Features - Argand Diagram

[J.-R. Argand, Essai sur une maniere de representer les quantites imaginaires dans les constructions geometriques (Sans nom d'auteur) (Paris, 1806) I vol. petit in-8°, 78 pages]

[J. Ashkin and S. H. Vosko, Graphical method for obtaining phase shifts from the experimental data on meson-nucleon scattering, Phys Rev 91, 1248 (1953)]

Igor Strakovsky

10/7/2013

[R. Arndt, W. Briscoe, IS, R. Workman, Phys Rev C 74, 045205 (2006)]

Complex Energy Plane for S11

[R. Arndt, W. Briscoe, IS, R. Workman, M. Pavan, Phys Rev C 69, 035213 (2004)]

• Interpretation of PW amplitudes may appear not simple

 $\pi N S_{11}$

RRTF Workshop, Darmstadt, Germany, Oct 2013

10/7/2013

Igor Strakovsky

Where is $\Delta(1232)P_{33}$?

- ReA = 0 at 'crossover' energy
- But crossover energy is NOT mass

Ampl	Crossover	ImA	σ _{reac}
⊢	1231.32	1.000	0.00
π+ p	1231.17	1.000	0.00
H	1231.38	0.994	1.12
π⁻ p	1231.38	0.994	1.12

• <u>BW-fit [+ bgrd] yields</u>: $M_{\Delta} = 1232.86 \pm 0.74 \text{ MeV}$ $\Gamma_{\Delta} = 118.06 \pm 1.20 \text{ MeV}$ • <u>Pole</u>:

$\mathcal{N}(1440)^{****} - What is Known$

[J. Beringeret a/[PDG] Phys Rev D 86, 010001 (2012)]

Two-faced Janus Roman God of Gates & Doors Dick Arndt: ``This is one of mysterious Resonances"

PDG PWA-Po	le Ref	Re(MeV)	-2xlm(MeV))
	BnGa12 SAID-SP06 KH93 CMU80	1370 ± 4 1359 1388 1385 1375±30	190 ± 7 164 166 164 180 ± 40	1 st Riemann sheet 2 nd Riemann sheet
porticle dota group	V Ref	Mass(MeV)	Width(Me	V) BR

$$f(E) = \frac{k}{\left(E^2 - M^2\right)^2 + M^2\Gamma^2} \begin{bmatrix} \mathsf{M} = & \mathsf{ReW}_\mathsf{p} \\ \Gamma = \mathsf{2*ImW}_\mathsf{p} \end{bmatrix}$$

RRTF Workshop, Darmstadt, Germany, Oct 2013

Complex Energy Plane for **P**₁₁

[R. Arndt, W. Briscoe, IS, R. Workman, Phys Rev C 74, 045205 (2006)]

 $\pi \mathcal{N} P_{11}$

Sheet 1 is the sheet reached most directly the **real axis**.

Sheet 2 is behind the $\pi\Delta$ Branch Cut.

10/7/2013

$\mathcal{N}(1710)^{***}$ – What was Known

[J. Beringer et a/[RPP] Phys Rev D 86, 010001 (2012)]

- Spread of Γ , Γ_{π}/Γ , & Γ_{η}/Γ , selected by **PDG**, is very large
- Total width is too large, ≥ 100 MeV

10/7/2013

10

Igor Strakovsky

P₁₁ Puzzle above N(1440)

[R. Arndt, W. Briscoe, M. Paris, IS, R. Workman, Chinese Phys C 33, 1063 (2009)]

Igor Strakovsky

Breit-Wigner Resonances

Negative energy state (**bound states**) are stationary states and obey the

stationary Schroedinger equation.

Consider the expansion of the **phase shift** tan δ_l for $p \rightarrow 0$

$$\tan \delta_{\ell} \xrightarrow{p \to 0} \frac{(\ell+1) - R \gamma_0(R)}{\ell + R \gamma_0(R)} \frac{(pR)^{2\ell+1}}{[1 \cdot 3 \cdot 5 \cdots (2\ell-1)]^2 (2\ell+1)}$$

The denominator vanishes for $R \gamma_0(R) = -I$. Thus $\tan \delta_1 \rightarrow \infty$, i.e., $\tan \delta_1 = \pi/2 + n\pi$. This condition occurs for a specific momentum p_R at a specific energy $E_R = p_R/2\mu$.

Or
$$\tan \delta_{\ell} = \frac{1}{E - E_R} \frac{\Gamma_l}{2}$$
 with $\Gamma_l = \frac{2(pR)^{2\ell+1}}{[(2\ell - q)!!]^2 \frac{d(\gamma R)}{dE}}$.

This leads to the **BW** resonance form of the amplitude $kf_{\ell} = e^{i\delta_{\ell}} \sin \delta_{\ell} = \frac{\Gamma_{\ell}/2}{E_R - E - i\Gamma_{\ell}/2}$

Physically, a sharp peak in the energy dependence of the cross section Indicates a dynamical origin, such as a strong attraction at that energy.

If the phase shift passes rapidly through $\pi/2$ ($|\pi|$), this probably means a resonance, i.e., beam and target particle binding temporarily and then breaking up again. Resonances are poles in $f_1(E)$ at $E = E_R - i\Gamma_l/2$. This means $p = \sqrt{2\mu E} \approx p_r - i\frac{\mu\Gamma_l/2}{n_r}$ (for small Γ_l)

If Γ_{I} is small, the pole is right below the real positive **p**-axis. When taking $E = p^{2}/2\mu$, bound state poles map to the **first** Riemann sheet, resonance poles move into the lower half of the **second** (unphysical) Riemann energy sheet.

10/7/2013

Breit-Wigner Resonances

The resonance corresponding to the field **S** is related to a pole on the (unphysical) **second Riemann sheet**. We denote this pole as

$z = M_{pole} - i\Gamma_{pole}/2$,

where M_{pole} is usually referred to as the pole mass of the resonance S.

A plot of the multi-valued imaginary part of the complex logarithm function, which shows the branches.

As a complex number **z** goes around the origin, the imaginary part of the logarithm goes **up** or **down**.

This makes the origin a *branch point* of the function.

Igor Strakovsky

