stress the first problem of the extension of (3.6) to

the case q2 > 0, in Eq. (3.6), we used explicitly the vari-
able q2 instead of the variable Q2 employed in Refs. [5–
7]: singularities appear at q2 = m2

ρ and q2 = M2
h . The

larger poles are not problematic for moderated W , since
as shown in Appendix A, q2 ≤ (W − M)2. But the
case q2 = m2

ρ has to be taken with care. Such pole is a
consequence of having the ρ meson as a stable particle,
with a zero mass width. One can overcome this limita-
tion by introducing a finite width Γρ in the ρ-propagator
m2

ρ/(m
2
ρ− q2), with the replacement mρ → mρ− i

2Γρ. A
non-zero width Γρ leads then to the substitution

m2
v

m2
v − q2

→
m2

ρ

m2
ρ − q2 − imρΓρ

→
m2

ρ

[

(m2
ρ − q2) + imρΓρ

]

(m2
ρ − q2)2 +m2

ρΓ2
ρ

. (3.7)

Note that this procedure induces an imaginary part in
the bare quark contributions for the form factors. The
ρ-width Γρ is in fact a real function of q2 defined only
for q2 > 0, as we discuss next, and therefore the results
in the spacelike regime are unaffected by the redefinition
(3.7).
The ρ width can be measured only for the physical

decay of the ρ, when q2 = m2
ρ. The experimental value

is Γ0
ρ = Γρ(m2

ρ) = 0.149 GeV (PDG) [42]. For q2 ≥ 0
one has to consider some parametrization for Γρ(q2). An
usual parametrization is [43–45]:

Γρ(q
2) = Γ0

ρ

(

q2 − 4m2
π

m2
ρ − 4m2

π

)3/2
mρ

q
θ(q2 − 4m2

π), (3.8)
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significant: more than 30% of the total result. The under-
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alone [6].
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teraction with the quarks is represented in terms of Dirac
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where mv is a light vector meson mass, Mh is a mass of
an effective heavy vector meson, κ± are quark anomalous
magnetic moments, c±, d± are mixture coefficients and
λq a parameter related with the quark density number in

deep inelastic scattering [5]. In the applications we take
mv = mρ (# mω), to include the physics associated with
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effects of meson resonances with a larger mass than the
ρ. Note that both functions f1− and f2− have a pole at
q2 = mρ and at q2 = M2
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larger poles are not problematic for moderated W , since
as shown in Appendix A, q2 ≤ (W − M)2. But the
case q2 = m2
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consequence of having the ρ meson as a stable particle,
with a zero mass width. One can overcome this limita-
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the bare quark contributions for the form factors. The
ρ-width Γρ is in fact a real function of q2 defined only
for q2 > 0, as we discuss next, and therefore the results
in the spacelike regime are unaffected by the redefinition
(3.7).
The ρ width can be measured only for the physical

decay of the ρ, when q2 = m2
ρ. The experimental value

is Γ0
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ρ) = 0.149 GeV (PDG) [42]. For q2 ≥ 0
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where mπ is the pion mass and θ(x) the Heaviside step
function that cuts the contributions for q2 ≤ 4m2

π, below
the 2π creation threshold (decay ρ → 2π). The previous
formula includes then the creation of ππ states from an
off-mass-shell ρ. Equation (3.8) assures that there is no
width near q2 = 0. Therefore the imaginary contribution
appears only for q2 > 4m2

π # 0.076 GeV2.

B. Scalar wave functions

The radial (or scalar) wave functions taken in this
work, respectively for the nucleon and ∆, are

ψN (P, k) =
NN

mD(β1 + χN )(β2 + χN )
(3.9)

ψ∆(P, k) =
N∆

mD(α + χ∆)3
, (3.10)

where mD is the diquark mass, β1,β2 and α are momen-
tum range parameters (in units mD) and

χB =
(MB −mD)2 − (P − k)2

MBmD
, (3.11)

for B = N (MB = M) and B = ∆ (MB = M∆), is a vari-
able without dimensions that includes the dependence in
the quark momentum (P − k)2. As for NB, (B = N,∆)
they are positive normalization constants. See Refs. [5, 6]
for details. The representation of the wave function in
terms of χB given by Eq. (3.11) has advantages in the
applications to the lattice regime [8, 12, 13].
The scalar wave functions are important for the present

calculations because they are part of the overlap integral
defined by Eq. (3.3). To apply the expressions to the
timelike region one has to choose a configuration with
Q2 < 0 (q2 > 0). That can be achieved by considering the
reaction γ∗N → ∆ in the∆ rest frame, with the following
configuration: P+ = (W,0) as the ∆ momentum and
P− = (EN ,−q), with EN =

√

M2 + q2, as the nucleon
momentum. In those conditions the photon momentum
is represented by q = P+ − P−, as q = (ω,q), where

ω =
W 2 −M2 + q2

2W

q2 =
(W 2 +M2 − q2)2

4W 2
−M2. (3.12)

Those variables correspond to the timelike region when
0 ≤ q2 ≤ (W −M)2. See details in Appendix A.
Using Eq. (3.2) and the integral (3.3) for the kine-

matics (3.12), together with the extension of the current
given by (3.7), one can calculate the contribution forGB

M .
Note that as the function (3.7) has an imaginary compo-
nent, GB

M is now complex.

C. Pion cloud contribution

The most phenomenological part of the model pre-
sented here is the parametrization of the pion cloud con-

tribution through Eq. (3.5). Although the valence quark
parametrization has been validated by lattice QCD sim-
ulations and the EBAC estimations of the quark core
contributions [40, 41], the contributions from the pion
cloud were estimated only phenomenologically. In fact
they were extracted directly from the physical data, af-
ter the calibration of the valence quark effects [6, 7].
For the pion cloud component of the form factor we will

compare two different generalizations of Eq. (3.5) for the
timelike region. We start with a simple model, a naive
generalization of the model from Refs. [6, 7, 12] to the
timelike region. Next we discuss the possible limitations
of that approach and introduce a different parametriza-
tion motivated by the expressions for the pion cloud de-
rived from χPT.

1. Naive model (model 1)

In a first approach we took the pion cloud contributions
for the G∗

M form factor by Eq. (3.5), as in the spacelike
regime, but now evaluated in the timelike kinematic re-
gion. We have to take into consideration now the poles
for q2 > 0 (Q2 < 0). We re-write GD as

GD(q2) =

(

Λ2
D

Λ2
D − q2

)2

, (3.13)

where Λ2
D = 0.71 GeV2 is the cutoff of the dipole form

factor. As it happens to the ρ−term in the quark current,
also this factor has a pole at q2 = 0.71 GeV2, but in this
case it is a double pole. We apply the procedure used
before to the ρ propagator, i.e. definiting a width to the
function GD, by making

GD(q2) →
[

Λ2
D

(Λ2
D − q2)2 + Λ2

DΓ2
D

]2

× (3.14)

[

(Λ2
D − q2)2 − Λ2

DΓ2
D + i2(Λ2

D − q2)ΛDΓD

]

,

where ΓD is the width associated with its pole. As the
polesm2

ρ and Λ2
D are close (q2 # 0.6 GeV2 versus q2 # 0.7

GeV2), we will use ΓD(q2) = Γρ(q2). With GD defined
as above, also Gπ

M is a complex function in the timelike
regime.

As for the extra dipole factor in Eq. (3.5):
(

Λ2
π

Λ2
π−q2

)2
,

where in the applications Λ2
π # 1.5 GeV2, it is far way

from the ρ−poles region. For ∆ masses not very large
compared with M∆ the possible effect of the finite width
is less significant since q2 < (W −M)2 < Λ2

π.
We call the model defined by Eqs. (3.5) and (3.14)

model 1. The result of the extension of the model to
the timelike region for the case W = M∆ and Γρ ≡ 0
is presented in Fig. 1. We used the parametrization of
Ref. [12] for the valence quark contributions, but ne-
glected the D-state contributions (≤ 1%). As in this
case Q2 ≥ −(M∆ −M)2 # −0.086 GeV2, and therefore
the allowed values for Q2 are far way from the Q2 < 0
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π, below
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able without dimensions that includes the dependence in
the quark momentum (P − k)2. As for NB, (B = N,∆)
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for details. The representation of the wave function in
terms of χB given by Eq. (3.11) has advantages in the
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defined by Eq. (3.3). To apply the expressions to the
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reaction γ∗N → ∆ in the∆ rest frame, with the following
configuration: P+ = (W,0) as the ∆ momentum and
P− = (EN ,−q), with EN =

√

M2 + q2, as the nucleon
momentum. In those conditions the photon momentum
is represented by q = P+ − P−, as q = (ω,q), where

ω =
W 2 −M2 + q2

2W

q2 =
(W 2 +M2 − q2)2

4W 2
−M2. (3.12)

Those variables correspond to the timelike region when
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Note that as the function (3.7) has an imaginary compo-
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for q2 > 0 (Q2 < 0). We re-write GD as

GD(q2) =
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D
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)2

, (3.13)

where Λ2
D = 0.71 GeV2 is the cutoff of the dipole form
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D
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]

,

where ΓD is the width associated with its pole. As the
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regime.
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(
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π
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)2
,
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We call the model defined by Eqs. (3.5) and (3.14)

model 1. The result of the extension of the model to
the timelike region for the case W = M∆ and Γρ ≡ 0
is presented in Fig. 1. We used the parametrization of
Ref. [12] for the valence quark contributions, but ne-
glected the D-state contributions (≤ 1%). As in this
case Q2 ≥ −(M∆ −M)2 # −0.086 GeV2, and therefore
the allowed values for Q2 are far way from the Q2 < 0
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where fi− (i = 1, 2) are the quark (isovector) form
factors, that parameterize the electromagnetic photon-
quark coupling [5, 6, 8]. The fi± parameterizations will
be discussed in more detail in the next subsection.
The pion cloud parametrization Gπ

M was established in
the physical regime using the factorization [7]

Gπ
M (Q2;W ) = 3λπGD(Q2)

(

Λ2
π

Λ2
π +Q2

)2

, (3.5)

where GD =
(

1 + Q2

0.71

)−2
, with Q2 in GeV2, has the

usual dipole functional form, and λπ and Λπ are pa-
rameters that define the strength and the falloff of the
pion cloud effects. In particular we take λπ = 0.441 and
Λ2
π = 1.53 GeV2 following Refs. [7, 12]. More details

of the model in the physical regime (W = M∆) can be
found in Refs. [6, 7]. Since the pion cloud parameteri-
zation given by the right-hand-side of Eq. (3.5) has no
explicit dependence on M∆, in its extension to W != M∆

we consider no explicit dependence on W either. Then,
for W != M∆ our choice was to keep Gπ

M independent of
W , that is Gπ

M (Q2;W ) = Gπ
M (Q2;M∆), and the variable

W could have been dropped in the Eq. (3.5).
A general comment about the decomposition (3.1) is in

order. In the spectator framework the component GB
M ,

given by Eq. (3.2), is limited by the condition I(0) ≤ 1,
which follows from the normalization of the nucleon and
∆ radial wave functions and the Cauchy-Schwartz-Hölder
inequality. This implies that GB

M (0,M∆) ≤ 2.07 [6].
Since the experimental value is G∗

M (0,M∆) # 3 it fol-
lows that the description of the reaction near Q2 = 0 is
not possible, unless the contribution of the pion cloud is
significant: more than 30% of the total result. The under-
estimation of G∗

M (0,M∆) is a result common to several
models based on constituent quark degrees of freedom
alone [6].

A. Quark current

In the spectator quark model the electromagnetic in-
teraction with the quarks is represented in terms of Dirac
and Pauli electromagnetic form factors, f1± (Dirac) and
f2± respectively, for the quarks [5, 6, 8]. Using the vector
meson dominance (VMD) mechanism, those form factors
are parametrized as

f1±(q
2) = λq + (1− λq)

m2
v

m2
v − q2

− c±
M2

hq
2

(M2
h − q2)2

f2±(q
2) = κ±

{

d±
m2

v

m2
v − q2

+ (1 − d±)
M2

h

M2
h − q2

}

,

(3.6)

where mv is a light vector meson mass, Mh is a mass of
an effective heavy vector meson, κ± are quark anomalous
magnetic moments, c±, d± are mixture coefficients and
λq a parameter related with the quark density number in

deep inelastic scattering [5]. In the applications we take
mv = mρ (# mω), to include the physics associated with
the ρ-meson, and Mh = 2M (twice the nucleon mass) for
effects of meson resonances with a larger mass than the
ρ. Note that both functions f1− and f2− have a pole at
q2 = mρ and at q2 = M2

h . Hereafter we will refer to these
poles as ρ-poles and Mh poles, respectively.
The parametrization (3.6) is particularly useful for

applications of the model to the lattice QCD space-
like regime. In fact, the decomposition of the current
into contributions from the vector meson poles (mρ and
Mh = 2M) is very convenient for a extension of the model
to a regime where those poles can be replaced by the mρ

and M values given by the lattice calculations, without
introducing any additional parameters. Examples of suc-
cessful applications to the lattice regime can be found in
Refs. [8, 12, 13, 18]. In Refs. [12, 13], in particular, one
can see how well the model describes the lattice data
from Ref. [40] for the γ∗N → ∆ reaction, particularly
for pion masses mπ > 400 MeV where the pion cloud
effects Gπ

M are suppressed. The valence quark contribu-
tion [7, 13] is also compatible with the estimation of the
bare contribution from the EBAC model [41]. The suc-
cessful description of the G∗

M lattice data shows that the
valence quark calibration of our model is under control.
To stress the first problem of the extension of (3.6) to

the case q2 > 0, in Eq. (3.6), we used explicitly the vari-
able q2 instead of the variable Q2 employed in Refs. [5–
7]: singularities appear at q2 = m2

ρ and q2 = M2
h . The

larger poles are not problematic for moderated W , since
as shown in Appendix A, q2 ≤ (W − M)2. But the
case q2 = m2

ρ has to be taken with care. Such pole is a
consequence of having the ρ meson as a stable particle,
with a zero mass width. One can overcome this limita-
tion by introducing a finite width Γρ in the ρ-propagator
m2

ρ/(m
2
ρ− q2), with the replacement mρ → mρ− i

2Γρ. A
non-zero width Γρ leads then to the substitution

m2
v

m2
v − q2

→
m2

ρ

m2
ρ − q2 − imρΓρ

→
m2

ρ

[

(m2
ρ − q2) + imρΓρ

]

(m2
ρ − q2)2 +m2

ρΓ2
ρ

. (3.7)

Note that this procedure induces an imaginary part in
the bare quark contributions for the form factors. The
ρ-width Γρ is in fact a real function of q2 defined only
for q2 > 0, as we discuss next, and therefore the results
in the spacelike regime are unaffected by the redefinition
(3.7).
The ρ width can be measured only for the physical

decay of the ρ, when q2 = m2
ρ. The experimental value

is Γ0
ρ = Γρ(m2

ρ) = 0.149 GeV (PDG) [42]. For q2 ≥ 0
one has to consider some parametrization for Γρ(q2). An
usual parametrization is [43–45]:

Γρ(q
2) = Γ0

ρ

(

q2 − 4m2
π

m2
ρ − 4m2

π

)3/2
mρ

q
θ(q2 − 4m2

π), (3.8)
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q2 = mρ and at q2 = M2

h . Hereafter we will refer to these
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to a regime where those poles can be replaced by the mρ

and M values given by the lattice calculations, without
introducing any additional parameters. Examples of suc-
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can see how well the model describes the lattice data
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for pion masses mπ > 400 MeV where the pion cloud
effects Gπ
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M lattice data shows that the
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able q2 instead of the variable Q2 employed in Refs. [5–
7]: singularities appear at q2 = m2
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larger poles are not problematic for moderated W , since
as shown in Appendix A, q2 ≤ (W − M)2. But the
case q2 = m2

ρ has to be taken with care. Such pole is a
consequence of having the ρ meson as a stable particle,
with a zero mass width. One can overcome this limita-
tion by introducing a finite width Γρ in the ρ-propagator
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ρ− q2), with the replacement mρ → mρ− i
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. (3.7)

Note that this procedure induces an imaginary part in
the bare quark contributions for the form factors. The
ρ-width Γρ is in fact a real function of q2 defined only
for q2 > 0, as we discuss next, and therefore the results
in the spacelike regime are unaffected by the redefinition
(3.7).
The ρ width can be measured only for the physical

decay of the ρ, when q2 = m2
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is Γ0
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FIG. 1: γ∗N → ∆(1232) magnetic form factor in the timelike
and spacelike region given by the model of Ref. [12]. The data
for Q2 > 0 is the same as the one presented in Ref. [12]. The
data for Q2 = 0 is from Ref. [46]. The dashed line represents the
contributions of the valence quark core (bare contribution). The
solid line is the result of the sum of valence quarks and pion cloud
contributions.

poles, the corrections due to the imaginary components
are small. In the figure we show also physical data for
Q2 > 0 and the result for Q2 = 0 from Ref. [46].

2. χPT motivated model (model 2)

Instead of Eq. (3.5) for the pion cloud effect we can
use a different parametrization, based in a different com-
bination of multipole functions. For instance, in the two-
component model from Refs. [19, 37] the contribution
from the pion cloud is proportional to the function Fρ,
interpreted as the ρ−propagator, derived from χPT. This
function Fρ was presented in Refs. [35, 37, 38] taking into
account the pion loop contributions to the ρ−propagator.
Here we simplified the exact expression in those refer-
ences by assuming its limit when q2 " 4m2

π, and using
the normalization Fρ(0) = 1. For Q2 = −q2 > 0 we
obtained then

Fρ(q
2) #

m2
ρ

m2
ρ +Q2 + 1

π

Γ0
ρ

mπ
Q2 log Q2

m2
π

. (3.15)

In the previous equation, the physical ρ-width Γ0
ρ was

taken to be Γ0
ρ = 0.149 GeV. Reference [19], uses instead

Γ0
ρ = 0.112 GeV.
Equation (3.15), derived in the low q2 chiral pertur-

bation regime, has a faster falloff for the ρ-propagator

[with 1/(Q2 log Q2

m2
π
)] than model 1 [with 1/Q2] for large

Q2. We used it here to explore alternative parametriza-
tions to model 1 for the pion cloud contributions. The
parametrization for the pion cloud contribution (3.5) is

proportional to the dipole factor
(

Λ2
π

Λ2
π+Q2

)2
, where Λπ
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FIG. 2: Comparing the dipole form factor GD with the function
Fρ(Q2) given by Eq. (3.15).

is a large cutoff, and also to GD, the dipole form fac-
tor. Although the dipole factor depending on Λπ was
chosen phenomenologically and determined by a fit to
the data, one has no reason a priori to use the particu-
lar form of GD to parameterize an extra falloff1 of Gπ

M .
The inclusion of GD was motivated by the traditional
convention of dividing the form factor G∗

M by 3GD when
showing results. With the parametrization (3.5) one has
an asymptotic dependence of Gπ

M ∝ 1/Q8.
We note that in the spacelike region where the pion

cloud effects are more important, 0 < Q2 < 1 GeV2, the
functions GD and Fρ give very similar results, as seen in
Fig. 2. This suggests that one can also use

Gπ
M (Q2) = 3λπFρ(q

2)

(

Λ2
π

Λ2
π − q2

)2

, (3.16)

with

Fρ(q
2) =

m2
ρ

m2
ρ − q2 − 1

π

Γ0
ρ

mπ
q2 log q2

m2
π
+ i

Γ0
ρ

mπ
q2

, (3.17)

to extend Eq. (3.15) to the timelike kinematics.2 The
imaginary part in Eq. (3.17) is a consequence of two pion
production (or transition ρ → 2π) which is possible in
the timelike region when q2 ≥ 4m2

π.
We will call the model defined by Eq. (3.16) model

2. One implication of the new form for the pion cloud

1 The function GD provides a good approximation for the behav-
ior of the nucleon electromagnetic form factor at low Q2.

2 In the transformation from Eq. (3.15) to Eq. (3.17) there is an
ambiguity from the factor

log(−1) = iπ + i(2π)t,

where t is an integer. In this case the ambiguity is fixed by the
sign of the imaginary part from Ref. [19].
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FIG. 1: γ∗N → ∆(1232) magnetic form factor in the timelike
and spacelike region given by the model of Ref. [12]. The data
for Q2 > 0 is the same as the one presented in Ref. [12]. The
data for Q2 = 0 is from Ref. [46]. The dashed line represents the
contributions of the valence quark core (bare contribution). The
solid line is the result of the sum of valence quarks and pion cloud
contributions.

poles, the corrections due to the imaginary components
are small. In the figure we show also physical data for
Q2 > 0 and the result for Q2 = 0 from Ref. [46].
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and spacelike region given by the model of Ref. [12]. The data
for Q2 > 0 is the same as the one presented in Ref. [12]. The
data for Q2 = 0 is from Ref. [46]. The dashed line represents the
contributions of the valence quark core (bare contribution). The
solid line is the result of the sum of valence quarks and pion cloud
contributions.

poles, the corrections due to the imaginary components
are small. In the figure we show also physical data for
Q2 > 0 and the result for Q2 = 0 from Ref. [46].
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We will call the model defined by Eq. (3.16) model

2. One implication of the new form for the pion cloud

1 The function GD provides a good approximation for the behav-
ior of the nucleon electromagnetic form factor at low Q2.

2 In the transformation from Eq. (3.15) to Eq. (3.17) there is an
ambiguity from the factor

log(−1) = iπ + i(2π)t,

where t is an integer. In this case the ambiguity is fixed by the
sign of the imaginary part from Ref. [19].

F.	  Iachello,	  A.D.	  Jackson,	  and	  Landé,	  PL	  43,	  191	  (1973	  
F.	  Dohrman	  et	  al,	  Eur.	  Phys.	  J.	  A45,	  401,	  (2010)	  
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FIG. 5: Pion cloud contributions (Gπ
M ) for the G∗

M form factor (real and imaginary parts). The results from models 1 and 2 are shown.

terfere crucially and determine the structure of the final
amplitude.

Later, we will discuss the applicability of the model
for W > 1.8 GeV, the effect of the remaining poles, and
the impact in the observables in consideration. We em-
phasize that any extension of the ∆ form factors to the
timelike region has to rely on models and cannot be di-
rectly estimated from experimental data only. It is then
important to compare our model with models with a sim-
ilar content, such as the two-component quark model of
Ref. [19], also defined in the timelike region. In this last
model the contribution from the coupling to the quark
core (valence contribution) is 0.3% near Q2 = 0 (99.7%

of pion cloud), while in our model one has 55.9% (44.1%
of pion cloud). This significant difference between the
contributions of the quark core is due to a different, and
somewhat arbitrary, classification of the two effects. In
the model of Ref. [19, 35] the term from the pion cloud
is also classified as an effective part of the VMD mecha-
nism, since it is proportional to the function Fρ for the ρ
propagator. Therefore, in that model the VMD mecha-
nism/pion cloud term is the only relevant effect [19, 35].
In our formalism, the coupling with the quarks is cali-
brated directly by a VMD parametrization and although
it gives the dominant contribution, it is not the only one
to affect the results. Our model has the advantage of

= ?	  
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FIG. 6: Real and imaginary components of the form factor G∗

M
for model 2.

having been tested successfully by the lattice QCD simu-
lations (in a regime where the pion cloud is small), and of
agreeing with the EBAC data analysis for the bare quark
core contributions to the pion photoproduction data [12].
These tests suggest that our estimation of the quark core
structure is under control, since the model is largely con-
strained in a variety of kinematic domains. Another im-
portant point is that our model allows a direct physical
interpretation of the parameters involved, in terms of the
range of the baryon wave functions.

B. Results for ΓγN (W ) and Γe+e−N(W )

We will discuss now the partial widths ΓγN (W ) and
Γe+e−N (W ). We will also show ΓπN (W ), given by
Eq. (2.3), together with the calculation of g∆(W ), de-
fined by Eq. (2.1).
We start by showing in Fig. 7 the function

dΓ
e+e−N

dq (W ; q) for the cases W = 1.232, 1.500 and 1.800
GeV. This figure includes the results from model 1
(dashed line), model 2 (solid line) and also the result
of a calculation where the form factor G∗

M is taken as
constant, defined by the value of G∗

M (W, 0) at the pole
W = M∆ (dotted line), given by the experimental value
[G∗

M (Q2) ≡ G∗
M (M∆, 0) " 3.0]. This last case was also

considered in Ref. [19] and it is useful as a reference for
the q2 dependence of our results. The figure illustrates
that, in line with the results in the previous subsection,
for model 1 Γ′

e+e−N (q,W ) is enhanced for large q and
large W values (see result for W = 1.800 GeV).
To determine the di-lepton production width,

Γe+e−N (W ), one has to integrate Eq. (2.11) using
Eq. (2.10). This is equivalent to calculate the integral of
the functions represented in Fig. 7 for each value of W
in the interval [2me,W −M ]. Therefore Γe+e−N (W ) = 0
when W < M + 2me. The calculation of the function
ΓγN(W ) proceeds through Eq. (2.8). The results
obtained for the two widths within the three models
discussed before, are in Fig. 8.
Finally, ΓπN (W ) is estimated using Eq. (2.3) and the

function

qπ(W ) =

√

[(W +M)2 −m2
π] [(W −M)2 −m2

π]

2W
,(4.1)

defined for W ≥ M + mπ and qπ(W ) = 0 otherwise.
ΓπN (W ) is then a positive function for W > M +mπ. In
Fig. 9 we present the three partial widths obtained with
model 2, the one that we favor for the reasons explained
in the previous subsection.
We turn now to the ∆ mass distribution function

g∆(W ) defined by Eq. (2.1). As the channel ∆ → πN
is largely dominant, Γtot(W ) " ΓπN(W ) and the nor-
malization of g∆(W ) can be done in that approxima-
tion. Considering ΓπN (M∆) " Γtot(M∆) " Γexp

∆ , with
the experimental result Γexp

∆ " 0.118 GeV [42], one has
A = 0.7199.
The results for the partial contributions to g∆(W ) are

given by

g∆→γN(W ) =
ΓγN(W )

Γtot(W )
g∆(W )

g∆→e+e−N (W ) =
Γe+e−N (W )

Γtot(W )
g∆(W ), (4.2)

and are shown in Fig. 10 for the constant form factor
model (dotted line), model 1 (dashed line) and model 2
(solid line). The total results for g∆(W ) are shown in
Fig. 11, for the model 2.
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To	  understand	  the	  pion	  cloud:	  	  

Pion	  form	  factor	  
	  	  	  	  	  	  	  	  	  	  	  



Mass	  funcGon	  
Connec1on	  to	  LQCD	  



Mass function (Preliminary)
• scalar-vector mixing parameter λ = 2: linear confining potential does not

contribute to self energy

• constant interaction only contributes to A

⇒ mass function M(p2) = C (6+2ξ)
8 mh2(m2)h2(p2) +m0

• M(m2) = m determines constituent quark mass m

• 3 parameters C , Λ = 2.04 GeV and mχ = 0.31 GeV fixed by fit to lattice QCD
data at negative p2 in chiral limit

Lattice QCD data from Bowman et al., PRD, 71, 2005 extrapolated to chiral limit
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Mass Functions for Finite m0 (Preliminary)
Lattice QCD data: [Bowman et al., PRD, 71, 2005]

m0 = 0.016 GeV
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Predic1ons	  



Pion Form Factor [Gross, Peña, Stadler, EB; in preparation]

Electromagnetic pion current in relativistic
impulse approximation: e.g.

γ

π

q̄

q

π

q̄
jµ

h(p2) h(p′2)jµ

S(p) S(p′)
h2S(p) h′2S(p′)

h−1jµh′−1

≡

(reduced) off-shell quark current
jµR=f (γµ + κ iσµνqν

2m ) + δ′Λ′γµ + δγµΛ+ gΛ′γµΛ

Λ(′) =
M(p(′))−/p(′)

2M(p(′))
; f , δ(′), g chosen such that jµR satisfies Ward-Takahashi identity

⇒ pion current conserved
[Surya, Gross, PRC 53, 1996]

Elmar Biernat (CFTP/IST Lisbon) Quark mass function September 9, 2013 9 / 12

Pion Form Factor [Gross, Peña, Stadler, EB; in preparation]
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jµR=f (γµ + κ iσµνqν

2m ) + δ′Λ′γµ + δγµΛ+ gΛ′γµΛ

Λ(′) =
M(p(′))−/p(′)

2M(p(′))
; f , δ(′), g chosen such that jµR satisfies Ward-Takahashi identity

⇒ pion current conserved
[Surya, Gross, PRC 53, 1996]
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Spectator	  quark-‐diquark	  model	  :	  It	  is	  covariant	  and	  
accomodates	  angular	  momentum	  descrip1on.	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

At	  	  	  	  	  	  	  	  	  	  	  	  	  	  consistent	  with	  EBAC	  data	  analysis	  based	  
on	  a	  coupled	  channel	  Dynamical	  Model,	  and	  also	  
Large	  NC	  limit.	  	  

At	  high	  	  	  	  	  	  consistent	  with	  experimental	  data,	  and	  
also	  LQCD	  in	  the	  large	  pion	  mass	  regime.	  	  	  

	  

	  

	  	  	  	  	  	  

	  

	  

	  
	  

1	  

Summary	  	  	  	  

2	  

3

4	  

Q2 ≈ 0

Several	  applica1ons:	  Δ(1232),	  N*(1440),	  N*(1535),	  
N*(1520),	  Δ(1600),	  	  strange	  sector,	  DIS.	  	  
	  
Dilepton	  mass	  	  spectrum	  sensiGve	  to	  momentum	  
dependence	  of	  G	  M	  

Q2

5	  



	  	  	  	  	  	  	  	  	  	  To	  understand	  the	  pion	  cloud	  is	  cri1cal	  

This	  leads	  to	  us	  to	  calculate	  the	  Pion	  form	  factor	  	  

	  

First	  results	  for	  of	  CST	  model	  in	  Minkowski	  space	  	  

with	  dynamical	  chiral	  symmetry	  breaking	  +	  covariant	  
generaliza1on	  of	  linear	  &	  constant	  vector	  poten1al	  
with	  parameters	  fixed	  from	  Layce	  data	  for	  mass	  
func1on.	  

	  

Pion	  Form	  factor	  independent	  of	  pion	  mass	  in	  the	  
high	  Q2	  region	  (Chiral	  symmetry).	  

	  

	  

	  	  	  	  	  	  

	  

	  

	  
	  	  

6	  



The	  two	  strategies,	  models	  and	  LQCD,	  are	  made	  
compaGble.	  

	  
	  
*	  
	  



The	  end	  not	  





Small	  Q2	   Large	  Q2	  

Large	  M
	  

Sm
all	  M

	  











Extension	  to	  1melike	  region	  





Extension	  to	  1melike	  region	  Q2 < 0



Q2 ≥ −(W −M )2
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Small	  μ	   Large	  μ	  



Pion Vertex near Chiral Limit
[Gross, Peña, Stadler, EB; in preparation]

P = 0 P = 0 P = 0

PPP

=

=

+

+

1

2

1

2

1

2

1

2

mπ != 0

⇒ approximated pion vertex function Γ(p,P) ∼ γ5h(p2)
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Scalar	  part	  of	  1	  body	  equa1on	  and	  two	  body	  
equa1on	  are	  iden1cal	  	  	  	  

NJL-Mechanism for SχSB
• chiral limit (m0 = 0): scalar part (s.p.) of one-body equation for A and

bound-state equation for a massless pion are identical

1
2

1
2+=

S−1(p)s.p. A(p2)

−1

P = 0

P = 0

P = 0

= +1
2

1
2

P = 0 P = 0 P = 0= 1
2 + 1

2

γ5A

γ5A0 γ5A0

γ5G γ5G0 γ5G0

⇒ a massless pion state exists! Goldstone pion in chiral limit associated with
spontaneous chiral symmetry breaking

• m0 > 0: the equation for A ensures that there is no solution of the bound-state

equation for a massless pion [Gross, Milana; PRD 43, 1991]
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Chiral	  symmetry	  	  	  
NJL-Mechanism for SχSB

• chiral limit (m0 = 0): scalar part (s.p.) of one-body equation for A and
bound-state equation for a massless pion are identical

1
2

1
2+=

S−1(p)s.p. A(p2)

−1

P = 0

P = 0

P = 0

= +1
2

1
2

P = 0 P = 0 P = 0= 1
2 + 1

2

γ5A

γ5A0 γ5A0

γ5G γ5G0 γ5G0

⇒ a massless pion state exists! Goldstone pion in chiral limit associated with
spontaneous chiral symmetry breaking

• m0 > 0: the equation for A ensures that there is no solution of the bound-state

equation for a massless pion [Gross, Milana; PRD 43, 1991]
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A	  massless	  pion	  exists!	  Goldstone	  boson.	  

Bare	  Quark	  mass	  =0	  



Pion and Chiral Symmetry

• Pion requires consistency with chiral symmetry: NJL-type mechanism for SχSB

• note: linear confining kernel part does not contribute to

1 scalar part A (dynamical quark mass) of one-body CST equation
2 two-body CST equation in chiral limit for zero mass pion

⇒ decoupling of confinement from chiral-symmetry breaking!
[Gross, Milana; PRD 45, 1992]

⇒ Lorentz structure of linear confining potential can have scalar component:
[Ikeda, Iida; PoS, Lattice 2010. Koike, PLB 216, 1989. Tiemeijer, Tjon; PRC 42, 1990; PLB 277, 1992; PRC 48, 1993]

VL ∝ σ[λ11 ⊗ 12 − (1− λ)γµ
1 ⊗ γ2µ]VL

VC ∝ Cγµ
1 ⊗ γν

2

[

gµν − (1− ξ)
(p−k)µ(p−k)ν

(p−k)2

]

VC

ξ gauge parameter

Elmar Biernat (CFTP/IST Lisbon) Quark mass function September 9, 2013 5 / 12

qq̄ Interaction Kernel (talk A. Stadler)
[Gross, Peña, Stadler, EB; in preparation]

• Manifestly-covariant Minkowski-space generalization of nonrelativistic
linear+constant potential V (r) = σr − C

• ‘linear-plus-constant’ potential kernel:

〈VLφ〉(p) ∝ σh(p2)h[(p − P)2]
∫

d3k
2Ek

1
(p−k̂)4

h[(k̂ − P)2]
[

φ(k̂)− φ(p̂R)
]

〈VCφ〉(p) = − C
m
h(p2)h((p − P)2)φ(p)

• use phenomenological form factors h(p2) ∼ 1/(Λ2 − p2)α for each off-shell quark
line at interaction vertex
[Gross, Riska, PRC 36, 1987; Surya, Gross, PRC 53, 1996]

h(p2) h(p2) h2(p2)S(p)S(p)

≡
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Kernel	   Mass function (Preliminary)
• scalar-vector mixing parameter λ = 2: linear confining potential does not

contribute to self energy

• constant interaction only contributes to A

⇒ mass function M(p2) = C (6+2ξ)
8 mh2(m2)h2(p2) +m0

• M(m2) = m determines constituent quark mass m

• 3 parameters C , Λ = 2.04 GeV and mχ = 0.31 GeV fixed by fit to lattice QCD
data at negative p2 in chiral limit

Lattice QCD data from Bowman et al., PRD, 71, 2005 extrapolated to chiral limit

!

!

!

!!

!
!

!
!
!
!

!

!!!
!!

!

!

!

!

!!
!!!

!

!!!!
!

!
!
!!
!!!

!
!!!
!
!
!

!
!
!
!
!!!
!!!!

!

!
!!
!
!!
!

!

!

!

!

!
!!
!!
!
!!
!
!!
!
!!!!!
!!!!
!
!!
!!!!!!
!
!!!
!

!
!
!!
!!
!

!!
!

!

!!
!
!!!
!!
!!!
!!
!!

!

!!!

!
!!!!
!

!
!
!

!!!
!
!

!

!!!!!
!!!!!!
!
!!!
!
!!
!!

!
!!
!!
!
!!
!
!
!
!!
!!

!!!
!

!
!

!!
!
!

!
!!
!!!

!
!
!!
!!!!
!
!
!

!
!
!
!
!

!

!

!

!
!

!
!
!

!
!
!
!!
!

!!
!

!

!
!
!
!
!
!

!

!

!
!!
!
!
!

!

!
!
!

!

!!

!

!!

!
!!

!10 !5 0
0.0

0.1

0.2

0.3

0.4

p 2 ! GeV2 "

M
!
p
2
"!
G
eV
"

Elmar Biernat (CFTP/IST Lisbon) Quark mass function September 9, 2013 7 / 12

Cons1tuent	  quark	  mass	  	  m	  



Coordinate-‐space	  
charge	  density	  in	  the	  
	  x-‐y	  plane,	  for	  spin	  
projec1on	  +3/2.	  

Total	  

D-‐states	  

	  G.	  Ramalho,	  M.	  T.	  P.	  and	  A.	  Stadler,	  PHYSICAL	  REVIEW	  D	  86	  093022	  (2012)	  



Proton	  and	  Neutron	  form	  factors	  

χ 2 =1.36
PHYSICAL	  REVIEW	  C	  77,	  015202	  (2008)	  G.	  Ramalho,	  M.	  T.	  P.	  and	  Franz	  Gross,	  

Structure	  func1on	  

PHYSICAL	  REVIEW	  D	  85,	  093006	  (2012)	  Franz	  Gross,	  G.	  Ramalho,	  M.	  T.	  P.	  	  



Also:	  	  
	  
Δ(1600),	  	  
Baryon	  decuplet	  
DIS	  

Descrip1on	  of	  general	  size	  and	  shape	  of	  proton	  and	  neutron	  
structure	  func1ons	  	  

PHYSICAL	  REVIEW	  D	  85,	  093006	  (2012)	  Franz	  Gross,	  G.	  Ramalho,	  M.	  T.	  P.	  	  

Model	  1-‐	  P	  18%	  	  D	  3%	  	  	  …..	  No	  P	  wave	  
Model	  2-‐	  P	  0.6%	  D	  35%	  -‐-‐-‐-‐	  No	  P	  wave	  





N→ N *(1440)



�The	  orthogonality	  condi1on	  fixes	  term	  	  
of	  the	  radial	  excita1on.	  
	  
�Quark	  core	  amplitude	  describes	  high	  	  
data.	  
	  	  
	  
	  
	  

N→ N *(1440)

G.	  Ramalho,	  K.	  Tsushima,	  PHYSICAL	  REVIEW	  81,	  074020	  (2010)	  

�Pion	  cloud	  es1mated	  as	  difference	  
between	  MAID	  fit	  and	  the	  quark	  core.	  
	  
�Error	  bands	  from	  error	  bars	  in	  the	  
	  data	  
	  
	  	  
	  
	  
	  

Q2



N→ N *(1535)



N(1535)	  





N→ N *(1520)





Coupling	  core	  spin	  states	  	  
with	  	  orbital	  angular	  momentum	  states	  	  	  

S = 1
2
, S = 3

2

J = 3
2
→ S = 3

2
⊗ L = 0; S = 3

2
⊗ L = 2; S = 1

2
⊗ L = 2

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  S	  state	  	  	  	  	  	  D3	  state	  	  	  	  	  	  D1	  state	  	  	  	  	  

Delta	  



LQCD	  data:	  	  Gockeler	  et	  al.	  PRD	  71,	  034508	  (2005)	  











Vector	  meson	  dominance	  
	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

	  

!	  



Not	  always	  #	  parameters	  larger	  means	  beeer	  descripGon	  	  	  	  











Delta	  



4:	  GE0(Q2)	  	  	  	  	  	  GM1(Q2)	  	  	  	  	  	  	  GE2(Q2)	  	  	  	  	  GM3(Q2)	  

	  

	  
PRC77	  015202	  (2008);	  	  PRD78	  114017(2008);	  	  	  JPG36	  085004	  (2009)	  

γΔ→Δ



D	  state	  correc1ons	  

from	  overlap	  

Integrals	  between	  	  

S	  and	  D	  states	  

a	  and	  b	  small	  
γΔ→Δ



D	  state	  correc1ons	  

from	  overlap	  

Integrals	  between	  	  

S	  and	  D	  states	  

a	  and	  b	  small	  
γΔ→Δ



γΔ→Δ



G.	  Ramalho,	  M.	  T.	  P.,	  A.	  Stadler	  arXiv:	  1297.4392,	  Phys.	  Rev.	  D	  (to	  appear)	  







By	  design,	  a	  quark-‐diquark	  system	  in	  S	  wave	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Di-‐quark	  first	  






