The Production of Baryon Resonances using Real Photons

Andrew Wilson

Universtät Bonn, Bonn, Germany

October 5-12, 2013 EMMI Rapid Reaction Meeting

Currently Known Light Quark Baryons

J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012)

Mass uncertainty only reported for *** and **** resonances

Andrew Wilson

Currently Known Light Quark Baryons

Mass uncertainty only reported for *** and **** resonances

Andrew Wilson

Constituent Quark Models

Constituent Quark Models

Constituent Quark Models

Diquark Models

V. Crede and W. Roberts, Rept. Prog. Phys. 76 (2013) 076301.

Reduces number of states

Possibly restricts too much!

The highlighted states can not be identified in diquark models.

However, all highlighted states are not well established.

Solving QCD Lagrangian on the Lattice

- Unphysical π mass with no guarantee of behavior at physical mass
- Lattice Results similar counting to Symmetric quark models.
- N^* Lowest Lying $\frac{1}{2}^+ < N^*$ Lowest Lying $\frac{1}{2}^-$

Using Chiral perturbation theory to extrapolate. (unreliable so far)

Andrew Wilson

Dynamically Generated Resonances

Reasons for N^* Lowest Lying $\frac{1}{2}^+ < N^*$ Lowest Lying $\frac{1}{2}^ N(1440)\frac{1}{2}^- \rightarrow N\pi$ molecular state? $N(1535)\frac{1}{2}^+ \rightarrow N\eta$, $K\Sigma$ or ΛK molecular state? Possible, mixing with quark model state to shift the observed mass

Andrew Wilson

Andrew Wilson

Resonance Production by Photons

E. Klempt and J. -M. Richard, Rev. Mod. Phys. 82 (2010) 1095.

Andrew Wilson

Expected Mechanisms

- Virtual Meson Interaction (VMD or t-channel)
- Electromagnetic interactions with quark degrees of freedom

Overall Characteristics

- Threshold Baryon Resonance Production
- *t*-channel / diffractive Production
- Multiparticle Final States dominate large energies

Resonance Production by Photons (BnGa)

The helicity amplitudes must be measured independently binned all kinematic variables.

Two-body Final State Polarization Observables

Photon		Target			Recoil nucleon			Target and recoil				
polarization		polarization			polarization			polarizations				
		Х	Υ	Z(beam)	X,	Y'	Z'	X,	X,	Z'	Z'	
								x	Ζ	Х	Z	
unpolarized	σ	-	Т	-	-	Ρ	-	Tx	Lx	Tz	Lz	
linear	Σ	н	(-P) <mark>G</mark>	O _x	(-T)	O _z	(-L _z)	(T_z)	(L_x)	(-T _x)	
circular	-	F	-	E	C _x	-	Cz	-	-	-	-	

Single Polarization Observables Double Polarization Observables

π^{0} Meson Photoproduction : Well known?

0

- Polarized Observables provide more information to constrain PWA solutions.
- G: transversely polarized beam photons / longitudinally polarized protons

0. 800 1000 A. Thiel, Phys. Rev. Lett. 109 (2012) 102001. E_{γ} [MeV] The Production of Baryon Resonances using Real Photons

1200

$\gamma p ightarrow p \pi^+ \pi^-$ (SAPHIR)

Andrew Wilson

$\gamma p \rightarrow p \rho^0$ (SAPHIR)

- Large *t*-channel contribution.
- Some resonance contributions can be seen.
- C. Wu et al., Eur. Phys. J. A 23 (2005) 317.

$\gamma \rho ightarrow ho \pi^0 \pi^0$

Solution 2 has been favored. D_{33} or $\Delta \frac{1}{2}^+$ dotted line P_{11} or $N_2^{1^+}$ dashed line D_{13} or N_{2}^{3-} dashed-dotted D_{33} - D_{13} interference causes

dip between peaks.

Largest Contributions

$$\begin{array}{l} P_{11}: \ N(1440)\frac{1}{2}^+ \to N\pi, \, N\sigma, \, \Delta\pi \, , \, N(1840)\frac{1}{2}^+ \\ D_{13}: \ N(1520)\frac{3}{2}^- \\ D_{33}: \ \Delta(1700)\frac{3}{2}^+ \end{array}$$

$\gamma p \rightarrow p \omega$

My own research \rightarrow to be published soon.

Labeled with incoming photon energy.

 $\gamma \boldsymbol{\rho} \rightarrow \boldsymbol{\rho} \omega$

Labeled with incoming photon energy.

- Large amount of recent photoproduction results in process of being published
- PWA Solution Refinement coming?
- Higher multiplicities and heavier particle final states?

Thank you