Partial-Wave Analysis of Pion Scattering Reactions

Igor Strakovsky The George Wasfington University

- Spectroscopy of Baryons.
- SAID for Baryon Spectroscopy.
$-\pi N$ Elastic Scattering.
- N(1440) $1 / 2^{+}$.
- $\pi \mathrm{N}$ inElastic Scattering.
$-\pi^{-} p \rightarrow \eta p$.
$-\pi^{-} p \rightarrow K Y$.
$-\pi \rightarrow 2 \pi$.
- Pion Photoproduction.
- Pion Electroproduction.

\mathcal{A} bit of \mathcal{H} istory.

Angular Distribution of Pions Scattered by Hydrogen*

H. L. Anderson, E. Fermi, R. Martin, and D. E. Nagle
Insitute for Nuclear Studies, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

The results have been interpreted in terms of phase shift analysis on the assumption that the scattering is mainly due to states of isotopic spins $\frac{3}{2}$ and $\frac{1}{2}$ and angular momenta s_{i}, p_{i} and p_{i}.

PHYSICS REPORTS (Review Section of Physics Letters) 9h, Nox. 2 \& 3 (1983) 71-2144. North-Holland Publishing Company

BARYON SPECTROSCOPY

Anthony J.G. HEY*
California Instimue of Technology, Pasudena, Califomia 9II25, U.S.A. and Physucs Deparment, University of Souihampton. SO9 5NH. England
and
Robert L. KELLY"*
Arese Assekiates. P.O. Box 300. Encino. Califormia 91.316t, U.S.A. and Lawrence Berkelvy Laboratory. Berkeley, Califomia 4472), US.A.

Rexeived 20 Septemher I $9 x$?
In 1952 Fermi and coworkers (Andersen et al. (1952]) discovered the first baryon resonance - the Δ (1238). Since then, hundreds of resonances have been identified and nuclear democracy has given way to fundamental quarks. Baryon spectroscopy is now thirty years old and perhaps approaching a mid-life crisis. For it is inevitable in such a fast-moving field as high energy particle physics, that experiments have moved on beyond the resonance region to higher energies and different priorities. Thus it is probably no exaggeration to say that we now have essentially all the experimental data relevant to the low-energy baryon spectrum, that we are ever likely to obtain. It is therefore timely to review both the accumulated mass of resonance data, together with the techniques used in its analysis, and also our theoretical framework for understanding the results. The latter is inevitably based on quarks and, by and large, on a

Spectroscopy of Baryons

> 'It is clear that we still need much more information about the existence and parameters of many baryon states, especially in the $N=2$ mass region, before this question of non-minimal $\operatorname{SU}(6) \times O(3)$ super-multiplet can be settled." Dick Dalitz, 1976 .
"The first problem is the notion of a resonance is not well defined. The ideal case is a narrow resonance far away from the thresholds, superimposed on slowly varying background. It can be described by a Breit-Wigner formula and is characterized by a pole in the analytic continuation of the partial wave amplitude into the low half of energy plane.' Gerhard Hoehler, 1987.

10/6/2013
"Why N*s are important - The first is that nucleons are the stuff of which our world is made. My second reason is that they are simplest system in which the quintessentially non-Abelian character of QCD is manifest. The third reason is that history has taught us that, while relatively simple, Baryons are sufficiently complex to reveal physics hidden from us in the mesons." Nathan Isgur, 2000.

Baryon Sector at $P \mathcal{D} G$

 ［J．Beringer et al［PDG］Phys Rev D 86， 010001 （2012）］| p | 1／2 ${ }^{+}$ | ＊＊＊＊ | $\Delta(1232)$ | $3 / 2^{+}$ | 4＊＊＊ | Σ^{+} | $1 / 2^{+}$ | ＊＊＊＊ | Ξ^{0} | 1／2 ${ }^{+}$ | | λ_{c}^{+} | 1／2 ${ }^{+}$ | 44＊4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| n | 1／2 ${ }^{+}$ | ＊＊＊＊ | $\Delta(1600)$ | $3 / 2^{+}$ | ＊＊＊ | Σ^{0} | $1 / 2^{+}$ | ＊＊＊＊ | E－ | 1／2 ${ }^{+}$ | ＊4＊4 | $A_{c}(2595)^{+}$ | 1／2 ${ }^{-}$ | 4＊＊ |
| $N(1440)$ | 1／2 ${ }^{+}$ | ＊＊＊＊ | $\Delta(1620)$ | $1 / 2^{-}$ | 4＊4＊ | Σ^{-} | $1 / 2^{+}$ | ＊＊＊＊ | E（1530） | | | $A_{c}(2625)^{+}$ | $3 / 2^{-}$ | ＊4＊ |
| $N(1520)$ | $3 / 2{ }^{-}$ | ＊＊＊＊ | $\Delta(1700)$ | $3 / 2^{-}$ | 4＊＊＊ | $\Sigma(1305)$ | $3 / 2^{+}$ | ＊＊＊＊ | 三 1620\rangle | | | $A_{s}(2765)^{+}$ | | ＊ |
| $N(1535)$ | $1 / 2^{-}$ | ＊＊＊＊ | $\Delta(1750)$ | $1 / 2^{+}$ | ＊ | $\Sigma(1480)$ | | ＊ | E 1690 ） | | ＊＊ | $A_{c}(2890)^{+}$ | 5／2＋ | $44 *$ |
| $N(1650)$ | 1／2 ${ }^{-}$ | ＊＊＊＊ | $\Delta(1900)$ | $1 / 2^{-}$ | ＊＊ | $\Sigma(1560)$ | | ＊＊ | 三 18200\rangle | | | $A_{c}(2940)^{+}$ | | 4＊＊ |
| $N(1675)$ | 5／2 ${ }^{-}$ | ＊＊＊＊ | $\Delta(1905)$ | $5 / 2^{+}$ | 4＊＊＊ | $\Sigma(1500)$ | 3／2 ${ }^{-}$ | ＊ | 三 11950\rangle | | | $\Sigma_{\text {c }}(2455)$ | $1 / 2^{+}$ | 4＊4＊ |
| $N(1690)$ | $5 / 2^{+}$ | ＊＊＊＊ | Δ（1910） | $1 / 2^{+}$ | ＊＊＊ | $\Sigma(1620)$ | $1 / 2^{-}$ | ＊＊ | $\equiv(\% 030)$ | | | $\Sigma_{\text {S }}(2520)$ | $3 / 2^{+}$ | 4＊＊ |
| $N(1695)$ | | 4 | $\Delta(1920)$ | $3 / 2{ }^{+}$ | ＊＊ | $\Sigma(1660)$ | $1 / 2^{+}$ | 4＊＊ | I | | | $\Sigma_{\text {S }}(2900)$ | | 444 |
| $N(1700)$ | $3 / 2^{-}$ | ＊＊ | $\Delta(1930)$ | $5 / 2$ | ＊ | $\Sigma(1670)$ | $3 / 2^{-}$ | ＊＊＊＊ | $\equiv(2250)$ | | ＊＊ | Ξ_{c}^{+} | $1 / 2^{+}$ | 4＊＊ |
| $N(1710)$ | $1 / 2^{+}$ | 4 | $\Delta(1940)$ | 3^{2} | | $\Sigma(1690)$ | | | $\equiv(2370)$ | | ＊＊ | $\bar{E}_{\text {c }}^{\text {－}}$ | 1／2＋ | ＊4＊ |
| N［1720 | $1 / 2^{+}$ | | $\Delta(1950)$ | $1 / 2^{+}$ | ＊＊ | $\Sigma(1750)$ | | ＊＊＊ | $\equiv(2500)$ | | ＋ | $\Xi_{c}^{\text {r－}}$ | 1／2 ${ }^{+}$ | 44＊ |
| N［196\％ | 2^{+} | | $\Delta(2000)$ | $5 / 2^{+}$ | | $\Sigma(1770)$ | | | | | | E® | 1／2 ${ }^{+}$ | 4＊＊ |
| N［187］ | | | $\Delta(215)$ | $1 / 2^{-}$ | | $\Sigma(1775)$ | | ＊＊＊＊ | | | | $\Xi_{c}(2645)$ | $3 / 2+$ | 44＊ |
| N［189 | | | Δ（20u） | ${ }^{7}+$ | | $\Sigma(1840)$ | S^{2+} | ＊ | | | | $\Xi_{c}(2790)$ | $1 / 2^{-}$ | ＊4＊ |
| $N(18)$ | | | $\Delta(2300)$ | $9 / 2{ }^{+}$ | ＊＊ | $\Sigma(188)$ | $1 / 2^{+}$ | \％ | $1230)^{-}$ | | | $\Xi_{c}(2815)$ | $3 / 2^{-}$ | ＊4＊ |
| $N(15$ j） | $3 / 2$ | ＊＊ | $\Delta(2350)$ | $5 / 2^{-}$ | ＊ | If | | 4＊＊＊ | \＆70）${ }^{-}$ | | | $\Xi_{c}(2930)$ | | ＊ |
| $N(1990)$ | 3／2 | ＊＊ | $\Delta(2390)$ | 7／2 ${ }^{+}$ | ＊ | $\Sigma(1940)$ | $3 / 2^{-}$ | ＊＊＊ | | | | $\Xi_{c}(2980)$ | | ＊＊＊ |
| $N(2000)$ | $5 / 2^{+}$ | ＊＊ | $\Delta(2400)$ | $9 / 2{ }^{-}$ | ＊＊ | $\Sigma(2000)$ | 1／2－ | | | | | $\Xi_{c}(3055)$ | | ＊4 |
| $N(2040)$ | $3 / 2^{+}$ | | $\Delta(2420)$ | $11 / 2^{+}$ | ＊＊＊＊ | $\Sigma(2030)$ | ${ }^{7 / 2} 2^{+}$ | | | | | $E_{c}(3080)$ | | ＊＊＊ |
| $N(2060)$ | 5／2－ | | $\Delta(2750)$ | $13 / 2{ }^{-}$ | ＊＊ | $\Sigma(2070)$ | 5／2＋ | ＊＊ | | | | $E_{c}(3123)$ | | ＊ |
| $N(2100)$ | ${ }^{1 / 2}{ }^{+}$ | | $\Delta(2950)$ | $15 / 2^{+}$ | ＊＊ | $\Sigma(2000)$ | | ＊＊ | | | | | 1／2 ${ }^{+}$ | 444 |
| $N(2120)$ | $3 / 2^{-}$ | | | | | $\Sigma(2100)$ | 7／2 ${ }^{-}$ | | | | | $\Omega_{c}(2770)^{1}$ | $3 / 2^{+}$ | ＊4＊ |
| N（2190） | 7／2 ${ }^{-}$ | ＊＊＊＊ | \wedge | 1／2＋ | 4＊＊＊ | $\Sigma(2250)$ | | ＊＊＊ | | | | | | |
| $N(2220)$ | 9／2 ${ }^{+}$ | 4＊＊＊ | $A(1405)$ | $1 / 2^{-}$ | 4＊＊＊ | $\Sigma(2455)$ | | ＊＊ | | | | | | ＊ |
| $N(2250)$ | 9／2 ${ }^{-}$ | ＊＊＊＊ | A（1520） | $3 / 2^{-}$ | ＊＊＊＊ | $\Sigma(2620)$ | | ＊＊ | | | | | | |
| $N(2600)$ | $11 / 2$ | ＊＊＊ | $A(1600)$ | $1 / 2^{+}$ | | $\Sigma(3000)$ | | ＊ | | | | A_{b}^{0} | 1／2 ${ }^{+}$ | ＊＊＊ |
| $N(2700)$ | $13 / 2^{+}$ | | $A(1670)$ | $1 / 2^{-}$ | **** | $\Sigma(3170)$ | | ＊ | | | | Σ_{b} | 1／2＋ | 444 |
| | | | $A(1640)$ | $3 / 7$ | ＊＊＊＊ | | | | | | | Σ_{b} | $3 / 2^{+}$ | 4＊4 |
| | | | A（1800） $A(1810)$ | $1 / 2+$ | ${ }_{4 *}^{* *}$ | | | | | | | | $1 / 2^{+}$ | ＊44 |
| | | | $\begin{aligned} & A(1810) \\ & A(1820) \end{aligned}$ | $1 / 2$ $5 / 2+$ | ＊＊＊ | | | | | | | | 1／2 ${ }^{+}$ | 4＊4 |
| | | | $4(183)$ | 5／2－ | ＋＊＊ | | | | | | | | | |
| | | | Actay | $3 / 2$ | ＊＊ | | | | | | | | | |
| | | | A（2000） | | ＊ | | | | | | | | | |
| | | | $A(2020)$ | 7／2 ${ }^{+}$ | ＊ | | | | | | | | | |
| | | | $4(2100)$ | $7 / 2^{-}$ | ＊＊＊＊ | | | | | | | | | |
| | | | $4(2110)$ | $5 / 2^{+}$ | ＊＊＊ | | | | | | | | | |
| | | | A（2325） | $3 / 2^{-}$ | ＊ | | | | | | | | | |
| | | | $4(2350)$ | $9 / 2^{+}$ | 4＊＊ | | | | | | | | | |
| | | | $4(2585)$ | | ＊＊ | | | | | | | | | |

PDG12 has 112 Baryon Resonances

 （58 4＊\＆3＊of them）．－For example for $\operatorname{SU}(6) \times \mathbf{O}(3)$ ，it would be 434 resonances，if all revealed
three 70－and four 56－multiplets were filled in．

There are many more states in the QCD inspired models than currently observed．
－A quick check of the PDG Listings reveals that resonance parameters of many established states are not well determined．

There are Many Ways to Study \mathcal{N}^{*}

 $\gamma^{*} \mathrm{~N} \rightarrow \pi \mathrm{~N}, \pi \pi \mathrm{~N}, \ldots$ $\mathrm{pp} \rightarrow \mathrm{pp} \pi^{0}, \mathrm{pp} \pi \pi, \ldots$ $\mathrm{J} / \psi \rightarrow \mathrm{p} \overline{\mathrm{p}} \pi^{0}, \mathrm{p} \bar{n} \pi^{-}, \ldots$

- Most of PDG info comes from these sources and PWA is main of them.
$-\pi \mathrm{N}$ elastic scattering is highly constrained.
- Resonance structure is correlated.
- Two-body final state, fewer amplitudes.

PWA for non-Strange Baryons \& SAID Database

Originally: PWA arose as the technology to determine amplitude of the reaction via fitting scattering data which is a non-trivial mathematical problem
[Solution of ill-posed problem

- Hadamard, Tikhonov, et al』

Resonances appeared as a by-product [Bound states objects with definite quantum numbers, mass, lifetime, etc]

That is the strategy of the GW/VPI π N PWA since 1987

[See Insinucions]
Plon-Nucleon Plon-Plon-Nucieon
 Plon Photoproduction Pion Electroproduction Kaon Photoproduction Eta Photoproduction
 Eta-Prime Photoproduction Plon-Deuteron (elastic)

$6,083-$ Plon-Deuteron to Proton + Proton
For $\pi \rightarrow 2 \pi$, we use log-likelihood while for the rest - least-squares technologies.

\mathscr{N}^{\star} and Δ^{\star} States coupled to $\pi \mathcal{N}$

- GW SAID N^{*} program consists of $\pi \mathrm{N} \rightarrow \pi \mathrm{N} \Longrightarrow \gamma \mathrm{N} \rightarrow \pi \mathrm{N} \Longrightarrow \gamma^{*} \mathrm{~N} \rightarrow \pi \mathrm{~N}$ As was established by Dick Arndt on 1997.

Assuming dominance of 2-hadronic channels [πN elastic \& $\pi^{-} p \rightarrow \eta n$], we parameterize $\gamma^{*} \mathrm{~N} \rightarrow \pi \mathrm{~N}$ in terms of $\pi \mathrm{N} \rightarrow \pi \mathrm{N}$ amplitudes.

- One of the most convincing ways to study a non-strange baryon Spectroscopy [a key to our understanding of QCD] is πN PWA.

, Partial-Wave Analyses at GW
[See Instructions]
Pion-Nucleon
Pi-Pi-N (under construction)
Kaon-Nucleon
Nucleon-Nucleon
Pion Photoproduction
Pion Electroproduction Kaon Photoproduction
Eta Photoproduction
Eta-Prime Photoproduction
Pion-Deuteron (elastic)
Pion-Deuteron to Proton+Proton
Analyses From Other Sites
Mainz (MAID - Analyses)
Nijmegen (Nucleon-Nucleon OnLine) Bonn-Gatchina (PWA)

Contact

william J. Briscoe
Ron L. Workman
Igor I. Strakovsky

$G \mathcal{W} \mathcal{N}^{*}$ Program

```
- Energy dependent SMO8 and associated SES \& SQS
- \(\mathrm{W}=1080-2000 \mathrm{MeV}\) \(Q^{2}=0-6 \mathrm{GeV}^{2}\)
- PWs \(=60\) [multipoles] [J < 6]
- Prms = 171
- Constraint: \(\pi N+\) Pion Photo Prod PWAs [no theoretical input]
```


- Energy dependent SPO6/WIO8 and associated SES
- $T=0-2600 \mathrm{MeV}$
- (4) channel Chew-Mandelstam K-matrix parameterization
- 3 mapping variables: $g^{2 / 4} / 4$, $a\left[\pi^{-p}\right]$, Eth
- PWs $=30 \pi N\{15[I=1 / 2]+15[I=3 / 2]\}+4 \eta N$
- Prms = 99 [$I=1 / 2]+89$ [$I=3 / 2]$
- 1st generation ('57-'79)

Used by CMB79 and KH84 analyses.
10k $\pi^{ \pm}$p each \& 1.5k CXS.
17% data is polarized.

- 2nd generation ('80-'06) SAID fits:
$13 k \pi^{ \pm} p$ each, $3 k$ CXS \& $0.3 k \pi^{-} p \rightarrow \eta n$ 25\% data is polarized.
Meson Factories [LAMPF, TRIUMF, \& PSI] are the main source of new measurements.
There is no discrimination against data
- 3rd generation (07'+)

New data may come from

- J-PARC, HADES, EPECUR, etc

10/6/2013

RRTF Workshop, Darmstadt, Germany, Oct 2013
Igor Strakovsky

Fit to $\pi \mathcal{N}$ Elastic Scattering Data

- Some of structures in 35 -year old solutions.
- [KH and CMB] are still considered as resonances.
- W > 1.5 GeV is less constrained by data.

10/6/2013

New Observables

```
[R. Arndt, W. Briscoe, IS, R. Workman, Phys Rev C 74, 045205 (2006)]
```


Some Old solutions may be not able to reproduce New measurements

Data:
ITEP: $\pi^{+} p \rightarrow \pi^{+} p$ @ 1300 MeV
[I. Alekseev et al Phys Lett B 351, 585 (1995)]
PWA:
KA84: Karlsruhe-Helsinki fit, 1984
KB84: KH Barrelet corrected solution, 1997 SP06: GW fit, 2006

Where is a Resonance?

[R. Arndt, W. Briscoe, IS, R. Workman, Phys Rev C 74, 045205 (2006)]

GW DAC Search for \mathcal{N}^{\star} and Δ

We are considering a resonance as a Pole in the complex plane which is not far away from the physical axis.

- Applied directly to the data via BW + Bckgr
- Assume: $S \rightarrow S_{R} S_{B} \quad S_{R}=1+2 i T_{R}$
$\mathrm{T}_{\mathrm{R}}=\left(\Gamma_{e} / 2\right) /\left[\mathrm{W}_{\mathrm{R}}-\mathrm{W}-\mathrm{i}\left(\Gamma_{e} / 2+\Gamma_{\mathrm{I}} / 2\right)\right]$
$\Gamma=\Gamma_{e}+\Gamma_{I} \quad \Gamma_{e}=\rho_{e} \Gamma R \quad \Gamma_{I}=\rho_{i} \Gamma(1-R)$
$T_{B}=K_{B}\left(1-i K_{B}\right)^{-1} \quad K_{B}=a+b\left(W-W_{R}\right)+c$
- Map $\chi^{2}\left[W_{R}, \Gamma\right]$ while searching all other PW parameters

Look for significant improvement

- Subjective variables are
- Energy binning
- Strength of constraints
- Which PW to be searched
- Standard PWA

> - Tends (by construction) to miss narrow Resonances with $\Gamma<30 \mathrm{MeV}$
> - Reveals only wide Resonances, but not too wide $[\Gamma<500 \mathrm{MeV}]$ and possessing not too small BR $\quad[B R>0.04]$

- Modified PWA
- Allows to put a resonance by hands with subsequent refitting the data Then the search will allow to see how reliable/tolerable it is

10/6/2013

Complex Energy Plane vs BW fits

$$
I=1 / 2
$$

$I=3 / 2$

- There are shifts between Pole and BW prms.

$$
\begin{aligned}
M & =\operatorname{ReW}_{\mathrm{p}} \\
\Gamma & =2^{*} \operatorname{Im} W_{p}
\end{aligned}
$$

Partial Warves $\left[\mathcal{L}^{(2)}\right.$ (even $]$

Courtesy of Donna Arndt, 2010

$\mathcal{N}(1440)^{* * * *}-$ What is Known
 [J. Beringeret al [PDG] Phys Rev D 86, 010001 (2012)]

Two-faced Janus Roman God of Gates \& Doors

Dick Arndt: "This is one of mysterious Resonances"

$$
\begin{array}{|l|l|}
\hline f(E)=\frac{k}{\left(E^{2}-M^{2}\right)^{2}+M^{2} \Gamma^{2}} & \begin{array}{c}
\mathbf{M}=\mathrm{ReW}_{\mathrm{p}} \\
\Gamma=\mathbf{2}^{*} \operatorname{ImW} \\
\hline
\end{array} \\
\hline
\end{array}
$$

Discovery and First Direct Measurements of $\mathcal{N}(1440)$

- Several direct searches got a signal.
[R.B. Bell et al Phys Rev Lett 20, 164 (1968)]

Brandity
M = 1485 MeV
M = 1485 MeV

$M=1405 \pm 30 \mathrm{MeV} \quad \Gamma=100 \mathrm{MaV}$ Significance $\left[N_{s} / \sqrt{ }\left(N_{b}+N_{s}\right)\right]=3.1 \sigma$

$M=1436 \pm 20 \mathrm{MeV} \quad \Gamma=50 \mathrm{MeV}$ Significance $\left[N_{s} / \sqrt{ }\left(N_{b}+N_{s}\right)\right]=2.8 \sigma$

Courtesy of Cole Smith, June 2005

Both BNL masses are less than $M=1485 \mathrm{MeV}$ determined originally via πN PWA and by SP06 BW

10/6/2013

Complex Energy Plane for \mathscr{P}_{11}

[R. Arndt, W. Briscoe, IS, R. Workman, Phys Rev C 74, 045205 (2006)]

- $1^{\text {st }}$ Riemann sheet

Pole 1: $\mathrm{W}_{\mathrm{p}}=1359-\mathrm{i} 82 \mathrm{MeV}$
 sheets, due to a non-zero jump on the $\pi \Delta$-cut

$$
\mathrm{M}=\operatorname{ReW}_{\mathrm{p}}
$$

- There is a shift between Pole positions at two

$$
\Gamma=2 * \operatorname{ImW}
$$

- $2^{\text {nd }}$ Riemann sheet

Pole 2: $\mathrm{W}_{\mathrm{p}}=1388-\mathrm{i} 83 \mathrm{MeV}$

10/6/2013

$$
\begin{aligned}
\text { BW: } W_{R} & =1485.0 \pm 1.2 \mathrm{MeV} \\
\Gamma & =248 \pm 18 \mathrm{MeV}
\end{aligned}
$$

Branch-points:

- $\quad \pi \Delta$ thr [$\mathrm{W}=1350-\mathrm{i} 50 \mathrm{MeV}$]
- $\quad \eta \mathrm{N}$ thr [W = 1487-i0 MeV]
$— \pi \Delta$ Branch Cut is two-body and has 2 Riemann sheets
- Sheet 1 is the sheet reached most directly the real axis
- Sheet 2 is behind the $\pi \Delta$ Branch Cut

- $\mathrm{N}(1440)$ is a Resonance which

 manifests itself via 2 Poles at 2 different Riemann sheets(with respect to the $\pi \Delta$ cut)

- Due to nearby $\pi \Delta$ Branch Point, both poles are not far from physical region
- Simple BW is not adequate to such a complex structure
[2 Poles \& 2 Branch-Points $\pi \Delta \& \eta N$]

Two Pole Observation

Pion-nucleon partial-wave analysis to 1100 MeV
Richard A. Arndt, John M. Ford,* and L. David Roper
Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (Received 24 January 1985)

Pole 1: $\mathrm{W}=1359-\mathrm{i} 100 \mathrm{MeV}$ Pole 2: $\mathbf{W}=1410-\mathbf{i} 80 \mathrm{MeV}$

SAID PWA:

[R. Arndt et al
Chinese Phys C 33, 1063 (2009)]
Pole 1: $\mathrm{W}_{\mathrm{p}}=1359-\mathrm{i} 82 \mathrm{MeV}$
Pole 2: $\mathrm{W}_{\mathrm{p}}=1388-\mathrm{i} 83 \mathrm{MeV}$

Juelich Model:
[M. Doering et al Nucl Phys A829, 17C (2009)]
Pole 1: W = 1387-i73 MeV
Pole 2: W = 1387-i71 MeV

JLab ANL-Osaka (EBAC) Model:
[H. Kamano et al Phys Rev C 81, 065201 (2010)]

> Pole 1: $W=1370-\mathrm{i} 114 \mathrm{MeV}$
> Pole 2: $\mathrm{W}=1360-\mathrm{i} 120 \mathrm{MeV}$

Pole 1: $W=1357-\mathrm{i} 76 \mathrm{MeV}$
Pole 2: $W=1364-\mathrm{i} 105 \mathrm{MeV}$

10/6/2013

Direct Measurements of $\mathcal{N}(1440)$: \mathcal{H} adronic Probes

CELSIUS-WASA: $\mathrm{pp} \rightarrow \mathrm{np} \pi^{+}$

[T. Skorodko et al Eur Phys J A 61, 168 (2009)]

$M=1360 \mathrm{MeV}$
$\Gamma=150 \mathrm{MeV}$

$$
\begin{aligned}
& \text { Looks similar to Pole } \\
& \text { at } 1^{\text {st }} \text { sheet in GW } \pi \mathrm{N}
\end{aligned}
$$

SATURNE II: $\alpha p \rightarrow \alpha^{\prime} X$

[H.P. Morsch and P. Zupranski,
Phys Rev C 61, 024002 (2000)]

$\omega=E_{\alpha^{\prime}}-E_{\alpha}$

$$
\begin{gathered}
\mathrm{M}=1390 \pm 20 \mathrm{MeV} \\
\Gamma=190 \pm 30 \mathrm{MeV}
\end{gathered}
$$

Looks similar to Pole at $2^{\text {nd }}$ sheet in GW πN
[S. Hirenzaki et al. Phys. Rev. C 53, 277 (1996)]

$$
\begin{gathered}
\mathrm{M}=1430 \mathrm{MeV} \\
\Gamma=300 \mathrm{MeV}
\end{gathered}
$$

- All Masses in Direct Measurements are smaller than BW and close to GW $\pi \mathrm{N}$ Pole positions.

SATURNE II:

[G.D. Alkhasov et al Phys Rev C 78, 025205 (2008)]
Difficulties in $\mathrm{N}(1440)$ description do not allow to make a conclusive treatment.

Direct Measurements of $\mathcal{N}(1440)$: EM Probes

Relative contributions of various singularities may be different in different processes

BES II:

[M. Ablikim et al (BES Collaboration) Phys Rev Lett 97, 062001 (2006)]

JLab-RSS:
[F.R. Wesselmann et al
Phys Rev Lett 98, 132003 (2007)]

PWA: $J^{P}=1 / 2^{+}$

$M=1358 \pm \mathbf{6} \pm 16 \mathrm{MeV}$ $\Gamma=179 \pm 26 \pm 50 \mathrm{MeV}$

- Looks similar to Pole at $1^{\text {st }}$ sheet in GW $\pi \mathrm{N}$

Virtual Photon Asymmetries:

$$
A_{1}=\frac{1}{\left(E-E^{\prime}\right)}\left(\left(E-E^{\prime} \cos \theta\right) A_{11}-\frac{E^{\prime} \sin \theta}{\cos \phi} A_{\perp}\right) \quad A_{2}=\frac{\sqrt{Q^{2}}}{2 E}\left(A_{11}-\frac{E-E^{\prime} \cos \theta}{E^{\prime} \sin \theta \cos \phi} A_{\perp}\right)
$$

$$
\begin{array}{|l|}
\hline \mathrm{M}=\mathrm{ReW}_{\mathrm{p}} \\
\Gamma=2 * \operatorname{ImW} \\
\hline
\end{array} \quad \bullet \text { Evidence for two poles ? }
$$

$$
\begin{array}{cc}
M=1338 \pm 10 \mathrm{MeV} & \mathrm{M}=1346 \pm 5 \mathrm{MeV} \\
\Gamma= & 65 \pm 26 \mathrm{MeV}
\end{array} \Gamma=71 \pm 35 \mathrm{MeV}
$$

RRTF Workshop, Darmstadt, Germany, Oct 2013

N(1440) Puzzle for Jlab CL.AS12

Most of analyses of

are based on its BW parameterization, which assumes that the Res
is related to an isolated Pole

- However, the latest GW PWA for the elastic πN scattering gives evidence that $N(1440)$ corresponds to a more complicated case of several nearby singularities in the amplitude
- Then, the BW description is only an efficient one for $N(1440)$, which could be different in different processes
- Some inelastic data indirectly support this point: they give the $N(1440)$ BW mass and width essentially different from the PDG BW values

- The analysis of the recent CLAS Single and Double π^{+}Electro Prod data [$\mathrm{W}=1.15-1.69 \mathrm{GeV}, \quad \mathrm{Q}^{2}=1.7-4.5 \mathrm{GeV}^{2}$]
allows to extract helicities for
$\gamma^{*} \mathrm{p} \rightarrow \mathrm{N}(1440) \mathrm{P}_{11}$ transition
[17: I.G. Aznauryan et al Phys Rev C 80, 055203 (2009) 2π : V. Mokeev, PC 2010]
- Model predictions allow to conclude that $\mathbf{N}(\mathbf{1 4 4 0})$ is a first radial excitation of $3 q$ ground state

Since Q^{2}-dependences for contributions of different singularities may be different, the set of several singularities might provide the $N(1440)$ BW mass and width depending on the

- This problem can be studied in future measurements with JLab CLAS12

J. Beringer et al (PDG) Phys Rev D 86, 010001 (2012)

GW SAID Contribution

$\begin{array}{lllllllll} & & \text { Status } & & & & & & \\ \text { Particle } J^{P} & \text { overax } \pi N & \gamma N & N \eta & N \sigma & N \omega & \Lambda K & \Sigma K & N \rho\end{array} \quad \Delta \pi$ $\frac{\text { Particle } J^{P}}{N 1 / 2^{+}}$ $N(1440) 1 / 2^{+}$ $N(1520) 3 / 2^{-}$ $N(1535) 1 / 2^{-}$ $N(1650) 1 / 2^{-}$ $N(1675) 5 / 2^{-}$ $N(1680) 5 / 2^{+}$ $N(1685) \quad ?$? $N(1700) 3 / 2^{-}$ $N(1710) 1 / 2^{+}$ $N(1720) 3 / 2^{+}$ $N(1860) 5 / 2^{+}$ $N(1875) 3 / 2^{-}$ $N(1880) 1 / 2^{+}$ $N(1895) 1 / 2^{-}$ $N(1900) 3 / 2^{+}$ $N(1990) 7 / 2^{+}$ $N(2000) 5 / 2^{+}$ $N(2040) 3 / 2^{+}$ $N(2060) 5 / 2^{-}$ $N(2100) 1 / 2^{+}$ $N(2150) 3 / 2^{-}$ $N(2190) 7 / 2^{-}$ $N(2220) 9 / 2^{+}$ $N(2250) 9 / 2^{-}$ $N(2600) 11 / 2^{-}$ $N(2700) 13 / 2^{+}$

- More than half of states have poor evidence.
- Most of states need more work to do.
- Most of QCD models predict more states than observed.
-Where are missing resonances?

Status of \mathcal{N} on-strange Resonances

Twenty Years Ago - Rosenfeld Tables

L. Montanet et al (PDG) Phys Rev D 50, 1173 (1994)

$1=1 / 2$

Particle	$\underset{L_{2 I \cdot 2 J} \text { Status }}{\text { Overall }}$		Status as seen in						
			$N \pi$	$N \eta$	AK	ΣK	$\Delta \pi$	$N \rho$	N_{γ}
$N(939)$	P_{11}	****							
$N(1440)$	P_{11}	****	****	*			***	*	***
$N(1520)$	D_{13}	****	****	*			****	****	****
$N(1535)$	S_{11}	****	****	****			*	**	***
$N(1650)$	S_{11}	****	****	*	***	**	***	**	***
$N(1675)$	D_{15}	****	****	*	*		****	*	****
$N(1680)$	F_{15}	****	****				****	****	***
$N(1700)$	D_{13}	***	***	*	**	*	**	*	**
$N(1710)$	P_{11}	***	***	**	**	*	**	*	***
$N(1720)$	P_{13}	****	****	*	**	*	*	**	**
$N(1900)$	P_{13}	**	**					*	
$N(1990)$	F_{17}	**	**	*	*	*			*
$N(2000)$	F_{15}	**	**	*	*	*	*	**	
$N(2080)$	D_{13}	**	**	*	*				*
$N(2090)$	S_{11}	*	*						
$N(2100)$	P_{11}	*	*						
$N(2190)$	G_{17}	****	****	*	*	*		*	*
${ }_{N}^{N(2200)}$			${ }_{* * * *}^{* * *}$		*				
$N(2220)$ $N(250)$	${ }_{1}{ }_{19}$	****	****						
$N(2600)$	I_{111}		${ }_{* * *}^{* * *}$			11 **			
$N(2700)$	K_{113}		${ }^{*}$			3 *			

Precise cross section measurements:

$\pi p \rightarrow \pi \mathrm{p}: \quad \mathrm{d} \sigma / \mathrm{d} \Omega-\mathbf{0 . 5 \%}$ statistical precision and 1 MeV momentum step $\pi^{-} p \rightarrow K^{0} \Lambda: \sigma_{\text {REAC }} \quad-\mathbf{1 5} \%$ statistical precision and the same mom step
EPECUR

$\left.\begin{array}{l}\text { —GW-Wi08 } \\ \text { - KH-KA84 }\end{array}\right\}$EPECUR data are out of the fit EPidnev12
EPECUR data are in the fit No norm

RRTF Workshop, Darmstadt, Germany, Oct 2013
Igor Strakovsky

Courtesy of Vitaly Shklyar, Spring 2013

RRTF Workshop, Darmstadt, Germany, Oct 2013
Igor Strakovsky 30

Coupled Channel Fit for S_{11} \& \mathcal{D}_{13} : $\eta n \mathscr{B R} s$

[R. Arndt, W. Briscoe, IS, R. Workman, A. Gridnev, Phys Rev C 72, 045202 (2005)]

$N(1535) S_{11}: \Gamma_{\eta}>\Gamma_{\pi}$

$\mathrm{N}(1520) \mathrm{D}_{13}: \Gamma_{\eta} / \Gamma=0.0008-0.0016$
$\mathrm{D}_{13}[\operatorname{Mainz}(\gamma, \eta)]: \quad \Gamma_{\eta} / \Gamma=0.0008 \pm 0.0001$
D_{13} [Giessen, multi-ch]: $\Gamma_{\eta} / \Gamma=0.0023 \pm 0.0004$
[G. Penner and U. Mosel, Phys Rev C 66, 055211 (2002)
L. Tiator et al Phys Rev C 60, 035210 (1999)]

No E913/914 BNL thr data
Added E913/914 BNL thr data
[S. Prakhov et al Phys Rev C 72, 015203 (2005)]

- Limited energy range limits possibilities to determine resonance parameters

- Most of Nimrod data do not satisfy requirements
[systematics (10\% or more), momentum err (up to $50 \mathrm{MeV} / \mathrm{c}$), and so on]
- For that reason, SAID is not able to use them in $\pi^{-} p \rightarrow \pi^{-} p, \pi^{0} n, \& \eta n$ PWAs

- The evaluation for reactions with KY, $\eta^{\prime} \mathbf{N}, \omega \mathbf{N}$, and $\phi \mathbf{N}$, final states are not possible now because of small databases.

Courtesy of Kanzo Nakayama, GW EIC Workshop, April 2012

$\begin{array}{llllll}700 & 1800 & 1900 & 2000 & 2100 & 2200\end{array} \quad \begin{gathered}2300 \\ \text { 8/21/2012 }\end{gathered}$
Igor Strakovsky 33

$\pi \mathcal{N} \rightarrow K \wedge$

$\pi \mathcal{N} \rightarrow$ K \wedge Amplitudes

- Points with error bars: SES of Shresta and Manley. Curves: BnGa2011.
- Shresta and Manley start from a model-dependant fit and select the solution of the SES which is closest to the energy-dependent fit.
- They first freeze the S_{11} wave, then S_{11} and P_{11}, to the energy dependent solution.

Our knowledge of $\pi \Delta, \rho N$, and other quasi-two-body $\pi \pi N$ channels comes mainly from Isobar-model analyses of the $\pi N \rightarrow \pi \pi N$ data.

Previous $\pi N \rightarrow \pi \pi N$ Measurements

$\pi N \rightarrow \pi \pi N$ in Iso6ar Model

[D.M. Manley, R. Arndt, Y. Goradia, V. Teplitz, Phys Rev D 30, 904 (1984)]

$\pi N \rightarrow \pi \pi N$ in Iso6ar Model at low Energies
 [V. Kozhevnikov \& S. Sherman, Phys Atom Nucl 71, 1860 (2008)]

ANL-OSAKA (EBAC) Dynamical Coupled-

 Channels Study of $\pi \mathcal{N} \rightarrow \pi \pi \mathcal{N}$ Reactions

 require acceptance corrections

RRTF Workshop, Darmstadt, Germany, Oct 2013

Igor Strakovsky 41

Resonance $\rightarrow \mathcal{N} \rho$ Branching Ratios

	GiBUU12	UrQMD09	KSU12	KSU92	BnGa12	CLAS12	PDG12	
N(1520)3/2-	21	15	20.9(7)	21(4)	10(3)	12.7(4.3)	20(5)	D13
N(1720)3/2+	87	73	1.4(5)	87(5)	10(13)	47.5(21.5)	77.5(7.5)	P13
$\Delta(1620) 1 / 2^{-}$	29	5	26(2)	25(6)	12(9)	37(12)	16(9)	S31
$\Delta(1905) 5 / 2^{+}$	87	80	<6	86(3)	42(8)		>60	F35

Partial courtesy of Piotr Salabura, Sept 2013

CLAS12: V. Mokeev et al, Phys Rev C 86, 035203 (2012); V. Mokeev, PC
BnGa12: A.V, Anisovich et al, Eur Phys J A 48, 15 (2012)
GiBUU12: J. Weil et al, Eur Phys J A 48, 111 (2012); J. Weil, PC
KSU92: D.M. Manley and E.M. Saleski, Phys Rev D 45, 055203 (1992)
KSU12: M. Shrestha and D.M. Manley, Phys Rev D 86, 055203 (2012)
PDG12: J. Beringer et al [RPP] Phys Rev D 86, 010001 (2012)
UrQMD09: K. Schmidt et al, Phys Rev C 79, 4002 (2009)

$C \mathcal{A} S \mathcal{N}^{*}$ candidate at 1720 MeV in $p \pi^{+} \pi^{-}$?

\qquad no $3 / 2^{+}(1720)$

- full

Pion Photoproduction

Pion Electroproduction

[M. Ripani et al, Phys.Rev.Lett. 91, 022002 (2003)]

Origin of the structure at $\mathcal{W} \sim 1.7$ GeV for the first time

- $P_{13}(1720)$ state with hadronic decays fit to the CLAS data $2.94<\chi^{2} / \mathrm{dp}<3.15$

	M (GeV)	$\Gamma_{\text {tot }}$ (MeV)	$\mathrm{BR}(\pi \Delta)$ $(\%)$	$\mathrm{BR}(\rho \mathrm{p})$ $(\%)$
$\mathrm{P}_{13}(1720)$ CLAS	$1.728 \pm$ 0.005	133 ± 19	66 ± 26	16 ± 11
$\mathrm{P}_{13}(1720)$ PDG	$1.70-1.75$	$150-400$	comp. with 0.	$70-85$

Courtesy of Victor Mokeev, Sept 2013

- 3/2 ${ }^{+}(1725)$ candidate state, hadronic parameters of others N*'s are within PDG uncertainties $2.78<\chi^{2} / \mathrm{dp}<2.9$

	M (GeV)	$\Gamma_{\text {tot }}$ (MeV)	$\mathrm{BR}(\pi \Delta)$ $(\%)$	$\mathrm{BR}(\rho \mathrm{p})$ $(\%)$
$3 / 2+(1725)$	$1.725 \pm$ 0.004	80 ± 6.0	48 ± 10	7.7 ± 2.2
$P_{13}(1720)$	$1.747 \pm$ 0.004	161 ± 31	comp. with 0.	$60-100$

Precise data on $\pi \Delta \& \rho p$ hadronic decays of $\mathrm{P}_{13}(1720)$ is critical in order to understand origin of the structure at $\mathrm{W} \sim 1.7 \mathrm{GeV}$ in $\mathrm{N} \pi \pi$ electroproduction cross sections. This information can be obtained in the studies of $\pi \mathrm{N} \rightarrow \pi \pi \mathrm{N}$ reactions at J-PARC and HADES...

RRTF Workshop, Darmstadt, Germany, Oct 2013
Igor Strakovsky 44

Paom
 PROLPproandion

Single Pion Photoproduction

- An accurate evaluation of the EM couplings $\mathrm{N}^{*}\left(\Delta^{*}\right) \rightarrow \gamma \mathrm{N}$ from meson photoproduction data remains a paramount task in hadron physics.
- Only with good data on both the proton and neutron targets, one can hope to disentangle the isoscalar \& isovector EM couplings of various $\mathrm{N}^{\star} \& \Delta^{*}$ resonances, K.M. Watson, Phys Rev 95,228 (1954); R.L. Walker, Phys Rev 182, 1729 (1969) as well as the isospin properties of non-resonant background amplitudes.
- The lack of the $y n \rightarrow \pi^{-} p$ \& $y n \rightarrow \pi^{0} n$ data does not allow us to be as confident about the determination of neutron couplings relative to those of the proton.
- The radiative decay width of neutral baryons may be extracted from $\pi^{-} \& \pi^{0}$ photoproduction off the neutron, which involves a bound neutron target and needs the use of model-dependent nuclear (FSI) corrections.

Where We Are №w

- Some of the N^{*} baryons $\left[N(1675) D_{15}\right.$, for instance] have stronger $E M$ coupling to the neutron than to the proton but parameters are very uncertain.

$$
N(1675) 5 / 2^{-} /\left(J^{P}\right)=\frac{1}{2}\left(\frac{5}{2}-\right) \text { Status: } * * * *
$$

PDG12: $\mathrm{N}(1675) 5 / \mathbf{2}^{-} \rightarrow \mathrm{pp}$, helicity-1/2 ampl, A1/2 $\mathbf{+ 0 . 0 1 9 \pm 0 . 0 0 8}$ PPPDG $\mathrm{N}(1675) 5 / 2^{-} \rightarrow \mathrm{nv}$, helicity-1/2 ampl, A1/2.-0.043 ± 0.012

SAID13 $\mathrm{N}(1675) 5 / 2^{-} \rightarrow \mathrm{pp}$, helicity- $3 / 2 \mathrm{ampl}, \mathrm{A} 3 / 2 \cdot+0.016 \pm 0.001$ $\mathrm{N}(1675) 5 / 2^{-} \rightarrow \mathrm{n} \psi$, helicity-3/2 ampl, A3/2 -0.058 ± 0.002

- PDG estimates for the $\boldsymbol{A}_{1 / 2} \& \boldsymbol{A}_{3 / 2}$ decay amplitudes of the $N(1720) P_{13}$ state are consistent with zero, while the recent SAID determination gives small but non-vanishing values.

- Other unresolved issues relate to the second $\mathrm{P}_{11}, N(1710) \mathrm{P}_{11}$, that are not seen in the recent πN PWA, contrary to other PWAs used by the PDG12.
$N(1710) 1 / 2^{+} \quad I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}{ }^{+}\right)$Status: $\quad * * *$

The latest GWU analysis (ARNDT 06) finds no evidence for this resonance.

R. Arndt, Ya. Azimov, M. Polyakov, IS, R. Workman, Phys Rev C 69, 035208 (2004)

Complete Experiment in Pion Photo Production

Direct Amplitude Reconstruction
 in Pion Photo Production

$\gamma N \rightarrow N \pi$

$$
\begin{array}{cc}
\text { Spin: } 1 \quad \frac{1}{2} \rightarrow \frac{1}{2} 0 \\
\text { felicities: } 2 \times 2 \times 2 / 2=4 \\
\text { parity conservation }
\end{array} \begin{aligned}
& \text { In particle physics, telicity is the } \\
& \text { projection of the spin } \vec{S} \text { onto the } \\
& \text { direction of momentum, } \hat{p}: \\
& h=\vec{J} \cdot \hat{p}=\vec{L} \cdot \hat{p}+\vec{S} \cdot \hat{p}=\vec{S} \cdot \hat{p}
\end{aligned}
$$

Therefore, there are (4) independent invariant amplitudes

- In order to determine the pion photo production amplitude, one has to carry out 2 independent measurements at fixed (W, t) or (E $\left.\mathrm{E}_{\gamma}, \theta\right)$
- Energy dependent GB12 and associated SES
- $\mathrm{E}=145-2700 \mathrm{MeV}$
[W = 1080-2460 MeV] $[J<6]$
- PWs $=60$ [E \& M multipoles]
- Prms = 210
- Constraint: $M=($ Born $+A)\left(1+i T_{\pi N}\right)+B T_{\pi N}+(C+i D)\left(I m T_{\pi N^{-}}\left|T_{\pi N}\right|^{2}\right)$

Born [no free parameters to fit]
«N-PWA [no theoretical input]

Reaction	Data (Dpol)	χ^{2}
$\gamma \mathrm{p} \rightarrow \pi^{0} \mathrm{p}$	14,612 (3\%)	32,449
$\gamma \mathrm{p} \rightarrow \pi^{+} \mathrm{n}$	8,510 (5\%)	16,520
$\underline{n} \rightarrow \pi^{-} p$	3,058 (0\%)	6,396
$\gamma \mathrm{n} \rightarrow \pi^{0} \mathrm{n}$	364 (0\%)	1,201
Total	26,554	56,566
- 1st generation - (‘60-‘90) 10k data [85\% bremsstrahlung data.] 30% data is polarized. [limited coverage, broad energy binning.] - 2nd generation - ('90-'10) \rightarrow SAID fits. 25k data [60\% tagged data.] 30% data is polarized. Dearth of neutron data.		

 New data will come from JLab, CB@MAMI-C, SPring-8, CB-ELSA, MAX-lab, \& LNS.

Recent SAID Progress in PionPR

$$
\begin{aligned}
& \text { DU13: } \quad \text { included recent CLAS } \pi^{0} p \& \pi^{+} n \Sigma \text { [M. Dugger et al, arXiv:1308.4028[nucl-ex] } \\
& \text { GB12/GZ12: included recent CLAS } \pi^{-} \mathrm{p} \mathrm{~d} \sigma / \mathrm{d} \Omega \\
& \text { CM12: } \\
& \text { CM parameterization for } \mathrm{T}_{\pi \mathrm{N}} \\
& \text { [W. Chen et al, Phys Rev C 86, } 015206 \text { (2012)] } \\
& \text { SN11/SK11: included recent GRAAL } \pi^{-} \mathrm{p} \& \pi^{0} \mathrm{n} \Sigma \\
& \text { LEPS } \pi^{0} \mathrm{p} d \sigma / \mathrm{d} \Omega \quad \text { [R. Workman et al, Phys Rev C 85, } 025201 \text { (2012)] } \\
& \mathbf{M}=(\text { Born }+\mathrm{A})\left(1+i \mathrm{~T}_{\pi \mathrm{N}}\right)+\mathbf{B T} \mathrm{T}_{\pi \mathrm{N}}+(\mathrm{C}+\mathrm{iD})\left(\left|\mathrm{mT} \mathrm{~T}_{\pi \mathrm{N}}-\left|\mathrm{T}_{\pi \mathrm{N}}\right|^{2}\right)\right. \\
& \text { SP09: } \\
& \text { included recent CLAS } \pi^{+} \mathrm{n} \mathrm{~d} \sigma / \mathrm{d} \Omega \\
& \text { [M. Dugger et al, Phys Rev C 79, } 065206 \text { (2009)] } \\
& \mathrm{M}=\left(\text { Born }+\alpha_{\mathrm{R}}\right)\left(1+\mathrm{i} \mathrm{~T}_{\pi N}\right)+\alpha_{\mathrm{R}} \mathrm{~T}_{\pi N}+\text { higher terms }
\end{aligned}
$$

Proton Multipoles from DV13 \& CM12

[R. Workman et al, Phys Rev C 86, 015202 (2012); M. Dugger et al, arXiv:1308.4028 [nucl-ex]

- Overall: the difference between MAID07 or BnGa and SAID DU13 is rather small but... Resonances may be essentially different.

- Significant changes have occurred at high energies.
- Comparisons to earlier SAID fits and fit from the Mainz \& BnGa groups show that the new DU13 \& CM12 solutions is much more satisfactory at higher energies.

$$
\begin{aligned}
& \text { SAID DU13 } \\
& \text { SAID CM12 } \\
& \text { MAID07 } \\
& \text { BnGa13 }
\end{aligned}
$$

MAID07: D. Drechsel et al, Eur Phys J A 34, 69 (2007)
BnGa: A. Anisovich et al, Eur Phys J A 48, 15 (2012)

CL.AS Σ Data Impact for Proton $S=0 \& I=1 / 2$ Couplings

[M. Dugger et al, anXiv:1308.4028 [nucl-ex]

10/6/2013
RRTF Workshop, Darmstadt, Germany, Oct 2013
Igor Strakovsky

$\gamma n \rightarrow \pi^{-} p$ Experiment

- The existing $\gamma n \rightarrow \pi^{-}$p database contains mainly differential cross sections (17\%) of which are from polarized measurements.)
- Many of these are old bremsstrahlung measurements with limited angular ($\theta=40-140^{\circ}$) coverage and large energy binning ($E_{\gamma}=100-200 \mathrm{MeV}$.) In several cases, the systematic uncertainties have not been given.
- At lower energies $\left(E_{\gamma}<700 \mathrm{MeV}\right.$, $)$ there are data sets for the inverse π^{-}photoproduction reaction: $\pi^{-} p \rightarrow \gamma \mathrm{n}$. \quad es, Cв@влL: A. Shafi, etal, PRC70, 035204 (2004) This process is free from complications associated with a deuteron target.
- However, the disadvantage of using $\pi^{-} p \rightarrow \gamma n$ is the large background because of the 5 to 500 times larger cross section for $\pi^{-} p \rightarrow \pi^{0} n \rightarrow \gamma \gamma n$.

Coserserses)
World $\mathcal{N e u t r a l ~ a n d ~ C h a r g e d ~ P i o n P R ~ D a t a ~}$
[SAID: http://gwdac.phys.gwu.edu/]

Future exp activity will fill empty spots specifically for n-target.

[V. Tarasov, A. Kudryavtsev, W. Briscoe, H. Gao, \& IS, Phys Rev C 84, 035203 (2011)]

- FSI plays a critical role in the state-of-the-art analysis of $\gamma n \rightarrow \pi N$ data.
- For $\gamma n \rightarrow \pi^{-}$p the effect: $5 \%-60 \%$.

It depends on (E, θ).

Input: SAID $\gamma \mathrm{N} \rightarrow \pi \mathrm{N}, \pi \mathrm{N} \rightarrow \pi \mathrm{N}, \mathrm{NN} \rightarrow \mathrm{NN}$ amplitudes for 3 leading terms.
DWF: Bonn Potential.

$$
R=\left(d \sigma / d \Omega_{\pi p}\right) /\left(d \sigma^{I A} / d \Omega_{\pi p}\right) \quad \square \quad \frac{d \sigma}{d \Omega}(\gamma n)=R^{-1} \frac{d \sigma}{d \Omega}(\gamma d)
$$

$\mathcal{M A M I - B}$ for $\gamma n \rightarrow \pi^{-} p$ around the Δ
[W.J. Briscoe et al, Phys Rev C 86, 065207 (2012)]

- MAMI-B data for $\gamma \mathrm{n} \rightarrow \pi^{-} \mathrm{p}$ (including FSI corrections) and previous hadronic data for $\pi^{-} \mathrm{p} \rightarrow \mathrm{n} \gamma$ appear to agree well.

$$
\begin{aligned}
& \text { Data: } \\
& \bullet \text { - MAMI-B for } \quad \gamma n \rightarrow \pi^{-} p \\
& \Delta-\text { CB@BNL for } \quad \pi^{-} p \rightarrow n \gamma
\end{aligned}
$$

Neutron Multipoles from SAID GB12 \& SN11

[W. Chen et al, Phys Rev C 86, 015206 (2012); R. Workman et al, Phys Rev C 85, 025201 (2012)]]

Overall: the difference between MAID07 with BnGa13 and SAID GB12 is rather small but... Resonances may be essentially different.

MAID07: D. Drechsel, et al, Eur Phys J A 34, 69 (2007) BnGa13: A. Anisovich et al, Eur Phys J A 49, 67 (2013)

CL.AS Data Impact for \mathcal{N} eutron $S=0 \& \in I=1 / 2$ Couplings

[W. Chen et al, Phys Rev C 86, 015206 (2012)]

- BnGa13 and SAID GB12 used the same (almost) data to fit them while BnGa13 has several new Ad Hoc resonances.

J. Beringer et al (PDG) Phys Rev D 86, 010001 (2012)

GW SAID Contribution

$\begin{array}{lllllllll} & & \text { Status } & & & & & & \\ \text { Particle } J^{P} & \text { overax } \pi N & \gamma N & N \eta & N \sigma & N \omega & \Lambda K & \Sigma K & N \rho\end{array} \quad \Delta \pi$ $\frac{\text { Particle } J^{P}}{N 1 / 2^{+}}$ $N(1440) 1 / 2^{+}$ $N(1520) 3 / 2^{-}$ $N(1535) 1 / 2^{-}$ $N(1650) 1 / 2^{-}$ $N(1675) 5 / 2^{-}$ $N(1680) 5 / 2^{+}$ $N(1685) \quad ?$? $N(1700) 3 / 2^{-}$ $N(1710) 1 / 2^{+}$ $N(1720) 3 / 2^{+}$ $N(1860) 5 / 2^{+}$ $N(1875) 3 / 2^{-}$ $N(1880) 1 / 2^{+}$ $N(1895) 1 / 2^{-}$ $N(1900) 3 / 2^{+}$ $N(1990) 7 / 2^{+}$ $N(2000) 5 / 2^{+}$ $N(2040) 3 / 2^{+}$ $N(2060) 5 / 2^{-}$ $N(2100) 1 / 2^{+}$ $N(2150) 3 / 2^{-}$ $N(2190) 7 / 2^{-}$ $N(2220) 9 / 2^{+}$ $N(2250) 9 / 2^{-}$ $N(2600) 11 / 2^{-}$ $N(2700) 13 / 2^{+}$

- More than half of states have poor evidence.
- Most of states need more work to do.
- Most of QCD models predict more states than observed.
-Where are missing resonances?

Sion
 (Glechoperoduchou

$G \mathcal{W} \mathcal{N}^{*}$ Program

```
- Energy dependent SMO8 and associated SES \& SQS
- \(\mathrm{W}=1080-2000 \mathrm{MeV}\) \(Q^{2}=0-6 \mathrm{GeV}^{2}\)
- PWs \(=60\) [multipoles] [J < 6]
- Prms = 171
- Constraint: \(\pi N+\) Pion Photo Prod PWAs [no theoretical input]
```


Analysis of p η assumes $\mathrm{S}_{1 / 2}=0$

Branching ratios
$\beta_{N \pi}=\beta_{N \eta}=0.45$

Courtesy of Kijun Park, QCD2010 @ Montpillier France June -July, 2010

$>A_{1 / 2}\left(Q^{2}\right)$ from $N \pi$ and $p \eta$ are consistent
$>$ First extraction of $S_{1 / 2}\left(Q^{2}\right)$ amplitude.

Constituent Quark Model Predictions

[E. Santopinto and M. Giannini, Phys Rev C 86, 065202 (2012)]

10/6/2013
RRTF Workshop, Darmstadt, Germany, Oct 2013
Igor Strakovsky 64

Timelike $\gamma^{\star} \mathcal{N} \rightarrow \Delta$ form factors and Δ Dalitz decay

[G. Ramalho and M.T. Pena, Phys Rev D 85, 113014 (2012)]

Inverse Pion Electroproduction (IPE)

- IPE is the only process which allows the determination of EM nucleon \& pion formfactors in the intervals

$$
0<\mathrm{k}^{2}<4 \mathrm{M}^{2}=3.53 \mathrm{GeV}^{2} \quad 0<\mathrm{k}^{2}<4 \mathrm{~m}_{\pi}=0.08 \mathrm{GeV}^{2}
$$

which are kinematically unattainable from $\mathbf{e}^{+} \mathbf{e}^{-}$initial states.

- IPE $\pi^{-} \boldsymbol{p} \rightarrow \mathbf{e}^{+} \mathbf{e}^{-} \mathbf{n}$ measurements will significantly complement the current electroproduction $\gamma^{*} \mathbf{N} \rightarrow \pi \mathbf{N}$ study for the evolution of baryon properties with increasing momentum transfer by investigation of the case for the time-like virtual photon.

Thenomenology for Baryon Resonances

