Features - Argand Diagram

[J.-R. Argand, Essai sur une maniere de representer les quantites imaginaires dans les constructions geometriques (Sans nom d'auteur) (Paris, 1806) I vol. petit in-8, 78 pages]
[J. Ashkin and S. H. Vosko, Graphical method for obtaining phase shifts from the experimental data on meson-nucleon scattering, Phys Rev 91, 1248 (1953)]

Argand Plots

[R. Arndt, W. Briscoe, IS, R. Workman, Phys Rev C 74, 045205 (2006)]

- Crosses indicate every $50 \mathbf{M e V}$ step in W

4

- Dots correspond to BW, $\mathbf{W}_{\mathrm{R}}=\mathrm{M}_{\mathrm{R}}$
- Every PW has a single BW except S_{11} and F_{15} which have two BWs

Complex Energy Plane for S_{11}

[R. Arndt, W. Briscoe, IS, R. Workman, M. Pavan, Phys Rev C 69, 035213 (2004)]

- Interpretation of PW amplitudes may appear not simple

ImT-T*T ≥ 0 [unitarity boundary]

- BWs:

个 $\begin{aligned} & W_{R}=1546.7 \pm 2.2 \mathrm{MeV} \\ & \Gamma=178.0 \pm 12.0 \mathrm{MeV}\end{aligned}$

个 $\quad W_{R}=1651.2 \pm 4.7 \mathrm{MeV}$
$\Gamma=130.6 \pm 7.0 \mathrm{MeV}$

- Poles [same, $2^{\text {nd }}$ sheet]:

$$
\begin{aligned}
& \mathrm{W}=1526-\mathrm{i} 65 \mathrm{MeV} \\
& \mathrm{~W}=1653-\mathrm{i} 91 \mathrm{MeV}
\end{aligned}
$$

- Zero:

$$
W=1578-\mathrm{i} 38 \mathrm{MeV}
$$

- Branch-Points:
- ηN thr: $W=1487-\quad i 0 \mathrm{MeV}$
- ρN thr: $\mathrm{W}=1715-\mathrm{i} 73 \mathrm{MeV}$

```
M(Pole) = ReW 
\Gamma(Pole) = 2*ImW 
```


$\pi \mathcal{N} S_{11}$

$\pi \mathcal{N} \mathscr{P}_{33}$

Where is $\Delta(1232) P_{33}$

- ReA = 0 at 'crossover' energy
- But crossover energy is NOT mass

Ampl	Crossover	ImA	$\sigma_{\text {reac }}$
H^{+}	1231.32	1.000	0.00
$\pi^{+} \mathbf{p}$	1231.17	1.000	0.00
H^{-}	1231.38	0.994	1.12
$\pi^{-} \mathbf{p}$	1231.38	0.994	1.12

- BW-fit [+ bgrd] yields:
$M_{\Delta}=1232.86 \pm 0.74 \mathrm{MeV}$
$\Gamma_{\Delta}=118.06 \pm 1.20 \mathrm{MeV}$
- Pole:
$\mathrm{W}=1210.6-\mathrm{i} 49.7 \mathrm{MeV}$

$\mathcal{N}(1440)^{* * * *}-$ What is Known
 [J. Beringeret al [PDG] Phys Rev D 86, 010001 (2012)]

Two-faced Janus Roman God of Gates \& Doors

Dick Arndt: "This is one of mysterious Resonances"

$$
\begin{array}{|l|l|}
\hline f(E)=\frac{k}{\left(E^{2}-M^{2}\right)^{2}+M^{2} \Gamma^{2}} & \begin{array}{c}
\mathbf{M}=\mathrm{ReW}_{\mathrm{p}} \\
\Gamma=\mathbf{2}^{*} \operatorname{ImW} \\
\hline
\end{array} \\
\hline
\end{array}
$$

Complex Energy Plane for \mathscr{P}_{11}

[R. Arndt, W. Briscoe, IS, R. Workman, Phys Rev C 74, 045205 (2006)]

- $1^{\text {st }}$ Riemann sheet

Pole 1: $\mathrm{W}_{\mathrm{p}}=1359-\mathrm{i} 82 \mathrm{MeV}$

- There is a shift between Pole positions at two sheets, due to a non-zero jump on the $\pi \Delta$-cut

$$
M=R e W_{p}
$$

$$
\Gamma=2 * \operatorname{ImW}
$$

- $2^{\text {nd }}$ Riemann sheet

Pole 2: $\mathrm{W}_{\mathrm{p}}=1388-\mathrm{i} 83 \mathrm{MeV}$

10/7/2013

$$
\begin{aligned}
& \text { BW: } W_{R}=1485.0 \pm 1.2 \mathrm{MeV} \\
& \Gamma=248 \pm 18 \mathrm{MeV}
\end{aligned}
$$

Branch-points:

- $\quad \pi \Delta$ thr [$\mathrm{W}=1350-\mathrm{i} 50 \mathrm{MeV}$]
- $\quad \eta \mathrm{N}$ thr [W = 1487-i0 MeV]
$— \pi \Delta$ Branch Cut is two-body and has 2 Riemann sheets
- Sheet 1 is the sheet reached most directly the real axis
- Sheet 2 is behind the $\pi \Delta$ Branch Cut

- $\mathrm{N}(1440)$ is a Resonance which

 manifests itself via 2 Poles at 2 different Riemann sheets(with respect to the $\pi \Delta$ cut)

- Due to nearby $\pi \Delta$ Branch Point, both poles are not far from physical region
- Simple BW is not adequate to such a complex structure
[2 Poles \& 2 Branch-Points $\pi \Delta \& \eta N$]

$\pi \mathcal{N} P_{11}$

Sheet 1 is the sheet reached most directly the real axis.
Sheet $\mathbf{2}$ is behind the $\pi \Delta$ Branch Cut.

WI08

$\mathbf{P}_{11}[\pi \pi]$
$\pi \Delta[1 \mathrm{R}]$ $\rho \mathrm{N}[\mathrm{L}]$
$\eta \mathrm{N}[\mathrm{R}]$

$\mathcal{N}(1710)^{\star * *}$ - What was Known

[J. Beringer et al [RPP] Phys Rev D 86, 010001 (2012)] The latest GWU analysis (ARNDT 06) finds no evidence for this resonance. [R. Arndt, W. Briscoe, IS, R. Workman, Phys Rev C 74, 045205 (2006)] No Pole, No BW, No Sp(W), No $\Delta t(W)$

12.PC PWA-Pole	Ref	$\mathrm{Re}(\mathrm{MeV})$	-2xIm(MeV)	
	BnGa12	1687 ± 17	200 ± 25	
	SAID-SP06		not seen	
	KH93	1690	200	
	CMU90	1698	88	
	CMU80	1690 ± 20	80 ± 20	
P-PCOP-BW	Ref	Mass(MeV)	Width(MeV)	BR
	BnGa12	1710 ± 20	200 ± 18	0.05 ± 0.04
	SAID-SP06		not seen	
	CMU80	1700 ± 50	90 ± 30	0.20 ± 0.04
	KH79	1723 ± 9	120 ± 15	0.12 ± 0.04

- Spread of $\Gamma, \Gamma_{\pi} / \Gamma$, \& Γ_{η} / Γ, selected by PDG, is very large
- Total width is too large, $\geq 100 \mathrm{MeV}$

\mathbb{P}_{11} Puzzle above $\mathcal{N}(1440)$

[R. Arndt, W. Briscoe, M. Paris, IS, R. Workman, Chinese Phys C 33, 1063 (2009)]

$\pi \mathcal{N} F_{15}$

Breit-Wigner Resonances

Negative energy state (bound states) are stationary states and obey the stationary Schroedinger equation.
Consider the expansion of the phase shift tan δ_{1} for $\mathbf{p} \rightarrow 0$

$$
\tan \delta_{\ell} \xrightarrow{p \rightarrow 0} \frac{(\ell+1)-R \gamma_{0}(R)}{\ell+R \gamma_{0}(R)} \frac{(p R)^{2 \ell+1}}{[1 \cdot 3 \cdot 5 \cdots(2 \ell-1)]^{2}(2 \ell+1)}
$$

The denominator vanishes for $\mathbf{R} \gamma_{0}(\mathbf{R})=-\boldsymbol{l}$.
Thus $\tan \delta_{I} \rightarrow \propto$, i.e., $\tan \delta_{I}=\pi / 2+n \pi$.
This condition occurs for a specific momentum p_{R} at a specific energy $E_{R}=p_{R} / 2 \mu$.
Or $\tan \delta_{\ell}=\frac{1}{E-E_{R}} \frac{\Gamma_{l}}{2}$ with $\Gamma_{l}=\frac{2(p R)^{2 \ell+1}}{[(2 \ell-q)!!]^{2} \frac{d(\gamma R)}{d E}}$.

This leads to the BW resonance form of the amplitude $k f_{\ell}=e^{i \delta_{\ell}} \sin \delta_{\ell}=\frac{\Gamma_{l} / 2}{E_{R}-E-i \Gamma_{l} / 2}$
Physically, a sharp peak in the energy dependence of the cross section Indicates a dynamical origin, such as a strong attraction at that energy.
If the phase shift passes rapidly through $\pi / \mathbf{2}(|\pi|)$, this probably means a resonance, i.e., beam and target particle
binding temporarily and then breaking up again.
Resonances are poles in $\mathrm{f}_{\mathrm{l}}(\mathrm{E})$ at $E=E_{R}-i \Gamma_{l} / 2$. This means $p=\sqrt{2 \mu E} \approx p_{r}-i \frac{\mu \Gamma_{l} / 2}{p_{r}}$ (for small Γ_{l})
If Γ_{1} is small, the pole is right below the real positive p -axis. When taking $E=p^{2} / 2 \mu$, bound state poles map to the first Riemann sheet, resonance poles move into the lower half of the second (unphysical) Riemann energy sheet.

Breit-Wigner Resonances

The resonance corresponding to the field \mathbf{S} is related to a pole on the (unphysical) second Riemann sheet. We denote this pole as

$$
z=M_{\text {pole }}-i \Gamma_{\text {pole }} / 2,
$$

where $\mathbf{M}_{\text {pole }}$ is usually referred to as the pole mass of the resonance \mathbf{S}.

A plot of the multi-valued imaginary part of the complex logarithm function, which shows the branches.
As a complex number \mathbf{z} goes around the origin, the imaginary part of the logarithm goes up or down.
This makes the origin a branch point of the function.

$$
\begin{aligned}
& z=r e^{i \theta} \\
& \ln z=\ln r+i \theta
\end{aligned}
$$

