
ar
X

iv
:n

uc
l-

th
/0

30
90

85
v2

  2
7 

M
ay

 2
00

4

Hadronic Spectral Functions in Nuclear Matter 1

M. Post, S. Leupold and U. Mosel

Institut für Theoretische Physik, Universität Giessen,

D-35392 Giessen, Germany

Abstract

We study the in-medium properties of mesons (π, η, ρ) and baryon resonances in
cold nuclear matter within a coupled-channel analysis. The meson self energies are
generated by particle-hole excitations. Thus multi-peak spectra are obtained for the
mesonic spectral functions. In turn this leads to medium-modifications of the baryon
resonances. Special care is taken to respect the analyticity of the spectral functions
and to take into account effects from short-range correlations both for positive and
negative parity states. Our model produces sensible results for pion and ∆ dynamics
in nuclear matter. We find a strong interplay of the ρ meson and the D13(1520),
which moves spectral strength of the ρ spectrum to smaller invariant masses and
leads to a broadening of the baryon resonance. The optical potential for the η me-
son resulting from our model is rather attractive whereas the in-medium properties
modifications of the S11(1535) are found to be quite small.
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1 Introduction

A wealth of experimental indications for in-medium modifications of hadrons has been
accumulated over the last years. Besides serving as a suitable testing ground for the
understanding of hadronic interactions in the nuclear medium, the search for medium
modifications has been stimulated by the works of [1, 2], which – based on very general
arguments concerning the restoration of chiral symmetry – predict dropping hadron masses
at finite density. Dilepton spectra measured in heavy-ion collisions by the NA45 [3, 4, 5, 6]
and the HELIOS [7] collaboration indicate that the spectral function of the ρ meson may
undergo a significant reshaping in a hot and dense environment with spectral strength
moving down to smaller invariant masses. In nuclear reactions medium modifications of
the P33(1232), the D13(1520) and the S11(1535) have been studied. An analysis of pion-
and photo-induced reactions has established the need to introduce a spreading potential
for the P33(1232), yielding a moderate broadening of about 80 MeV for this state [8]. The
disappearance of the second resonance region in photoabsorption reactions on the nucleus
as observed in [9, 10, 11] has been interpreted in terms of a broadening of the D13(1520)
in nuclear matter [12]. Finally, data of η photoproduction on nuclei [13, 14] have opened
up the possibility to study the in-medium properties of the S11(1535). A prime source of
information of pions and η mesons in nuclear matter is the study of pionic [15] and η-mesic
atoms [16].

At the same time numerous theoretical models have been developed in order to arrive
at an understanding of the observed phenomena. Concerning the in-medium properties of
the ρ meson, the dilepton spectra reported in [3, 4, 5, 6, 7] have triggered the development
of a variety of hadronic models. For a comprehensive review of these models see [17].
Although these works differ quite substantially in details, as a general picture a shift of
spectral strength down to smaller invariant masses is found in most of them. In one type
of models [18, 19, 20, 21, 22] this shift is generated by the excitation of resonance-hole
pairs in the nuclear medium. The formation of these states leads to additional branches of
the spectral function. Coupling the ρ to the D13(1520)N−1 state moves a lot of spectral
strength down to small invariant masses [19, 20]. Another class of models [23, 24, 25, 26, 27]
takes into account the effects of the renormalization of the pion cloud generated by the
strong interaction of pions and nucleons and finds a broadening of the ρ peak. Besides
offering an appealing interpretation of the dilepton spectra, a shift of spectral strength as
offered by most hadronic models is also required by QCD sum rules [2, 26, 28].

The in-medium properties of the P33(1232) resonance have been studied extensively
in the literature [29, 30, 31, 32, 33, 34, 35]. While operating on different levels of so-
phistication, in most of these models the in-medium self energy is due to a change of the
dispersion relation of pions in a nuclear environment. For a quantitative description of the
resonance properties, a consistent inclusion of short-range correlations (SRC) is necessary
[29, 30, 31]. For the D13(1520) and the S11(1535) much less work has been done. In an
attempt to explain nuclear photoabsorption data reported in [9, 10, 11], a large broadening
of about 300 MeV for the D13(1520) has been obtained in a resonance fit in [12]. The
later works of [36, 37, 38] have given further support to the conjecture that an in-medium
broadening of this state yields a possible explanation of the photoabsorption data. As
alternative mechanisms effects from Fermi motion and a change of interference patterns
in the nuclear medium have been pointed out in the analysis of [39], thus questioning the
direct connection between the data and a broadening of the D13(1520). As a result in
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that analysis a smaller broadening of about 100 MeV for this state is found. In the mi-
croscopic models of [19, 35] a substantial broadening of the D13(1520) has been generated
dynamically, based either on the coupling to the Nρ channel [19] or on the coupling to
the Nπ channel [35]. Concerning the properties of the S11(1535) in nuclear matter, the
existing models [40, 41, 42] suggest rather moderate in-medium effects. This finding is well
supported from data on photoproduction of η off nuclei [43].

From a theoretical point of view it would be desirable to describe as many in-medium
effects as possible within one model in order to arrive at a combined understanding of these
phenomena. For example, reshuffling the spectral strength of the ρ meson (as suggested
from dilepton spectra) might have an immediate impact on the width of the D13(1520)
[19] and can help to explain the nuclear photoabsorption data [36, 37, 38]. Similarly, a
quantitative analysis of the optical potential of the η meson is constrained from the fact
that recent data on η photoproduction [13, 14] suggest that the in-medium modifications
experienced by the S11(1535) are relatively small. To this end we have set up a model which
generates the in-medium modifications of mesons and baryon resonances within a self-
consistent coupled channel analysis. The mesons are dressed by the excitation of resonance-
hole loops and a remarkably complicated spectrum with various peak structures is found
for the mesonic spectral functions. In a second step the in-medium self energy of the baryon
resonances arising from the dressing of the mesons is calculated. The corresponding set
of coupled-channel equations is then solved iteratively. In the course of the iterations one
leaves the regime of the low-density theorem [44], which relates the in-medium self energy
to vacuum scattering amplitudes. It is least reliable for systems close to threshold, where
already small changes of the available phase space can lead to large modifications of the
resonance and therefore the meson as well. A well-known example is the Λ(1405) coupling
to the K̄ N channel, see for example [45, 46]. Another case is the ρND13(1520) system: in
a previous publication [19], a first step in this direction was done and strong effects from
the interplay of ρ and D13(1520) were reported, modifying both the ρ spectral function
and that of the baryon resonance. We have extended the model presented in [19] in several
ways: in order to guarantee the normalization of the vacuum and the in-medium spectral
functions, we employ dispersion relations to generate the real part of the self energies.
Since most baryon resonances couple strongly to the pion, a complete analysis of their in-
medium properties requires also a dressing of the pion. In order to obtain reliable estimates
for the S11(1535), which couples dominantly to the ηN channel, the η meson is included as
well. Finally, stimulated by the fact that the in-medium width of the P33(1232) needs to be
protected by repulsive short-range terms, we have developed a framework that allows for
the incorporation of such effects for resonances with negative parity, such as the D13(1520)
and the S11(1535).

The paper is organized as follows: in Section 2 we discuss the vacuum self energies of
the ρ meson and the included baryon resonances. Special emphasis is put on the effect
of dispersion relations on the baryonic spectral functions. Section 3 discusses the current
theoretical and experimental status concerning the coupling of the ρ meson to baryon
resonances, in particular the D13(1520). In Section 4 we set up the general framework
for the discussion of the in-medium self energies of mesons and baryons. The theoretical
concepts for the inclusion of short-range correlations (SRC) are given in Section 5, with
details presented in Appendix D. The results obtained for the mesons π, η and ρ, as
well as for the resonances P33(1232), D13(1520) and S11(1535) are discussed in Section 6.
In Section 7 we summarize our findings. In four Appendices we discuss some necessary
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technical issues.

2 Meson and Baryon Resonances in Vacuum

In this Section we discuss the vacuum spectral functions of the ρ meson and baryon reso-
nances, which are denoted by A(q) and ρ(k), respectively. The spectral function is defined
as the imaginary part of the retarded propagator, see Appendix A and [47]. In terms of
the self energies Π+

vac(q) and Σ+
vac(k) they are given by:

A(q) = −1

π

ImΠ+
vac(q)

(q2 −m2
M −ReΠ+

vac(q))
2 + ImΠ+ 2

vac(q)
(1)

ρ(k) = −1

π

ImΣ+
vac(k)

(k2 −m2
R −ReΣ+

vac(k))
2 + ImΣ+ 2

vac(k)
.

Throughout this paper, we will denote the four-momentum of meson M by q = (q0,q)
and that of resonance R by k = (k0,k). Note that our ansatz for ρ(k) does not take into
account the full Dirac structure of the self energy. A detailed discussion of this topic can
be found in [20].

Both A(q) and ρ(k) are normalized quantities. In order to guarantee this within our
model, we calculate the retarded self energies Π+

vac and Σ+
vac in the following way:

• calculate the imaginary part of the self energy ImΠ+
vac and ImΣvac for q0 > 0 by

means of Cutkosky’s cutting rules

• for mesons use the antisymmetry ImΠ+
vac(−q0) = −ImΠ+

vac(q0) (see Appendix A.1)
and apply a dispersion relation to obtain the real part of the self energy .

• as outlined in Appendix A, self energy and propagator of baryons are symmetric in
the vacuum, but not in the nuclear medium. Therefore we neglect the contribution
from negative energies to the dispersion integral already in the vacuum.

A further discussion of this topic can be found in [48]. The issue of how to obtain normalized
spectral functions is of relevance to us since within our coupled channel analysis the spectral
function of any state is allowed to influence the spectral function of any other state. This
implies that even rather small violations of the normalization can lead to uncontrollable
errors in the calculation.

Let us make a purely technical note: throughout this work we will encounter various
traces, arising from the spin summation at the meson-nucleon-resonance vertices. From
these traces we only keep the leading non-relativistic contribution. In [20] it was shown
that a non-relativistic approach leads to a very good approximation of the fully relativis-
tic results, as long as the kinematical quantities are evaluated in the rest frame of the
resonance. A non-relativistic reduction simplifies the expressions for the in-medium self
energies, see Chapter 4. In particular, a consistent relativistic description of the short-
range interactions is a formidable task [49, 50] and - albeit in principle desirable - beyond
the scope of this work.
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Figure 1: Self energy Πvac resulting from the coupling of the ρ to pions. The diagram on
the left corresponds to the usual decay of a ρ to two pions. The diagram on the right gives
rise to an energy independent real mass shift.

2.1 ρ Meson

The propagator of the ρmeson in vacuum has both a four-transverse and a four-longitudinal
part, of which in the presence of current conserving couplings only the former gets dressed
by a self energy Π+

vac [17, 23, 51]:

Dµν,+
ρ (q) =

1

q2 − (m0
ρ)

2 − Π+
vac(q)

P µν
T +

qµ qν

q2

1

(m0
ρ)

2
. (2)

Here P µν
T is the four-transverse projector:

P T
µν(q) = gµν −

qµ qν
q2

. (3)

The self energy Π+
vac(q) arises from the coupling of the ρ to pions, which is described by

the following Lagrangian [23]:

Lρπ = (Dµ π)⋆ (Dµ π) −m2
ππ

⋆π − 1

4
ρµν ρ

µν +
1

2
(m0

ρ)
2ρµ ρ

µ

ρµν = ∂µ ρν − ∂ν ρµ , Dµ = ∂µ + igρρµ .

From Lρπ one derives two Feynman diagrams for Π+
vac(q), see Fig. 1. Concerning the

evaluation of these diagrams we use the results from [23], where the divergent integrals have
been treated by a Pauli-Villars regularization in order to preserve the gauge invariance of
the self energy:

ReΠ+
vac(q) = −

g2
ρ

24π2
q2

[

G(q,mπ) − G(q,Λ) + 4 (Λ2 −m2
π)/q2 + ln

Λ

mπ

]

(4)

ImΠ+
vac(q) = −sgn(q0)

g2
ρ

48π
q2

[

θ(q2 − 4m2
π)

(

1 − 4m2
π

q2

)3/2

− (5)

−θ(q2 − 4 Λ2)

(

1 − 4 Λ2

q2

)3/2
]

.
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Here Λ is a regularization parameter. The function G is defined as

G(q,m) =







y3/2 arctan(1/
√
y) for y > 0

−1

2
(−y)3/2 ln

∣
∣
∣
∣

√−y + 1√−y − 1

∣
∣
∣
∣

for y < 0
(6)

y =
4m2

q2
− 1 .

Note that the real part of the self energy is related to ImΠ+
vac by a subtracted dispersion

relation:

ReΠ+
vac(q) = q2 P

∫ ∞

4m2
π

dq′ 2

π

ImΠ+
vac(q

′)

q′ 2(q2 − q′ 2)
. (7)

The subtraction is made at the point q = 0 in order to satisfy the condition ReΠ+
vac(q = 0)=

0 as required from gauge invariance [23, 26]. For the imaginary part the Pauli-Villars pre-
scription acts like a form factor which improves the convergence of the dispersion integral.
There are three free parameters in this expression, m0

ρ, gρ and Λ, which are determined
by fitting the phase shift of π π scattering in the vector-isovector channel and the pion
electromagnetic form factor, with the result:

m0
ρ = 0.875GeV , gρ = 6.05 , Λ = 1GeV . (8)

As shown in [23], with these parameters a good fit of both observables is obtained. Sum-
marizing, this model for the ρ meson in vacuum is a good starting point for an in-medium
calculation since it provides a spectral function, which is both normalized and in good
agreement with observables.

2.2 Baryon Resonances

The self energy of a baryon resonance arises from the coupling to meson-nucleon channels,
see Fig. 2. After calculating the corresponding decay width, we obtain ReΣ+

vac by a
dispersion analysis.

Following standard Feynman rules, the decay width of a nucleon resonance with in-
variant mass

√
k2 into a pseudoscalar meson ϕ = π, η of mass mϕ is in the resonance rest

frame given by:

ΓNϕ(k) =
1

2 j + 1
IΣ

(
f

mϕ

)2

F 2(k,mϕ)
qcm
8πk2

Ωϕ .

The coupling constants f are obtained by fits to the corresponding hadronic partial decay
widths and j denotes the spin of the decaying resonance. For a complete list of the included
resonances see Table 1. By qcm we denote the momentum of the decay products in the
rest frame of the resonance. The isospin factor IΣ is derived form the isospin part of the
Lagrangian which is given in Eq. 82 in Appendix C. One finds that IΣ = 1 for ∆ resonances
with isospin 3

2
and IΣ = 3 for N∗ resonances with isospin 1

2
if the decay into an isovector

π meson is considered. For the decay into the isoscalar η this factor is 1 and there is no
coupling to ∆ resonances. The quantity Ωϕ is the non-relativistic trace arising from spin
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p/r/h

R N R

Figure 2: Self energy of a baryon resonance from the decay into a π, η or ρ meson.

summation at the meson-nucleon-resonance vertices. Explicit expressions for Ωϕ, listed
according to the quantum numbers of the resonances considered in this work, can be found
in Table 3, Appendix C.2.

When considering the decay into one stable and one unstable particle, an integration
over the spectral function of the unstable particle is necessary. For a resonance with fixed
mass

√
k2 and spin j decaying into the Nρ channel, for example, one finds:

ΓNρ(k) =

(
√

k2−mN)
2

∫

4m2
π

dq2 ΓNρ(k, q)Aρ(q) (9)

ΓNρ(k, q) =
1

2 j + 1
IΣ

(
f

mρ

)2

F 2(k, q)
qcm
8πk2

(2 ΩT + ΩL) .

where ΓNρ(k, q) stands for the width of a resonance for decay into a ρ meson with invariant

mass
√

q2. The isospin factor IΣ is the same as for the pions. Explicit expressions for the
spin-traces ΩT/L are found in Table 3, Appendix C.2.

In Table 1 we give a list of all resonances and their decay channels. For most states
the sum Γπ N + Γη N + Γρ N does not exhaust the total width. As an approximation we put
the remaining width into the ∆π channel and take the energy dependence to be s-wave for
negative parity states and p-wave for positive parity states. In contrast to the other decay
channels we do not modify Γ∆π when going to the nuclear medium. The corresponding
Lagrangians are given in Appendix C.2 and lead to traces Ω∆, which we do not explicitly
denote here. In analogy to the N ρ width, we find for Γ∆π:

Γ∆π(k) =

(
√

k2−mπ)2∫

(mN +mπ)2

dm2 Γ∆π(k,m) ρ∆(m) (10)

Γ∆π(k,m) =
1

2 j + 1
IΣ

(
f

m∆

)2

F 2(k,mπ)
qcm
8πk2

Ω∆ .

The isospin factor IΣ is 1 both for the decay of isospin-3
2

and isospin-1
2

states and Γ∆π(k,m)
stands for the decay into a pion and a ∆ with invariant mass m. Since the ∆ resonance is
a broad particle, we need to integrate over its spectral function ρ∆(m).

We write the form factor F (k, q) at the resonance-meson-nucleon vertex in the following
form:

F (k, q) ≡ Fs(k)Ft(q) . (11)
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m Γtot ΓNπ ΓNρ
Γ∆π ΓNη ΓNω J I lϕ lV Λs

ρ

P11(1440) 1.462 0.391 0.270 0 0.088 0 0 1/2 1/2 p p 0.8

P33(1232) 1.232 0.12 0.12 0 0 0 0 3/2 3/2 p p 0.8

P13(1720) 1.717 0.121 0.011 0.11 0 0 0 3/2 1/2 p p 1.0

P13(1879) 1.879 0.498 0.13 0.217 0 0 0.151 3/2 1/2 p p 1.1

F15(1680) 1.684 0.139 0.096 0.011 0.014 0 0 5/2 1/2 f p 0.9

F35(1905) 1.881 0.329 0.041 0.282 0.006 0 0 5/2 3/2 f p 1.4

F15(2000) 1.903 0.494 0.039 0.369 0.086 0 0 5/2 1/2 f p 1.4

S11(1535) 1.534 0.151 0.077 0.005 0 0.066 0 1/2 1/2 s s 0.8

S31(1620) 1.672 0.154 0.014 0.044 0.095 0 0 1/2 3/2 s s 0.9

S11(1650) 1.659 0.173 0.154 0.005 0.008 0.006 0 1/2 1/2 s s 0.9

S11(2090) 1.928 0.415 0.043 0.203 0.167 0.002 0 1/2 1/2 s s 1.5

D13(1520) 1.524 0.124 0.073 0.026 0.025 0 0 3/2 1/2 d s 0.9

D33(1700) 1.762 0.598 0.081 0.046 0.471 0 0 3/2 3/2 d s 1.3

D33(1940) 2.057 0.460 0.081 0.162 0.217 0 0 3/2 3/2 d s 1.8

D13(2080) 1.804 0.447 0.104 0.114 0.229 0 0 3/2 1/2 d s 1.6

Table 1: List of all resonances which are taken into account in our calculation. Apart from
mass and width into the individual decay channels, we also give spin and isospin as well
as the lowest orbital angular momentum needed in pseudoscalar (ϕ) or vector (V ) meson
scattering on a nucleon to form the resonance. All quantities are given in GeV. In those
cases where the given partial widths do not add up to the full decay width, the remaining
width is assigned to the ∆π channel. In the last row we denote the cutoff of the form factor
Fs(k

2) of Eq. 13 at the ρN R vertex.
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mR = 1.524 GeV

Figure 3: Form factor FF1 of Eq. 13 (solid line) and form factor FF2 of Eq. 14 (dashed
line) for the D13(1520) resonance. The cutoff parameter in FF2 is taken to be Λ = 1 GeV,
the parameters s0 and Λ of form factor FF1 are listed in Table 1.

The form factor Ft(q) is a usual monopole form factor:

Ft(q) =
Λ2

M −m2
M

Λ2
M − q2

. (12)

The values taken for ΛM are listed in Table 2 in Appendix B. We multiply the resonance-
nucleon-meson vertex with a monopole type form factor since this vertex is also used in
baryon-baryon interactions, where the large space-like 4-momenta acquired by the exchange
particle need to be cut off. For the decay of a resonance into a stable final state we have
q2 = m2

M and therefore Ft(q) = 1. When going to the nuclear medium, we will be forced
to evaluate Ft also for time like 4-momenta q2 ≈ Λ2

M . In order to avoid poles of Ft(q), we
put the form factor equal to unity for q2 ≥ m2

M . This does not affect the action of Ft in
the space-like region. For Fs(k) we take different parameterizations at the RNρ and the
RNϕ vertices. When considering an RNρ vertex we choose [52]

Fs(k) =
Λ4 + 1

4
(s0 −m2

R)2

Λ4 + (k2 − 1
2
(s0 +m2

R))2
, (13)

while at the RNϕ vertex we take [52, 53]:

Fs(k) =
Λ4

Λ4 + (k2 −m2
R)2

. (14)

In the following we will refer to the form factor of Eq. 13 as FF1 and to the form factor
of Eq. 14 as FF2.

We have plotted both FF1 (solid line) and FF2 (dashed line) in Fig. 3. As a function
of k2 the form factor of Eq. 13 is asymmetric with respect to the resonance mass mR.
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It is equal to unity both at k2 = m2
R and at the decay threshold k2 = s0 < m2

R, larger
than unity within the interval {s0, m

2
R} and smaller outside. The exact shape depends on

the cutoff Λ and the threshold parameter s0. We give values for the cutoff Λ in Table 1
and take s0 = (mN + 2mπ)2. In the following Section we will give arguments in support
of the somewhat unconventional form factor Eq. 13. Asymmetric form factors like Blatt-
Weisskopf type form factors are quite commonly used in the literature, e. g. in [54].

For positive energies, the imaginary part of the self energy ImΣ+
vac is obtained from

the decay width via

ImΣ+
vac(k

2) = −
√
k2 Γ(k2) . (15)

The real part of the self energy is calculated using a dispersion integral:

ReΣ+
vac(k) = P

∞∫

ωmin

dω

π

ImΣ+(ω,k)

ω − k0

− cvac(k) (16)

with

cvac(k) = P
∞∫

ωmin

dω

π

ImΣ+(ω,k)

ω −
√

m2
R + k2

.

Here P denotes the principal value. The energy ωmin =
√

(mN +mπ)2 + k2 follows from
the threshold for the decay into Nπ. By mR the mass of the resonance is denoted. As
can be inferred from Fig. 4, the suppression from the form factor F (k, q) is sufficient to
produce a decreasing width, such that the dispersion integral converges. The subtraction is
convenient to ensure that the physical mass of the resonance is recovered. In principle the
dispersion integral extends over negative energies as well. We omit this contribution since
in the nuclear medium no symmetry exists which relates ImΣ+(k0) to ImΣ+(−k0). This
issue is addressed in Appendix A. We have checked that in the vacuum the contributions
from negative energies to the dispersion integral can safely be neglected. Also, in cold
nuclear matter we do not expect that antibaryons are important.

2.3 Results for ReΣ and ImΣ

In this Section we present results for Σvac and compare two resonances – the P33(1232) and
the D13(1520) resonance, both of which have according to the PDG [55] an on-shell width
of about 120 MeV.

In Fig. 4 we show the decay width of both resonances as a function of their invariant
mass. Note the different scales on the y axes. The Nρ width (solid line) of the D13 state
displays a strong energy dependence, which is of kinematical origin. The resonance is below
the nominal threshold for the decay at mN +mρ = 0.938 + 0.77 ≈ 1.7 GeV. Therefore the
decay into this channel can only proceed via the low mass tail of the ρ meson, which in
turn generates a steep increase of the width as the available phase space opens up.

Let us now turn to the results for the self energy and the spectral function, which
are depicted in Figs. 5 and 6. From Fig. 5 we find that around the resonance peak
the spectral functions of the D13(1520) and the P33(1232) (solid lines) obtained by a full
calculation including the real part of the self energy do not differ much from those obtained
by neglecting ReΣ (dashed lines). In both cases we observe a slight squeezing of the

10



-0.1 0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 N , FF1
 N

 
 N , FF2

 

 
D

13
 [G

eV
]

k2-m
R
 [GeV]

 N  

 

 

P
33

 [G
eV

]
k2-m

R
 [GeV]

Figure 4: Left: Partial decay widths of the D13(1520). The Nρ width ΓNρ as following from
form factor FF1 of Eq. 13 is indicated by the solid line, the result from form factor FF2
of Eq. 14 by the dotted line. Right: Width of the P33(1232) resonance in vacuum. The ρ
component is negligible over the energy interval shown here and has not been plotted.

resonance peak in the spectral function due to the real part, which is more pronounced for
the D13(1520). Going away from the resonance peak, we observe an additional shoulder
for the D13(1520). This shoulder has most probably no direct influence on observables
since it is located far away from the resonance peak and is likely to be overshadowed by
the contribution of other resonances. Hence we are not concerned about this structure.
The real part of the self energy of both states – indicated by the solid and the dashed
lines in Fig. 6 – is comparable around resonance, with a slightly larger energy variation
for the D13(1520). Away from the resonance peak we observe a strong energy variation in
the self energy of the D13(1520) which is responsible for the additional shoulder found in
the spectral function. The dashed-dotted line in Fig. 5 shows the spectral function of the
D13(1520) as resulting from the use of a smaller partial decay width ΓNρ = 12 MeV instead
of ΓNρ = 26 MeV. Using the smaller width the shoulder nearly disappears. We will come
back to the issue of the proper choice for ΓNρ in the next Section.

Next we address the question as to why form factor FF2 should be discarded at the
RNρ vertex. Therefore consider the results for ImΣ, ReΣ and the spectral function
ρ, which are depicted by the dotted lines in Figs. 4, 5 and 6. All three curves display
unsatisfying features: the Nρ decay width obtained with FF2 rises very quickly to values
above 1 GeV, around the resonance peak the real part of the self energy has a strong energy
dependence ∂ReΣ/∂k2 and we observe a significant squeezing of the resonance peak in the
spectral function ρ. The sum of these effects provides enough evidence to abandon form
factor FF2 and take form factor FF1 instead.

These three effects are connected to each other in the following way: the rapid increase
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Figure 5: Spectral function ρ of the D13(1520) (left) and the P33(1232) resonances. In
both cases the solid lines indicate the results as following from using FF1 for ΓNρ. The
dashed line shows the spectral function without ReΣ. In the left figure, the dash-dotted
curve is the spectral function of the D13(1520) if a value of 12 MeV for ΓNρ is used. In the
dotted curve the form factor FF2 of Eq. 14 is taken at the RNρ vertex.

of ΓNρ translates into a strong energy dependence of ReΣ. If ImΣ is nearly constant
around the pole of the resonance, one expects ReΣ to be small since the contributions from
below and above the pole approximately cancel. Turning this argument around implies that
a rapid variation with energy leads to a sizeable ReΣ. This leads to a squeezing of the
peak which can be understood by expanding ReΣ to first order in k2, thus producing the
quasi-particle approximation. One gets for the spectral function:

ρ(k2) ≈ −1

π

z2ImΣ

(k2 −m2
R)2 + z2ImΣ2

(17)

z =

(

1 − ∂ReΣ

∂k2

)−1
∣
∣
∣
∣
∣
k2=m2

R

.

The factor z < 1 effectively measures the influence of ReΣ and indicates that – depending
on the energy variation of ReΣ – strength is shifted away from the resonance peak to larger
invariant masses. This explains the pronounced peak at invariant resonances masses

√
k2

around mR + 0.6 GeV. Now one can also understand why form factor FF1 can cure this
problem: its functional form limits the energy variation of the Nρ width of the D13(1520),
which we have identified as the main source of trouble.

It follows from Eq. 17 that one could recover the nominal width of the resonance
peak by increasing ImΣ . The price to pay is that then the peak height is reduced,
because in any case the area under the peak is reduced since z < 1. A priori it is not
clear how this problem should be handled, since in principle peak height and peak width
can be additionally influenced by interference with background terms. In this work we
have decided to preserve the peak height. Adjusting instead to the peak width leads to
further complications for the coupled channel problem at hand: considering for example
the D13(1520), the z factor is essentially generated by the ρN width. We have checked
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Figure 6: Real part of the self energy of the D13(1520) resonance (solid and dotted lines)
and the P33(1232) resonance (dashed line). The solid line is obtained using form factor
FF1 of Eq. 13 and the dotted line follows from form factor FF2 of Eq. 14.

numerically that by increasing the Nρ width – leading to a smaller z factor – one cannot
restore the original peak width. Instead, one had to change the πN or the π∆ partial
width (or both of them). In a numerical simulation we have found that both had to be
multiplied by a factor of 1.7 in order to restore the original peak width. Clearly, this
would influence the results for the π self energy, since a modification of ΓπN leads to a
new coupling constant at the πN D13(1520) vertex. A reliable solution of this problem
mandates a complete analysis of πN scattering taking into account effects from ReΣ.

The results for the spectral shape of the D13(1520) presented in this work show a strong
similarity to the textbook case of a stable state, whose mass is below the multi-particle
threshold [56]. In the absence of interactions, all the spectral strength sits in the particle
peak. After the interactions have been turned on, however, strength appears at masses
above the threshold. For the spectral function to remain normalized, this implies that
strength has to be removed from the quasi-particle peak.

The large decay width of ΓNρ = 300 MeV for the P13(1720) given in [57] also leads to
problems when calculating ReΣ, requiring a very small cutoff value Λ. Since such a large
decay width seems questionable for a resonance close to the nominal Nρ threshold and
coupling in a p-wave to this channel, we instead use the PDG estimate ΓNρ = 110 MeV
for this resonance. See also the discussion in Chapter 3.

3 ρN Scattering and Experiment

Experimental information on the coupling of mesons to a baryon resonance enters into our
model via the coupling constants fM , which are adjusted to the experimentally observed
partial decay width of that resonance into the respective meson-nucleon channel. Whereas
for the Nπ and Nη final states those branching ratios are rather well known, some un-
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certainty prevails for the decay width into the Nρ channel. This is due to the principal
difficulties associated with the experimental identification of a ρ meson at energies below or
only slightly above the nominal threshold, as occurring in the decay of, e. g., the D13(1520)
or the P13(1720). In the following we discuss the experimental information about the decay
of the D13(1520) in some detail and also touch on some of the uncertainties concerning a
few other states.

3.1 The D13 Amplitude

A major part of the results of this work hinges on the coupling of the D13(1520) resonance
to the Nρ channel. According to the PDG [55], one has ΓNρ = 24 MeV. This is close to
the value suggested by Manley et al [57], where ΓNρ = 26 MeV is found. In this work we
adopt the value of [57] and give some motivation for our choice in the following paragraphs.

The experimental information on ΓNρ is primarily derived from a partial wave analysis
of πN → ππN scattering presented in [54], where a very clear resonance structure is found
in the πN → ρN channel of the D13 partial wave amplitude for energies around 1.5 GeV.
Similar results are reported in Herndon et al [58] and Dolbeau et al [59]. Only in the work of
Brody [60] no coupling of the D13(1520) to the Nρ channel is found, since below

√
s = 1.6

GeV the Nρ contribution is set to zero by hand. In subsequent analyses, the partial decay
width ΓNρ has been extracted from a resonance fit of this partial wave amplitude. Both
the work of Manley et al [57] and Vrana et al [61] achieve a reasonable fit by assigning a
relatively large value (in view of the available phase space) to ΓNρ. In [57] a partial width
of 26 MeV is found, whereas the analysis of [61] reports a value of 12 MeV.

Further support for a rather large value for ΓNρ comes from a complementary exper-
iment, where photoproduction of pion pairs on the nucleon has been studied [62]. The
two-π invariant mass spectra - measured at photon energies just below the nominal thresh-
old for ρ production - follow the expected phase space distribution in the isoscalar channel
(π0π0). In the isovector channel a systematic asymmetry favouring larger invariant masses
is reported. An appealing interpretation of this finding assigns this asymmetry to the ρ
meson, which does not couple to the isoscalar channel. In a subsequent theoretical analysis
[63], this conjecture has been put on a more solid basis. There, a coupling of the D13(1520)
to the Nρ channel in line with the PDG values is necessary for a successful description of
the data.

In [22, 21] meson-nucleon scattering is described in terms of 4-point interactions. After
iterating the interaction, the resonant structures seen in experiment emerge dynamically.
Fitting these structures with a Breit-Wigner type ansatz, width and mass can be compared
the results of other analyses. For ΓNρ a value of about 6 MeV is found in [22], smaller
than the results from [57, 61]. This is claimed to be due to the fact that a direct fit of
π N → ρN data from [60] is performed, thus leaving the region around the D13(1520)
essentially unconstrained. In [21] an even smaller coupling is obtained after the inclusion
of photo-induced data to the coupled channel analysis. There the direct constraint of
photo data to the hadronic ρN vertex results from the assumption of strict vector meson
dominance. The ρ coupling strength is then determined rather indirectly by the isovector
part of the photon-coupling and not from hadronic data.

Although we cannot exclude the possibility of such a weak coupling to the Nρ channel,
we believe that there is enough experimental evidence supporting a rather large width ΓNρ

of the D13(1520). We base our calculations on ΓNρ = 26 MeV as suggested in [57]. In order
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to get some feeling for the sensitivity of our results on ΓNρ we present also calculations
using ΓNρ = 12 MeV reported in [61].

3.2 Other Partial Waves

Uncertainties concerning resonance parameters not only exist for the D13(1520) state, but
for many of the high lying resonances included in this work. Fortunately, in most cases
it turns out that the results are not too sensitive to changes in the parameters. This is
not true, however, for the P13(1720) and the D33(1700) states, which have a large energy
overlap with the Nρ system.

For both resonances a large branching ratio into the 2πN final state is well established
in the literature, see for example [57, 61, 52, 64]. However, so far no agreement has been
reached both for the total width of the resonance and for the relative strength of Nρ and
∆π contributions. Note first, that the decay of the P13(1720) to N ρ is strongly suppressed
from phase space, if one takes into account that the coupling is p-wave. In this light, the
huge partial decay width assigned in [57] of about 300 MeV seems questionable. Therefore
we have opted to take the PDG value ΓNρ = 110 MeV [55] for this channel, which is in
agreement with the findings in [61]. For the D33(1700) in [57] a value of 46 MeV is found,
whereas the PDG suggests a value of 120 MeV. Here we follow the results of [57]. This way
we arrive at a conservative estimate concerning the influence of both states for in-medium
effects.

4 Mesons and Baryons in the Nuclear Medium

Up to now we have discussed aspects of the meson-nucleon and baryon-nucleon interaction
in the vacuum. We are now in a position to consider these interactions in the nuclear
medium. The goal is to achieve a coupled-channel analysis of the in-medium properties of
pions, η and ρ mesons as well as baryon resonances. We therefore need to calculate the
spectral function of all particles under consideration:

Amed
M (q) = −1

π
Im 1

q2 −m2
M − Π+

vac(q) − Π+
M(q)

(18)

ρmed(k) = −1

π
Im 1

k2 −m2
R − Σ+

med(k)
,

where M stands for the meson under consideration. Here we denote the full in-medium
self energy of meson M by the sum Π+

vac(q) + Π+
M(q), where Π+

M contains the contribution
of all processes that take place only in the medium. For resonances this splitting is not
reasonable within our model, since the vacuum and in-medium self energies are generated
by the same type of diagrams.

For the mesons we consider effects from resonant meson-nucleon scattering, where the
nucleon is provided by the surrounding nuclear medium. This leads to the excitation
of particle-hole pairs, see Fig. 7. In the baryon sector, the in-medium decay width of
resonances is affected by two mechanisms: Pauli blocking reduces the width, whereas
resonance-nucleon scattering leads to a broadening. We generate collisional broadening –
being due to the exchange of mesons – by replacing the vacuum meson propagator Dvac

M by
its in-medium counterpart Dmed

M in the resonance self energy Fig. 2. Applying Cutkosky’s
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cutting rules to the modified diagram yields the collisional broadening. For an illustration
of these rules compare the self energy diagram of Fig. 9 and the cuts of Fig. 10.

We thus have set the stage for a typical self consistency problem. Starting with a model
for the in-medium self energy of mesons, we are led to modify also the resonance self energy,
which in turn serves as input for an improved calculation of the meson self energy. By this
iterative procedure diagrams of higher order in the density are generated. A resonance self
energy of order ρ1 produces a meson self energy of order ρ2, since the meson effectively
interacts with two nucleons (albeit not at the same point).

In this Section we present the underlying theoretical framework, which is akin to our
program in the vacuum. Starting point is the calculation of the imaginary part of the
in-medium self energy. The dispersive real part follows then from a dispersion relation
over the energy, i.e. at fixed 3-momentum. We repeat our statement from the introduction
to Chapter 2 that we keep only the leading non-relativistic contribution from the traces
arising at the meson-nucleon-resonance vertices.

4.1 The in-medium Self Energy of Mesons

Compared to the vacuum, the meson self energies exhibit two distinct properties in nuclear
matter. As a consequence of the fact that nuclear matter constitutes a suitable reference
frame, which allows for the definition of a transverse and longitudinal polarization, we
obtain two independent self energies for the ρ meson, ΠT

ρ and ΠL
ρ . These are obtained

by contracting the three-transverse and three-longitudinal projectors T µν and Lµν , respec-
tively, with the self energy tensor Πµν

ΠT
ρ =

1

2
T µν Πµν (19)

ΠL
ρ = Lµν Πµν ,

where the projectors read [51]:

Lµν(q) = − q2

(nq)2 − n2q2

(

nµ − qµ
nq

q2

) (

nν − qν
nq

q2

)

(20)

T µν(q) = P T
µν(q) − Lµν(q) .

Here n characterizes the nuclear medium and we choose n = (mN , 0). The four-transverse
projector P T

µν has been introduced in Chapter 2, Eq. 3. As a second consequence of the
presence of nuclear matter, the in-medium self energy depends on both variables q0 and
|q| independently.

By using standard Feynman rules and the Lagrangians given in Appendix C, we arrive
at the following expressions for the imaginary part of the self energy of a pseudoscalar
meson ϕ due to the excitation of a resonance-hole loop:

ImΠϕ(q0,q) = IΠ

(
f

mϕ

)2 ∫
d3p

(2 π)3

θ(pF − |p|)
2EN(p)

Im Ωϕ

k2
0 − E2

R(k) − Σ+
vac(k)

. (21)

Similarly, for ρ mesons we find:

ImΠ
T/L
ρ (q0,q) = IΠ

(
f

mV

)2 ∫
d3p

(2 π)3

θ(pF − |p|)
2EN(p)

Im ΩT/L

k2
0 −E2

R(k) − Σ+
vac(k)

.(22)
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Figure 7: Feynman diagram representing the resonance hole excitation. Left: s-channel
contribution. Right: u-channel contribution. The double-line stands for any of the reso-
nances or a nucleon. The meson lines represent any of π, η or ρ meson.

In the above expression we have k = p + q, where p = (p0,p) is the 4-momentum of
a nucleon. The on-shell energies of nucleon and resonances are given by EN and ER.
By pF the Fermi momentum is denoted. The factor 1

2EN
comes from the hole part of

the relativistic nucleon propagator. Explicit expressions for the traces Ω can be found in
Appendix C. The isospin factor IΠ is calculated from the isospin part of the Lagrangian
and is IΠ = 2 for isospin-1

2
and IΠ = 4/3 for isospin-3

2
resonances if pions or ρ mesons are

considered. For the isoscalar η this factor is 2. In addition, we multiply the form factor
F (k, q) (not displayed explicitly in Eqs. 21 and 22), see Chapter 2, Eq. 11. At sufficiently
small densities the above expressions can be obtained from the low density theorem [44],
which relates the self energy of meson M to the nuclear density ρ and the meson nucleon
forward scattering amplitude TNM as:

ΠM(q0,q) =
ρ

8mN
TMN(q0,q) . (23)

The complete self energy is given as the sum of all individual resonance contributions.
A complete list of the resonances which are taken into account is given in Table 1. We
include all resonances which have a sizeable coupling to either of the mesons that are
considered in this work. As for the parameters mass and decay width we follow with one
exception the results of Manley et al [57]. This exception is the P13(1720) resonance as
discussed in Section 3.2.

Apart from the resonance excitations, we also take into account the conversion of mesons
into nucleon-hole loops. This is done in a non-relativistic manner. Since the nucleon is
stable, the integration over the Fermi distribution can be performed analytically and one
finds for meson M :

ΠN
M(q0,q) = 4q2

(
fNNM

mM

)2

UN(q)F 2
t (q) . (24)

The form factor Ft(q) is defined in Eq. 12, Chapter 2. The cutoff parameters Λ as well as
the coupling constants fMNN are listed in Table 2 in Appendix B. The Lindhard function
UN(q), consisting of s and u channel contributions, is given explicitly in [65]. Following
a suggestion made in [41], for the case of η and π mesons, we multiply UN with a recoil
factor:

UN(q0,q) → UN (q0,q)

(

1 − q0
2mN

)2

, (25)
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which is a O
(

p
mN

)

correction from the relativistic pseudo-vector coupling [65].

We obtain the real part of the in-medium self energy of meson M by means of an
unsubtracted dispersion relation:

ReΠ+
M (q0,q) = P

∞∫

0

dω2

π

ImΠ+
M (ω,q)

ω2 − q2
0

, (26)

which can be written down as an integral over positive energies due to the antisymmetry
of the imaginary part of the meson self energy, see Appendix A. Note that due to the
antisymmetry of ImΠ+, in this way we also generate the u channel contributions depicted
in the right hand side of Fig. 7: changing the meson energy from q0 to −q0 in an s-channel
diagram yields exactly the corresponding u-channel diagram since an incoming meson with
negative energy −q0 is nothing but an outgoing one with positive energy q0. We find that
in comparison to a direct calculation of this quantity from the Feynman diagram of Fig.
7, the dispersion relation leads to a more pronounced resonant structure of the self energy.
Note that a direct computation violates analyticity since the form factors Fs and Ft have
poles in the complex energy plane.

The meson spectral function generated by the self energies of Eqs. 21, 22, 24 and 26 is
characterized by the formation of additional peaks arising from the excitation of particle-
hole loops. At a given 3-momentum the energy of the peak from a resonance-hole state
with resonance mass mR is approximately determined by the equation:

q2
0 − q2 +m2

N + 2mNq0 = m2
R . (27)

In Fig. 8 we have indicated the solution of this equation for some particle-hole states. Also
indicated are the meson peaks. Due to the interaction between the various branches of
the spectral function, one observes level repulsion and the actual position of the peaks is
slightly rearranged in comparison to the solution of Eq. 27. The use of dispersion relations
enhances this effect.

As indicated by the low density theorem, Eq. 23, the self energy of on-shell mesons
in nuclear matter is constrained from the meson nucleon phase shifts, while the off-shell
dynamics remains largely model dependent. However, direct information on the phase
shifts is only available for the pion. As we have explained in Section 2.3, the inclusion of
ReΣ leads to a reshaping of the resonance spectral function, which in turn also influences
– and actually worsens – the description of πN phase shifts away from the pole. A better
description would necessitate the inclusion of non-resonant background terms. We would
like to stress, however, that the main factors determining the importance of the resonance
contribution – coupling strength and resonance mass – are not affected by these problems.

4.2 The in-medium Self Energy of Baryon Resonances

We calculate the in-medium broadening of baryon resonances by replacing the vacuum
meson propagator by the in-medium one in the meson-nucleon self energy loops. The
corresponding Feynman diagram is shown in Fig. 9, where the self energy insertion is to
be understood as a complete resummation of particle-hole loops. The ∆π channel is not
modified. Applying Cutkosky’s cutting rules, one finds for the width of a nucleon resonance
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Figure 9: Feynman diagram representing the in-medium decay of a baryon resonance into
a nucleon and a dressed meson. The particle-hole loops stands for both for nucleon and
resonance excitations and it is understood that it represents a complete resummation of
particle-hole insertions. The symbol P indicates that Pauli blocking is taken into account.

with spin- j
2

and invariant mass
√
k2 decaying into a pseudoscalar meson ϕ or a ρ meson:

ImΣ+
ϕ,med(k0,k) = − IΣ

2j + 1

(
f

mϕ

)2

√
k2
0
−m2

N∫

pF

dp p2

8 π EN
×

×
+1∫

−1

dxF 2(k, (k − p)) Ωϕ Amed
ϕ (k − p) (28)

ImΣ+
ρ,med(k0,k) = − IΣ

2j + 1

(
f

mρ

)2

√
k2
0
−m2

N∫

pF

dp p2

8 πEN
×

×
+1∫

−1

dxF 2(k, (k − p)) (2 ΩT Amed
ρ,T (k − p) + ΩL Amed

ρ,L (k − p)) .
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The spectral function of meson M is denoted by Amed
M . The isospin factor IΣ is 1 for ∆

resonances with isospin 3
2

and 3 for N∗ resonances with isospin 1
2
. For the decay into Nη

one finds IΣ = 1. The integration variable p refers to the nucleon momentum with respect
to the rest frame of nuclear matter, EN is the on-shell energy of a nucleon and we have for
the Fermi energy EF =

√

m2
N + p2

F . This explains the lower integration bound, reflecting
Pauli blocking. The upper integration limit follows from the condition that the meson
energy q0 > 0. By x we denote the cosine of the polar angle between k and p. Note that
these expressions are similar to what one obtains in the vacuum for the decay into one
stable and one unstable particle, see Eqs. 9 and 10 in Chapter 2.2. For practical reasons
we perform the phase space integration in Eq. 28 in the rest frame of nuclear matter and
not in the rest frame of the resonance.

Note that in our approach ImΣ+
M,med(k0,k) vanishes for energies k0 < EF . This

is strictly speaking only true for decay processes, whereas for energies below the Fermi
energy one might also think of the formation of resonances from the decay of a nucleon
sitting in the Fermi sphere into a (far off-shell) resonance and a meson. Such a process
formally follows from the same Feynman diagram and enters into the imaginary part of
the self energy with the opposite sign. Contributions like this are responsible for the fact
that the imaginary part of the self energy is not symmetric in k0 (cf. Appendix A). Since
they only affect the self energy of the baryon resonances in the far off-shell region, we can
safely neglect such effects in this work.

In analogy to the meson sector, the presence of nuclear matter leads to spectral functions
for baryon resonances, which depend on the polarization of the resonance. Since in nuclear
matter both the realization of a polarized resonance state and its detection are impossible,
we average over the spin of the resonance and obtain only one spectral function. Note that
the self energy depends both on k0 and |k|.

As in the vacuum case, we calculate the real part of the self energy in the medium by
means of a dispersion relation, which guarantees that the spectral function of the resonance
remains normalized:

ReΣ+
med(k0,k) = P

∞∫

EF

dω

π

ImΣ+
med(ω,k)

ω − k0
− cvac(k) . (29)

The lower integration bound is the Fermi energy EF below which ImΣ+
med(ω,k) vanishes

in our calculation, see discussion after Eq. 28. As pointed out there, contributions from
below the Fermi surface exist. However, since they are far away from the resonance pole
we expect only minor repercussions on the dispersion relation from neglecting these terms.
The subtraction constant cvac(k) has been introduced in Eq. 16. We have not considered
processes like RN → R′R′′, which on-shell are either closed or suppressed by phase space,
because the relevant coupling constants are in most cases completely unknown.

Note that the resonance self energy of Eq. 29 is defined with respect to the nucleon. In
addition one might also think of mean field contributions (generated by σ and ω exchange)
to the self energy, giving rise to binding of the resonances and the nucleon. The effect of
these mean-field terms can be sizeable [66], but except for the nucleon their size is only
poorly known. Therefore we have omitted such effects in the present calculation.

The imaginary part of the resonance self energy contains two contributions, which are
depicted in Fig. 10. The left graph describes resonance-nucleon scattering processes with
the exchange of (dressed) pions, ρ mesons and η mesons and arises from the particle-
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Figure 10: Interpretation of the in-medium self energy as a sum of a collision term and
the decay into a nucleon and a dressed meson.

hole branches in the meson spectral function. This way elastic scattering RN → NR or
inelastic processes RN → NR′ and RN → NN are produced. The relative weight of these
final states may be important in the interpretation of experimental results [67]. The right
graph in Fig. 10 describes the decay of the resonance into a nucleon (with Pauli-blocking)
and a dressed meson. This contribution is generated from the meson peak of the spectral
function. Note that the strength in this peak is smaller than one and that its dispersion
relation changes compared to the vacuum. This implies that the in-medium width can be
smaller than the vacuum one, even before Pauli-blocking is taken into account. In the result
section we will find examples for that. In the actual calculations many of the individual
branches overlap, which makes a clear separation of the contributions impossible.

The self consistency problem outlined before is tackled with an iterative procedure.
Having calculated the in-medium self energy of the resonances according to Eqs. 28 and
29, we can improve the meson self energy by replacing Σ+

vac → Σ+
med in Eqs. 21 and 22:

ImΠ2
π/η(q0,q) = IΠ

(
f

mϕ

)2 ∫
d3p

(2 π)3

θ(pF − |p|)
2EN(p)

Im Ωϕ

k2
0 − E2

R(k) − Σ+
med(k)

(30)

ImΠ
T/L,2
ρ (q0,q) = IΠ

(
f

mρ

)2 ∫
d3p

(2 π)3

θ(pF − |p|)
2EN(p)

Im ΩT/L

k2
0 − E2

R(k) − Σ+
med(k)

.

Thus an improved meson spectral function A2
med is generated, leading to a new guess for

the resonance self energy Σ2
med and so forth. As it will turn out in the result section, we

find convergence after at most four iterations.
In Fig. 11 we show the Feynman diagram corresponding to the second iteration Eq.

30. The diagram on the left is the self energy as generated by plugging in the in-medium
width of the resonance. The diagram on the right is obtained by cutting the self energy
diagram and displays the physical scattering amplitude leading to the self energy. One sees
that the iteration generates reactions of the incoming meson with more than one nucleon.

5 The RN interaction

This Chapter is concerned about short-range correlations (SRC), which constitute an im-
portant ingredient of the resonance-nucleon interaction. The need for adding a short-range
term to the conventional meson exchange potential is readily seen when considering the
central part of the pion exchange contribution to the nucleon-nucleon potential. It contains
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Figure 11: Interpretation of the in-medium self energy as a sum of a collision term and
the decay into a nucleon and a dressed meson.

an unphysical constant in momentum space or, equivalently, a δ contribution in position
space:

V (q0 = 0,q) = −1

3

(
fNN

mπ

)2
q2

q2 +m2
π

σ1 · σ2 (31)

= −1

3

(
fNNπ

mπ

)2 (

1 − m2
π

q2 +m2
π

)

σ1 · σ2 .

This can be removed by adding a short-range piece to the potential:

VC(q0,q) = g

(
fNNπ

mπ

)2

σ1 · σ2 (32)

with g = 1
3
. Note that by adding VC a large correction of the potential for small momenta

q is introduced. Central for the q2 in the numerator of Eq. 31 is the p-wave coupling.
Such a potential is not only encountered in the nucleon-nucleon case, but also for RN
scattering, provided the resonance has positive parity and spin-1

2
or spin-3

2
. Indeed, it

is well known that the inclusion of short-range terms is crucial for an understanding of
NN → NNπ scattering, where the P33(1232) plays a dominant role, see e.g. [68, 66]
and references therein. Even more important for our work, a realistic description of the
in-medium properties of the P33(1232) can only be achieved by including such corrections,
which greatly reduce the in-medium broadening [29, 30, 31, 35]. We will discuss this issue
in Chapter 6.

This quenching of the in-medium broadening serves as a motivation for us to study
SRC not only for positive parity states - where apart from the strength g of the SRC no
principal problems arise - but also for negative parity states like the D13(1520) and the
S11(1535) resonance, which have spin-3

2
and spin-1

2
, respectively.

We describe the SRC by means of contact interactions. These are derived both from
the exchange of a pion and a ρ meson, leading to Lπ

C and Lρ
C respectively:

Lπ
C = cπ J

µ Jµ , (33)

Lρ
C = cρB

µ ν Bµ ν .

Then a non-relativistic reduction of these interactions is performed. The current Jµ is
obtained from the πN R Lagrangians given in Appendix C, Eq. 83. The tensor Bµν is
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defined by rewriting the RNρ Lagrangians given in Appendix C, Eq. 84 as:

L = Bµ ν ∂µ ρν . (34)

To give a specific example, for the case of a Jπ = 3
2

+
state, the current Jµ and the tensor

Bµν read:

Jµ =
f

mπ
ψ̄µ

R ψN , (35)

Bµν = i
f

mρ

(
ψ̄µ

R γ
ν − ψ̄ν

R γ
µ
)
γ5 ψN .

One might think of these contact interactions as arising from the exchange of a heavy
meson with the quantum numbers Jπ = 1+ (Lπ

C) or Jπ = 2+ (Lρ
C). Sending the mass of

the exchange particle to infinity, the contact interactions of Eq. 33 result [68].
Unfortunately, in contrast to positive parity resonances, not much is known about

the strength of the contact interactions for P = −1 states. In a first attempt to ob-
tain estimates for cπ and cρ, we follow an approach which was originally introduced in
[69]. There correlations are generated by means of a correlation function C(r), such that
V (q0, r) → V (q0, r)C(r). Taking C(r) = 1 − j0(qcr), where j0(qcr) is the lowest order
Bessel function, the correlations produce the following additional term VC in momentum
space:

V (q0,q) → V (q0,q) − 2 π2

q2
c

∫
d3q′

(2π)3
δ(|q − q′| − qc)V (q0,q

′) (36)

= V (q0,q) − VC(q0,q) .

The resulting integral is readily solved with an appropriate angular average [69]. Within
this model the strength of the short-range interactions is determined by the meson coupling
constant (which is known) and the parameter qc, which is choosen to be qc = mω. Thus,
once qc is fixed the theory is essentially parameter free. The assumption is that qc itself
does not change when considering different types of potentials. It has been demonstrated
in [69] that applying this method to the well studied cases nucleon and P33(1232) leads to
reasonable estimates.

Let us give an argument as to why SRC are not necessarily negligible for s-wave po-
tentials, which typically look like

V (q0,q) = f 2 1

q2
0 − q2 −M2

. (37)

Although V contains no δ type contribution in position space, it can be modified to the
correlation integral Eq. 36. As will become clear from the discussion in the Appendices
D.1 and D.2, one obtains (see also [70]):

V (q0,q) = f 2 1

q2
0 − q2 −M2

− f 2 1

q2
0 − q2 − q2

c −M2
. (38)

Comparing this with the result from Eq. 32 for the p-wave correlations shows that the
corrections induced from VC with qc = mω are relatively small at low momenta. However,

23



with a sufficiently large value for the coupling constant f , VC may still be sizeable. Then
the effects of SRC become important when the interactions are iterated in the nuclear
medium. Therefore a discussion of the effects from SRC is also important for resonances
with negative parity. In this work we stick to a non-relativistic treatment for simplicity.

For the η the treatment of SRC is done in exactly the same way as for the pion.
Therefore we do not mention this case specifically in the following.

In principle a relativistic description of the SRC is of great interest, in particular when
considering the resonance-nucleon interaction for heavy resonances, where the exchanged
4-momenta can become sizeable. For positive parity states first attempts towards a fully
relativistic description, based on Lagrangians of the type Lπ

C , have recently been proposed
in [49, 50]. However, structures as those generated by Lρ

C have not yet been considered
in both works. A consistent treatment is furthermore complicated by the fact that the
accepted phenomenological range for values of gp needs to be rejected if the relativistic
corrections are sizeable and new values have to be obtained by fits to observables.

5.1 Contact Interactions

As detailed in Appendix D, starting from Eq. 33 and performing a non-relativistic reduc-
tion, we find the following contact interactions for positive parity states:

LC = gp

(
f

mπ

)2 (

ψ†
R σ

i ψN

) (

ψ†
N σi ψR

)

for Jπ = 1
2

+

LC = gp

(
f

mπ

)2 (

ψ†
R S

i † ψN

)(

ψ†
N Si ψR

)

for Jπ = 3
2

+

(39)

As shown in Appendix D.1, for P = +1 states Lπ
C and Lρ

C have the same form in the non-
relativistic limit and can be combined to give a single contact interaction. Concerning the
strength parameter gp, we adopt the following philosophy: rather than strictly following
the results obtained from the correlation integral via the Eqs. 97 and 98 in Appendix D.1,
for the nucleon and the P33(1232) resonance we determine gp from the requirement that
the in-medium properties of the P33(1232) are described reasonably well. The resulting
values gp are given in Table 2, Appendix B. For the other p-wave resonances we then take
the same strength parameters.

Spin-5
2

resonances are treated in a more phenomenological manner: we have not at-
tempted a construction of contact interactions from pion or from ρ meson exchange. For
the pion propagation in nuclear matter we neglect the effects from SRC in the Jπ = 5

2

+

sector altogether. For the ρ meson we carry over the results obtained in the Jπ = 1
2

+
and

Jπ = 3
2

+
sectors. This ad-hoc prescription is motivated by the fact that subjecting the ρ

meson part of the exchange potential to the correlation integral leads to exactly the same
results in all three sectors. This is due to the fact that the non-relativistic potentials are
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p-wave. For negative parity resonances we get the following Lagrangians:

Lπ
C = gs

π

(
f

mπ

)2 (

ψ†
R ψN

)(

ψ†
N ψR

)

for Jπ = 1
2

−

Lπ
C = gd

π

(
f

mπ

)2 (

ψ†
R S

i † σk ∂k

2mN
ψN

)(

ψ†
N

←

∂k σk

2mN
Si ψR

)

for Jπ = 3
2

−

Lρ
C = gs

ρ

(
f

mρ

)2 (

ψ†
R σ

i ψN

)(

ψ†
N σi ψR

)

for Jπ = 1
2

−

Lρ
C = gs

ρ

(
f

mρ

)2 (

ψ†
R S

i † ψN

) (

ψ†
N Si ψR

)

for Jπ = 3
2

−

(40)

As discussed in Appendix D.2, in contrast to the P = +1 resonances, here pion and ρ
induced contact interactions are of a different structure and need to be treated separately.
By s/d we denote the angular momentum of the underlying meson-nucleon interaction
and π/ρ explain whether the contact interactions are derived from pion or from ρ meson
exchange. Estimates for the strength parameters are obtained from the correlation ap-
proach. Since for P = +1 states this method leads to reasonable results for the strength of
the short-range interactions, we are confident that it is also applicable for negative parity
states. Details are given in Appendix D.2 and explicit values for the strength parameters
can be found in Table 2, Appendix B.

In Appendix D.3 we discuss the possibility that – mediated by the short-range inter-
actions – resonances with different quantum numbers can mix. The corresponding La-
grangians are obtained from those given in Eqs. 39 and 40.The mixing of Jπ = 1

2

+
or

Jπ = 3
2

+
states and Jπ = 3

2

−
states is described by:

LC = gdp
π

(
f

mπ

)2 (

ψ†
R1 S

i † σk ∂k

2mN

ψN

)(

ψ†
N Si ψR2

)

+ h.c.

LC = gdp
π

(
f

mπ

)2 (

ψ†
R1 S

i † σk ∂k

2mN

ψN

)(

ψ†
N σi ψR2

)

+ h.c.

(41)

Here dp indicates that the Lagrangian describes the mixing of p and d waves and the index
π implies that mixing takes place only in the pion sector. The coupling f 2 stands for the
product of the coupling constants of both involved resonances. Similarly, the mixing of
Jπ = 1

2

+
and Jπ = 3

2

+
states as well as the mixing in the ρ sector of Jπ = 1

2

−
and Jπ = 3

2

−

states follows from the Lagrangian:

LC = g

(
f

mπ

)2 (

ψ†
R1 σ

i ψN

)(

ψ†
N Si ψR2

)

+ h.c. (42)

Here g stands either for gp (positive parity states) or for gs
ρ (negative parity states).

5.2 Effect on the self energies Πmed and Σmed

In this Section we discuss how the previous results for the in-medium self energies of
mesons and baryon resonances, Eqs. 28 and 30, are modified in the presence of short range
interactions.
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For notational convenience, let us first introduce a new quantity for nucleon resonances:

χM(q0,q) = IΠ

(
f

mM

)2 ∫
d3p

(2 π)3

n(p)

2EN(p)

F 2
s (k) Ωred

k2
0 − E2

R(k) − Σmed(k)
, (43)

where k = p + q is the resonance 4-vector. The form factor Fs(k) has been introduced
around Eq. 13. The trace Ωred arises from tracing the contact interactions. Results for
Ωred are given in Appendix C in Table 4. For the nucleon we define in analogy:

χN
M(q0,q) = 4

(
fNNM

mM

)2

UN (q) . (44)

Since the short-range interactions couple resonances of various quantum numbers to
each other, the resulting coupled channel problem ought to be written down in a matrix
formulation. Before proceeding we define the quantities

gp
π ≡ gp (45)

gp
ρ ≡ f 2

RNπ

f 2
RNρ

m2
ρ

m2
π

gp .

and similarly if the interaction of two different resonances is considered. Then we can
introduce the following matrices:

χπ =







χp
π 0 0 0

0 χd
π 0 0

0 0 χs
π 0

0 0 0 χf
π







, (46)

gπ =







gp
π gdp

π 0 0
gdp

π gd
π 0 0

0 0 gs
π 0

0 0 0 0







, (47)

Π0
π =







Πp
π 0 0 0

0 Πd
π 0 0

0 0 Πs
π 0

0 0 0 Πf
π







. (48)

Each entry is a matrix itself. For example, χp
π is a diagonal matrix consisting of all the

states to which the pion couples in a p-wave and similarly for χd
π and χs

π. The diagonal
elements of the matrix Π0

π contain the self energies, Eqs. 30 and 26, grouped in the same
order as in the matrix χπ. Since we allow for different gp

π parameters, we find for the
matrix gp

π assuming that n resonances couple in a p-wave:

gp
π =








gp,NN
π gp,R1N

π · · · gp,RnN
π

gp,R1N
π gp,R1R1

π
...

. . .

gp,RnN
π gp,RnRn

π








. (49)
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In the following we take all entries but gNN
π to be the same, see Table 2. The matrices gs

π

and gd
π describe the coupling of s- and d-wave states to themselves. The structure of the

matrix gπ indicates the mixing of resonances with different quantum numbers as discussed
above. Thus, we have a coupling of p- and d-wave states represented by gdp

π , whereas
the s-wave states couple only to themselves. We take the same entries for gd

π and gdp
π . For

spin-5
2

states, which couple in an f -wave to Nπ, we have no short range correlations, which
is indicated by the entry 0 for f -wave resonances in gπ. In Table 2 we give explicit values
for the short-range parameters.

For the ρ meson one can introduce similar matrices χρ and gρ which are constructed
in exactly the same way:

χρ =

(
χp

ρ 0
0 χs

ρ

)

, (50)

gρ =

(
gp

ρ 0
0 gs

ρ

)

, (51)

Π0,T/L
ρ =

(
Πp,T/L

ρ 0

0 Πs,T/L
ρ

)

. (52)

The matrix gp
ρ looks formally identical to gp

π. For simplicity, we relax the relation between

gp
π and gp

ρ Eq. 45 for the two Jπ = 3
2

+
states P13(1720) and P13(1878) and take the same

values gp
ρ as for the P33(1232). This is reasonable, since the vacuum properties of these

states are only poorly known. In the case of the Jπ = 1
2

+
state P11(1440) this problem

does not arise since in our model it does not couple to the ρ meson. For Jπ = 5
2

+
states

we take gp
ρ = gp,∆N

ρ . The matrix Πρ
0,T/L contains the self energies from Eqs. 30 and 26.

For the η meson the corresponding matrices χη, gη and Π0
η have the same form as for

the ρ. Here the only state coupling in a p-wave is the nucleon, all other resonances couple
in an s-wave, see also Table 1.

Let us finally introduce the vector v as

vT =
(

1 1 . . . 1
)

︸ ︷︷ ︸

N×

, (53)

where N is number of resonances included in the calculation.
Having defined these quantities, we can now proceed and present the results for the

self energies. In Fig. 12 we display the lowest order correction to the meson self energy.
Summing up to all orders leads to the following result for the self energy of meson M [30]:

ΠM(q0,q) = F 2(k, q)vT 1

1 − gM χM

Π0
M v . (54)

Taking into account the contact interactions, the resonance self energy consists of two
diagrams, see Fig. 13. In terms of scattering processes these diagrams correspond to the
coherent sum of a scattering with meson exchange and scattering via a contact interac-
tion. Note that each loop stands for either the fully iterated vertex correction or the full
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Figure 12: Lowest order correction of the self energy from the contact interaction. The
double-line stands for any of the resonances or the nucleon and does not need to represent
the same state in both loops.

in-medium self energy of the meson according to Eq. 54. Thus for vanishing short-range
correlations the diagram of Fig. 9 is obtained. Iterating the particle-hole insertions gen-
erates vertex corrections at the resonance-nucleon-meson vertices. We split the resonance
self energy into three parts:

ImΣ(k0,k) = ImΣπ(k0,k) + ImΣρ(k0,k) + ImΣη(k0,k) (55)

according to whether the resonance has decayed into a medium-modified pion, η or ρ
meson. Throughout the following formulae Ωϕ and ΩT/L as well as Ωred have to be chosen
according to the quantum numbers of the resonance.

For the imaginary part of the resonance self energy one obtains a matrix [30]. The
diagonal elements of this matrix yield the imaginary part of the self energy for the individual
resonances. Thus we obtain for the pionic decay mode:

ImΣπ(k0,k) = − IΣ
2j + 1

(
f

mπ

)2 ∫
dp p2

8π2

+1∫

−1

dx
1

EN
× (56)

×Im
[

ΩDπ F
2(k, (k − p))

1

1 − gπ χπ

v vT 1

1 − χπ gπ
+ Ωred F 2

s (k) gπ
1

1 − χπ gπ

]

.

For the decay into an η meson one obtains the same result, if the appropriate matrices are
chosen:

ImΣη(k0,k) = − IΣ
2j + 1

(
f

mη

)2 ∫
dp p2

8π2

+1∫

−1

dx
1

EN
× (57)

×Im
[

ΩDη F
2(k, (k − p))

1

1 − gη χη

v vT 1

1 − χη gη

+ Ωred F 2
s (k) gη

1

1 − χη gη

]

.

Finally, for the decay into a ρ meson we find:

ImΣρ(k0,k) = − IΣ
2j + 1

(
f

mρ

)2 ∫
dp p2

8π2

+1∫

−1

dx
1

EN
× (58)

×Im
[

(2 ΩT DT
ρ + ΩL DL

ρ )F 2(k, (k − p))
1

1 − gρ χρ

v vT 1

1 − χρ gρ

+

+ 3 (2)Ωred F 2
s (k) gρ

1

1 − χρ gρ

]

.
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Figure 13: The resonance self energy in the presence of short-range correlations (SRC).
The loop insertion stands for any particle-hole state discussed in the text. Note that the
displayed diagrams are (only) typical examples for loop insertions in the propagators and
vertices. In the calculations these insertions are of course iterated according to Dyson’s
equation, cf. Eqs. 56, 57, 58.

Since a longitudinal ρ meson does not couple to P = +1 resonances, we have a factor of 2
instead of 3 in the second term for these states.

6 Results

When discussing the results for the meson and baryon resonances, we refer to a calculation
according to Eqs. 21 and 22 (mesons) or Eqs. 28 and 29 as ”first iteration”. Corrections
to these results arising from the self-consistent iteration, see Eq. 30, are referred to as
”second iteration”, ”third iteration” and so on and the results achieved after convergence
is reached are denoted by ”self consistent (SC)”.

6.1 Mesons

Let us begin the discussion of our results for the mesons π, η and ρ with some general
remarks. The excitation of particle-hole loops leads to remarkably rich structures in the
meson spectral functions. In principle, each particle-hole loop generates an additional
branch. The invariant mass squared q2 of this branch moves down to smaller values as the
3-momentum increases, eventually reaching space-like kinematics q2

0 < q2 [19]. We have
plotted the invariant mass squared of various resonance-hole excitations as a function of
their 3-momentum q in Fig. 8. It follows that if enough spectral strength is sitting in these
branches, one can expect a considerable population of states with small or even negative
squared invariant masses. In the following three sections we will study this question in
detail. Note that this issue is of particular interest for the ρ meson, where dilepton spectra
indicate a shift of spectral strength to smaller invariant masses [17].

6.1.1 ρ Meson

In Fig. 14 we show the spectral functions AT
ρ and AL

ρ for momenta 0, 0.4 and 0.8 GeV at

normal nuclear matter density ρ0 = 0.15 fm−3. Let us first discuss the general features of
the results before turning to the details. Note that as far as the first iteration is concerned
the results presented here are in quantitative agreement with our previous calculation [20].
A self-consistent scheme was not pursued there. We begin with the transverse channel AT

ρ .
Due to the large width of many of the involved resonances and their close overlap with the
broad ρ meson, the individual peaks cannot be identified for all resonances. However, the
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structure coming from the D13(1520) is clearly seen. This state couples in a relative s-wave
and is responsible for the peak at invariant masses below the ρ seen at small momenta. If
the momentum increases, the relative importance of this state is reduced due to the fact
that it moves away from the ρ pole. Then it is the sum of a few higher lying p-wave states
like the F35(1905) or the P13(1720) which mostly affects Aρ [18, 20]. Because they couple in
a p-wave, these resonances are not seen at small momenta. Thus in the transverse channel
the following general picture emerges: at small momenta the spectrum is dominated by
the excitation of the D13(1520) state, leading to a pronounced double-peak structure.
Increasing the momentum, the additional peak diminishes, but a sizeable broadening of
the original ρ peak persists, which varies from Γmed = ImΠT

ρ (q2 = m2
ρ)/mρ ≈ 130 MeV

at q ≈ 0.4 GeV to Γmed = 250 MeV at q = 0.8 GeV. One should not conclude that
the broadening keeps increasing with momentum. Within our model, there is a certain
momentum above which all the resonances have passed the point q2 = m2

ρ. Beyond that
momentum the particle-hole excitations move away from the resonance and their influence
on the ρ spectral function becomes less important.

The different momentum dependence of AT
ρ and AL

ρ , which is expected from the exis-
tence of a preferred Lorentz frame in the presence of nuclear matter (see Chapter 4.1), is
nicely displayed in the results Fig. 14. Whereas at small momenta up to 0.4 GeV both
quantities develop a similar behaviour, for large momenta around 0.8 GeV AL

ρ is much less
modified and starts resembling the vacuum spectral function. This is due to the fact that
the p-wave resonances - responsible for the broadening of the meson peak in AT

ρ - do not
couple to a longitudinal ρ meson and that - apart from the D13(1520) - the s-wave states
do not couple strongly enough to cause a large effect. Furthermore, their coupling is pro-
portional to q2 and gets therefore smaller when the momentum increases until it eventually
vanishes in the vicinity of the photon point q2 = 0, which is approached by states with a
mass around 1.5 GeV at a momentum of 0.8 GeV.

In Fig. 14 we also compare the effects from higher order corrections in the density and
from inclusion of the short-range correlations (SRC) for s-wave states. For p-waves, the
SRC are always taken into account. Concerning the iterations, we obtain good convergence
after maximal four iterations. At low momenta the main effect of the iterations is to
smear out the region around the peak generated by the D13(1520) (see especially top right
plot in Fig. 14). This is due to a broadening of that state, which is discussed below in
Section 6.2.2. The strength sitting in the ρ peak remains stable. At larger momenta one
observes a minor shift of the ρ peak down to smaller invariant masses. This shift is due
to a combined effect of the in-medium modifications of the higher lying resonances and
is therefore not easily disentangled. In our previous publication [19], the iterations led
to a structureless ρ spectral function due to a large in-medium broadening of the baryon
resonances. We find that this discrepancy results from the use of different form factors. In
the previous publication the form factor did not depend on the invariant energy k2 of the
baryon resonance, but on the 3-momentum q of the ρ meson relative to nuclear matter,
leading to much larger self energies away from the resonance-hole peak. This way the
in-medium broadening of baryon resonances was allowed to generate large effects far away
from the resonance peak, in particular in the vicinity of the ρ peak. Using an k2 dependent
form factor, the effects of resonance broadening are confined to the region around the
resonance peak. Thus the width of the ρ peak remains smaller than before and at large
momenta the ρ regains a quasi-particle structure. This effect does not depend on the exact
shape of the form factor as long as it leads to a suppression at large energies. The form
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Figure 14: Spectral function of the ρ meson at normal nuclear matter density. Shown
are the transverse and longitudinal spectral functions AT

ρ and AL
ρ , which are degenerate

at q = 0 GeV. Shown are the effects of iterating the spectral function and of varying the
short-range parameter gs

ρ. The picture in upper right corner represents a zoom around the
D13(1520)N−1 peak for q = 0 GeV.

factor at the meson-nucleon-resonance vertex does not only affect the meson self energy
Π

T/L
ρ , but also the resonance self energy. There such a suppression is necessary to achieve
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Figure 15: Comparison of a calculation of AT
ρ employing the parameter set of Manley

[54](left) and that of Vrana [61] (right). The calculations are done at a density ρ = ρ0.
Note that we only show the timelike part of the spectrum since there are no differences in
the parameter sets for the P33(1232) and the nucleon. For the SRC in the s-wave sector
we take gs

ρ = 0.1.

that ImΣ does not grow faster than
√
s for large values of s, which is mandatory if one

insists on the spectral function to be normalized, see Appendix A in [48]. We conclude
that with the new form factor the effects from self-consistency are estimated more reliably.

The SRC for s-wave states have mainly the effect of moving the D13 peak slightly up,
leaving the gross structure of the results untouched (see again top right plot in Fig. 14).
The repulsive nature of the SRC is well known. Putting the resonance width to zero, the
contribution of the D13(1520) to the transverse self energy can be cast into the form (cf.
also [71]):

ΠT
ρ (q0,q) = q2

0

χs

1 − gs
ρ χs

(59)

= q2
0

C

q2
0 − Ē2 − gs

ρC
,

where we have introduced Ē = ER−mN , simulating the kinematical situation of a ρ meson
scattering on a nucleon at rest. The constant C > 0 is proportional to the density and the
coupling constant. One sees that the inclusion of SRC acts like a repulsive mass shift of
the resonance. This effect is enhanced by the fact that the attractive in-medium shift of
the peak of the spectral function of the D13(1520) is less pronounced once the short-range
interactions are switched on, see Section 6.2.2. Since s-wave states are less important at
large momenta, we find virtually no influence of gs

ρ on the results. Therefore only three
curves can be distinguished in the bottom of Fig. 14. Summarizing, the spectral function is
rather stable with respect to SRC in the s-wave sector, which mainly influence the details
around the D13 peak at small momenta.

In Fig. 15 we study the influence of the resonance parameters as extracted from [54]
and [61]. As explained in Chapter 3, those analyses differ in that they assign different
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strength to the N ρ channel, the analysis [54] favouring larger values for the partial decay
widths. As can be seen, the differences between both results are most pronounced around
the D13(1520) peak, where the smaller coupling leads to a reduced influence of that state.
However, at lot of strength is still removed from the ρ peak. At larger momenta the
differences are quite small and the broadening of the ρ peak remains untouched.

Comparison with other models: Let us now compare our results with those obtained
from other models for the ρ meson. In the works of [24, 27] the main source of in-medium
modifications is due to the renormalization of the ρππ decay in the nuclear medium, gener-
ated by the coupling of pions to nucleon-hole and ∆-hole states. On the level of scattering
amplitudes this corresponds to a consideration of background terms of the ρN scattering
amplitude. The overall picture emerging from such works is a substantial broadening of
the ρ peak, accompanied by a slight repulsion. In addition, the effects from coupling the
ρ to D13(1520)N−1 holes have been estimated in [27] and the peak structure reported here
and in our previous publications has been qualitatively confirmed. In [25] the momentum
dependence of the spectral function inherent to such models has been studied and found
to be small. This is in clear contrast to the finding in our work. As shown in Fig. 14 the
resonance-hole loops create a sizeable dependence on q. In the work of [26] the ρN forward
scattering amplitude has been calculated based on a combination of vector meson domi-
nance (VMD) and heavy baryon chiral perturbation theory. There a strong broadening of
the ρ in combination with attractive mass shift is reported. As compared to our scheme
the models [24, 27, 26, 25] are clearly more elaborate concerning the in-medium ρππ decay.
Qualitatively, however, such effects only lead to an additional broadening and shift of the
ρ peak. On the other hand, the gross features of the spectral function – especially the
rich peak structure – is given by the resonance-hole excitations studied here with great
sophistication.

Closer in spirit to our approach are the works of [18, 21, 22]. In [18] the effects of
coupling the ρ to two p-wave resonances, the P13(1720) and the F35(1905), are considered,
which only contribute at finite momenta. This model predicts the existence of additional
peaks in the spectral function and a broadening of the original ρ peak. In [21, 22] the
ρN scattering amplitude is generated as a solution of a coupled-channel Bethe-Salpeter
equation. This way resonant structures are formed dynamically. This analysis is restricted
to small momenta since no p-wave states are incorporated in the model. For a ρ at rest
the in-medium modifications are found to be much smaller than in our work, owing to a
much smaller coupling of ρN in the D13 channel (see also discussion in Section 3.1). For a
more detailed overview of the different models we refer the reader to [24].

Let us finally comment on contact or tadpole diagrams, which generate a shift of the
peak position of the ρ meson, but do not lead to an additional broadening. Typical
examples are the ρρNN contact interaction [23, 27] or the tadpole diagram from σ exchange
[72]. The former can be reliably estimated to be repulsive and in the order of 10 MeV at ρ0

[23, 27], while the σ-tadpole diagram is subject to large model dependencies. In [72] it gives
rise to an attraction of about 130 MeV at ρ0. Due to these uncertainties we have decided
not to include these diagrams in our calculation, although they might be of relevance for
the numerical results.

Despite their strongly differing model ingredients, most state of the art models – in-
cluding the present one – agree in that they predict a shift of spectral strength down to
smaller invariant masses. This is also required by the QCD sum rules [2, 26, 28] and offers
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Figure 16: Momentum integrated dilepton rates at a temperature T = 140 MeV for three
different densities, 0.5 ρ0 (dashed-dotted), ρ0 (solid) and 1.5 ρ0 (dashed). In all curves SRC
with gs

ρ = 0.1 and gd
π = 0.4 are included.

a possible explanation for the evident shift in the dilepton spectra measured in heavy ion
collisions.

Dilepton Spectra: Much of the interest in the in-medium properties of the ρ meson has
been triggered by dilepton spectra of the CERES/NA45 [3, 4, 5, 6] and the HELIOS [7]
collaboration, indicating an enhancement of spectral strength below the free ρ mass. We
turn therefore to a computation of momentum integrated dilepton rates as resulting from
our model for the ρ meson. This rate is defined as [17, 51]:

dRe+e−

dq2
(q) =

∫
d3q

2q0

d4Re+e−(q0,q)

dq0 d3q
. (60)

Using the assumption of strict Vector Meson Dominance (VMD), the four-fold momentum
differential rate is directly related to the transverse and longitudinal spectral functions of
the ρ meson:

d4Re+e−

dq0 d3q
=

α2

π2 q2
nB(q0, T )

m0,4
ρ

g2
ρ

[
2

3
AT

ρ (q0,q) +
1

3
AL

ρ (q0,q)

]

. (61)

Here α is the electromagnetic fine-structure constant and gρ = 6.05 denotes the coupling
strength of the ρ to the photon. The thermal Bose occupation factor reads:

nB(q0, T ) =
1

eq0/T − 1
. (62)

In Fig. 16 we present results for the momentum integrated dilepton rates
dR

e+e−

dq2 (q) for the
densities ρ = 0.5 ρ0, ρ = ρ0 and ρ = 1.5 ρ0. For the temperature we take T = 140 MeV,
which should be typical for SPS energies [17, 18]. For comparison we have also plotted
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the dilepton spectrum as resulting from using the vacuum ρ propagator in Eq. 61. No
experimental acceptance cuts are taken into account.

The overall picture is that our model produces a substantial reduction of strength
around the free ρ peak and leads to a strong enhancement of the dilepton yield at small
invariant masses around 300− 600 MeV, where the resonance-hole contributions dominate
the dilepton spectrum. The strong population of small invariant masses is due to the
excitation of the resonance-hole pairs, for example the D13(1520) and the P13(1720) states.
It is further enhanced by the factor 1/q2 as well as the thermal Bose distribution factor
in Eq. 61. The D13(1520)N−1 excitation leaves a clear trace in the peak structure seen
at invariant masses of about 500 MeV. Probably we overestimate the effects resulting
from dressing the ρ meson by using the strict VMD picture where the photon coupling of
hadrons is directly related to the hadronic coupling. In [73] it was demonstrated explicitly,
that within such an approach the electromagnetic coupling of the baryon resonances is
overestimated by about a factor of 2. Still the qualitative picture remains valid also with
more elaborate versions of VMD.

The spectral function AT/L
ρ is calculated at zero temperature. This is a reasonable

approximation for resonance-hole states. Finite temperature effects only slightly rearrange
the nucleon distribution function and also the small overestimation of Pauli-blocking –
which is not important for the D13(1520) – should leave the results shown in Fig. 16
qualitatively intact. We do not consider scattering processes of the ρ meson on pions
present at finite temperatures lead to a further broadening of the ρ peak of about 80 MeV
at T = 140 MeV [17]. Albeit non-negligible, inclusion of this effect would not lead to
qualitative changes of the results in Fig. 16.

6.1.2 π Meson

The properties of the pion in nuclear matter have been exhaustively studied within the
∆-hole model, see for example [74], where the pion is allowed to couple to the P33(1232)
resonance and the nucleon. Our model goes beyond that by explicitly including resonances
with higher mass, like the P11(1440) or the s-wave states S11(1535) and S11(1650). In
addition, we generate corrections which are due to the self-consistent iteration of resonance
and meson spectral functions. In that way different mesons influence each other to some
extent.

In Fig. 17 we show results for the spectral function Aπ at three momenta, 0.4 GeV
0.5 GeV and 0.6 GeV, after the first (dashed lined) and the fourth (solid line) iteration
at density ρ0. One can clearly see the multi-peak structure of the spectral function due
to the excitation of nucleon-hole (left most peak) and P33(1232)-hole states (peak in the
middle). In the momentum range under consideration the kinematics are such that the
pion branch is above the P33(1232) and the nucleon branches, see also Fig. 8. Due to level
repulsion the position of the pion peak is therefore shifted to larger invariant masses. Note
that a substantial amount of spectral strength is sitting at space-like four-momenta. For
momenta q ≥ 0.6 GeV the additional peaks from nucleon and P33(1232) become much less
pronounced since they are too far away from the pion pole and the pion starts resembling
a good quasi-particle. The results presented here are in qualitative agreement with those
of other analyses, see for example the results presented in [41], where on the basis of a
model that is close to ours after the first iteration the spectral function is plotted for a
momentum of q = 0.5 GeV.
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Figure 17: Spectral function of the pion at ρ = ρ0. Shown is the spectral function at three
momenta, 0.4 GeV, 0.5 GeV and 0.6 GeV after the first (dashed line) and fourth (solid
line) iteration. Also indicated is the position of the free pion peak (dotted vertical line).

The effects of the iteration lead to a smearing of pion and the P33(1232) peaks, while
leaving the nucleon contribution unchanged. More importantly, however, there is no sig-
nificant shift of spectral strength down to smaller invariant masses by the iterations. This
point will become important when we discuss the properties of the P33(1232) in nuclear
matter.

In Fig. 18 we display the influence of the remaining resonances besides the P33(1232)
on the pion spectral function. We show the results after the first iteration in order to avoid
mixing up effects from the inclusion of these additional states and from the iterations.
We find a modest influence of two s-wave states, the S11(1535) and the S11(1650), and
the P11(1440), coupling in a p-wave. Although these states have sizeable decay widths
into the Nπ channel, the large available phase space prevents a strong coupling of these
resonances and the coupling is not sufficient to produce distinct peaks in the spectral
function. Nonetheless, these states serve as a background contribution and smear out
the pion peak. The somewhat smaller repulsion in the pion peak is due to the attractive
interaction generated by heavy resonance-hole states due to level repulsion. Their impact
is most pronounced at 3-momenta q ≥ 0.6 GeV where the energy of the corresponding
resonance-hole states is close to that of the pion, see Fig. 8. Effects from the D13(1520)
state are suppressed by the d-wave coupling. Thus only at large momenta we see the
influence of that state.

At very small 3-momenta q, the πN scattering amplitude receives contributions from
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Figure 18: Spectral function of the pion at ρ = ρ0. Shown is the spectral function at three
momenta, 0.4 GeV, 0.5 GeV and 0.6 GeV after the first iteration. The solid line indicates
the results if all resonances are included, for the dashed line only the P33(1232) and the
nucleon are coupled to the pion.

non-resonant s-wave terms [75], which are not included in our model. We expect this ap-
proximation to be justified, since the leading s-wave contribution, the Weinberg-Tomozawa
term, vanishes in isospin symmetric nuclear matter [65]. Nonetheless, our results are not
completely reliable in this kinematical regime and we cannot comment on the problem
of s-wave repulsion demanded by data on pionic atoms [15]. Due to level repulsion, our
model gives a small attraction of the pion since all the s-wave resonance-hole pairs have
energies larger than mπ. This shortcoming at small momenta has no sizeable effects on
the results of the iterative scheme presented in this work, however, since the regime of
small 3-momenta is hardly tested in the decay of baryon resonances due to Pauli-blocking.
Apart from these details, the spectral function of the pion is at low momenta dominated
by the pion peak since both the nucleon-hole and the P33(1232)-hole excitation are p-wave
and open up only at finite momenta.

6.1.3 η Meson

In the discussion of the in-medium properties of the η meson we focus on the question of η-
mesic nuclei, where the ηN interaction is tested at small relative momenta. It is well known
from coupled-channel analyses of πN scattering, that close to threshold the ηN interaction
is dominated by the S11(1535) resonance, see for example [52, 76]. As was already pointed
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Figure 19: Real (left) and imaginary (right) part of the in-medium self energy of the
η meson. Shown are calculations at densities ρ = ρ0 and ρ = 0.4 ρ0. The dashed lines
indicate the results following from the first iteration Eq. 21 and the solid incorporate all
the effects from dressing the S11(1535).

out in e. g. [41, 42, 77], the presence of the S11(1535) in the ηN interaction provides an
attractive optical potential Uη since the resonance pole is about 50 MeV above the ηN
threshold. In terms of the self energy Πη, the optical potential reads close to threshold:

Uη(mη, 0, ρ) =
Πη(q0, 0, ρ)

2mη

. (63)

Let us first focus on the vacuum scattering amplitude, which via the low-density theo-
rem Eq. 21 yields a first estimate for Πη. In our model the S11(1535) resonance has a total
width of about 151 MeV with ΓNη = 66 MeV, corresponding to a branching ratio of 44%.
In the approach described in [41] this state is generated dynamically and the resulting res-
onance parameters are quite different [76]: for the total width a value of 94 MeV is found
whereas the partial width ΓNη is the same as in our model. To be more quantitative, let us
compare results for the scattering length aηN : we find aηN = (0.43 + i 0.32) fm. The model
of [76] produces aηN = (0.26 + i 0.24) fm, whereas in [52] a value of aηN = (0.991 + i 0.347)
fm is reported and in [21] a scattering length aηN = (0.43 + i 0.21) fm results. We conclude
that our model and that of [41] yield results for the elementary ηN amplitude, which –
albeit different – are well within the commonly accepted range.

The different resonance parameters have a direct effect on the self energy Πη of the
η meson calculated via Eq. 21, which is indicated with dashed lines in Fig. 19 for the
densities 0.4 ρ0 and ρ0, where ρ0 is the normal nuclear matter density ρ0. Comparing
our results with those obtained in [41], one finds that for the imaginary part the peak
value is smaller in our case whereas off-shell we obtain larger values. Both findings are an
immediate consequence of the larger total width in our model.

The most important in-medium correction is generated from Pauli-blocking the Nη
width of the S11(1535). At normal nuclear matter density and for a resonance at rest the
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Figure 20: Left: Optical potential Uη of an η meson at rest as a function of the nuclear
density ρ. The solid lines indicate the results including in-medium corrections, for the
dashed lines the vacuum scattering amplitude has been used. Right: Spectral function Aη

of the η meson in nuclear matter at ρ = ρ0. Shown are the results for three momenta:
q = 0 GeV, q = 0.4 GeV and q = 0.8 GeV.

Pauli-blocked width is zero, however even if excited by a η meson at rest the resonance
has a finite 3-momentum k ≈ 0.2 GeV due to the Fermi motion of the nucleons. This
weakens the effects of Pauli-blocking and the approximation to put ΓNη = 0 as done
in [77] is not accurate. On top of Pauli-blocking there are additional mechanisms that
influence mass and width of the S11(1535). This is discussed in Section 6.2.3 and we
find an additional broadening of about 30 MeV for the S11(1535) relative to the Pauli-
blocked width at these small momenta, accompanied by a small repulsive mass shift of the
S11(1535). Concentrating on the point q0 = mη (indicated by the dotted vertical line in
Fig. 19) as appropriate for the optical potential, we find that the mass shift leads to a
depletion of ImΠη while leaving ReΠη nearly unaffected. The peak of ImΠη is shifted
upwards whereas the height of the peak remains essentially the same. In the analysis of
[41] this is different since the relative weight of Pauli-blocking is enhanced due to the larger
branching ratio for this channel and an enhancement of the peak of the self energy in the
nuclear medium results.

In Fig. 20 we plot the optical potential as a function of the density. As expected,
the low-density approximation Eq. 21 shows a linear behaviour in the density both for
the real and imaginary part of Uη. When the in-medium corrections are included, we
find deviations from this linearity for the imaginary part, which is strongly reduced as
was already indicated in the discussion in the preceding paragraph. At normal nuclear
matter density we find Uη = (−50 − i 43) MeV in the low density approximation and
Uη = (−52−i 24) MeV in the full calculation. The SRC have no big effect on the potential,
neglecting the SRC in the s-wave sector one obtains Uη = (−49 − i 29) MeV. It follows
that the iterations lead to a strong reduction of the imaginary part while hardly affecting
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the real part of the optical potential. This behaviour is a direct reflection of the results
found for the self energy, see Fig. 19. It is interesting that the analysis of [41] leads to a
comparable final result, Uη = (−54−i 29) MeV, despite the fact that the scattering lengths
in both models are different. In [42] Uη = (−20 − i 22) MeV is found, i.e. the attraction
provided by Uη is found to be only half of our value, whereas the width is comparable.
Summarizing these results, most models seem to predict similar results for the imaginary
part of the optical potential while uncertainties on the level of a factor of two persist for
the real part. As far as the existence of η-mesic nuclei is concerned, the strong attraction
found in our approach and in that of [40] is certainly encouraging.

We close the discussion of the properties of the η meson in nuclear matter by inspecting
the spectral function Aη shown in Fig. 20. There the spectral function is displayed for
three momenta q = 0 GeV (solid line), q = 0.4 GeV (dashed line) and q = 0.8 GeV
(dashed-dotted line). Also indicated is the position of the free η peak. In the calculations
SRC are taken into account, they have however only a small effect. One observes that
at q = 0 GeV the coupling of the η to S11(1535)N−1 loops is not sufficient to generate a
distinct peak in the spectral function. Only a shoulder arises at invariant masses slightly
above the η peak, which is located at q2 = 0.25 GeV2. This is in contrast to the findings
both of [41] and [42] and is probably explained by the substantially smaller peak value of
ImΠη found in our work, which – as mentioned above – is due to a larger total width
and a smaller branching ratio into Nη. The position of the η peak is shifted downwards as
expected from the attractive nature of the interaction at small momenta. Going to larger
momenta we find that at 0.4 GeV the η peak is substantially broadened. Around this
momentum the energies of the η branch and the S11(1535)N−1 are comparable (see also
Fig. 8), leading to a strong mixing and broadening of both states. At even larger momenta
the resonance-hole excitation is below the η. This induces a small repulsion of the η peak,
whereas only a moderate broadening occurs.

6.2 Baryonic Resonances

Before presenting results for the three resonance states P33(1232), S11(1535) and D13(1520)
we discuss a particular effect concerning an in-medium shift of the peak of the spectral
function. As explained in Section 4.2, we obtain an in-medium mass shift of the resonance
generated by the real part of the self energy. The in-medium mass is defined as the solution
of the equation:

k2 −m2
R −ReΣ+

med(k0,k) = 0 . (64)

On top of that, an additional shift of the peak of the in-medium spectral function – which
is of greater interest than the in-medium mass – can arise due to the energy dependence
of the width. In the case of a constant width the mass of the resonance and the location
of the peak of the spectral function coincide. If, however, the width of the state rises with
energy, the peak is shifted down to smaller invariant masses. This makes the interpretation
of ReΣ more difficult: even if that quantity indicates repulsion, the peak of the spectral
function may be shifted downwards.

6.2.1 P33(1232)

It is well known that the in-medium broadening of the P33(1232) state is in the order of 100
MeV at normal nuclear matter density. This value has been extracted a long time ago in
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Figure 21: Left: Comparison of our model with the phenomenological spreading potential
Vsp of [8]. The density is taken to be ρ = 0.75 ρ0. Right: Influence of the SRC on the width
of the P33(1232) at ρ = ρ0. Compared are a calculation with (solid line) and w/o (dashed
line) SRC.

an analysis of pion-nucleus scattering, [8]. From the same analysis a slight repulsion of the
P33(1232) of about 20 MeV relative to the nucleon is reported. Certainly, any model trying
to describe the P33(1232) state in nuclear matter should arrive at comparable results. We
thus use this resonance as a testing ground for our model: a reasonable description of its
in-medium properties suggests that no major mechanisms are missing in our approach.

We have adjusted the parameters of the π N ∆ system - cutoffs, SRC - such as to achieve
a reasonable description of the in-medium properties. In the left graph of Fig. 21 we plot
the spreading potential Vsp defined by:

ImVsp(k0,k) =
ImΣmed(k0,k) − ImΣpauli(k0,k)

2
√
k2

(65)

and compare to the experimental data found in [8]. Following an argument in [29] that
the effective density felt in a nucleus is 0.75 ρ0 rather than ρ0, we perform the comparison
at the lower density. The kinematics corresponds to that of a pion, which hits a nucleon

with an average momentum of
√

3
5
p2

F and forms a ∆ of energy k0 and momentum k:

k0 = q0 +

√

m2
N +

3

5
p2

F , k2 = q2 +
3

5
p2

F , Tπ = q0 −mπ . (66)

As shown in the left plot of Fig. 21, we achieve a reasonable description of ImVsp in our
model. The values needed for cutoff and short-range parameter – given in Table 2 – lie well
within the commonly accepted range, see for example [30, 31, 29]. We interpret this as a
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momentum of 0.4 GeV. The solid line indicates the result obtained after four iterations
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confirmation that our model contains the most relevant mechanisms. In Fig. 22 we show
the width and the spectral function of the P33(1232) state for a fixed momentum of 0.4
GeV. The width at k2 = m2

R is found to be roughly 190 MeV, leading to a broadening of the
in-medium spectral function. The coupling of the pion to the nucleon and the P33(1232),
but also to all the other states included in our model, leads to a slight enhancement of
the broadening. In our model the peak position of the spectral function of the P33(1232)
remains more or less unchanged, while ReΣ(k2 = m2

R)/(2mR) ≈ 15 MeV, indicating a
slight repulsion of the resonance. The reason that this repulsion is not observed in the
spectral function is due to the energy dependent width as outlined in the introduction to
this Section.

If one calculates the baryon self energy according to Eq. 28 and constructs the in-
medium spectral function of the π by coupling the pion to nucleon-hole and resonance-hole
states, a dramatic overestimate of the in-medium width of the P33(1232) state results. Only
after the inclusion of SRC according to Eq. 56 and 58, one arrives at satisfying results for
the broadening [29, 30, 31]. This is shown in the right graph in Fig. 21. Note that especially
the vertex corrections induced in the resonance self energy diagram are important. The
effect of the correlations is to systematically move strength up to the higher branches of
the spectral function. Then the available phase space is reduced and a reduction of the
width results. A similar argument was put forward in [35].

In [29] it was found that 3-body absorption of the P33(1232) contributes significantly to
the total width. There the 3-body contribution was calculated based on the same diagrams
that we generate in the second iteration step, i.e. ImΣ2

med is the sum of 2-body and 3-
body processes. Also an additional diagram was calculated, which we do not consider here
and which was claimed to be comparatively small by the authors of [29]. In contrast to
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that work, we find only small effects of about 10 MeV from the iterations, i.e. our total
broadening is essentially due to 2-body processes contained in ImΣ1

med . A significant
modification of ImΣ2

med relative to ImΣ1
med can only follow if also the in-medium spectral

function of the meson undergoes sizeable corrections, i.e. if A1
π and A2

π are very different.
In particular, due to phase space arguments a large 3-body contribution for the P33(1232)
can only result from a substantial shift of spectral strength down to smaller invariant
masses in the pion spectral function when going from A1

π to A2
π. Such a rearrangement

is not produced by the moderate resonance broadening obtained after the first iteration,
see also Fig. 17 where the effect of iterations on the pion spectral function is explicitly
displayed. Therefore only a large additional attraction of the P33(1232) relative to the
nucleon might help. This however is at variance with the phenomenological spreading
potential [8]. We add that 3-body physics also plays no important role in the iterative
scheme of [31]. Concerning the results of our model for the other resonances, this ambiguity
of 2 and 3-body contributions is not important since the total width of the P33(1232) and
therefore also the pion, which are the only quantities entering into the later calculations,
are described well.

6.2.2 D13(1520)

Our previous calculation [19] of the in-medium properties of the D13(1520) has been based
on the effects induced by the in-medium spectral function of the ρ meson. As a result a
large broadening of the D13(1520) state was reported. The origin of this broadening is
easily explained: due to the coupling to particle-hole states, spectral strength is moved
down to smaller invariant masses in the ρ spectral function, thus opening up the phase
space for the decay of the D13(1520).

This model has now been extended in three ways. On top of considering the effects of
modifications in the ρ spectral function - corresponding to RN scattering with ρ exchange -
the in-medium spectral information of the pion is taken into account. Furthermore, guided
by the experience with the P33(1232) state, effects from short-range correlations (SRC) are
considered. Finally, we calculate the dispersive in-medium mass shifts.

Neglecting the SRC for the moment, the following picture emerges: the broadening
induced from the ρ meson is in the order of 200−250 MeV at k2 = m2

R, i.e. at the vacuum
pole of the propagator for momenta around k = 0.8 GeV, see left plot in Fig. 23. In the
same figure we also show that for a D13(1520) at rest the broadening is about 150 MeV
only in this channel. These numbers are in approximate agreement with the results of our
previous calculation [19]. In the language of scattering processes, most of this broadening
is due to scattering RN → RN with a D13 in the final state, which explains the smaller
broadening observed for small momenta k: the available phase space for the scattering
process opens up with increasing 3-momentum of the resonance. The inelastic processes
D13N → NN and D13N → NP33(1232) play only a moderate role, accounting in total for
at maximum 30 − 40% of the total broadening. Unfortunately, this makes it difficult to
obtain reliable constraints on our model from the consideration of inelastic NN scattering.

From the pion decay we find a broadening of about 40 MeV when SRC are neglected,
see right plot in Fig. 23. The momentum dependence is small, therefore we show results for
only one momentum k = 0.8 GeV, appropriate in photonuclear reactions. In contrast to
the ρ, here most of the broadening comes from decay into the P33(1232) or from absorption
on the nucleon. The D13(1520) as a final state plays only a minor role since it couples in a d-
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Figure 23: Decay width ΓNρ (left) and ΓNπ(right) of the D13(1520). For the Nρ width
we show results w/o SRC at two different momenta, 0 and 0.8 GeV. Also indicated is the
effect of the iterations. The Nπ width ΓNπ is shown for a momentum k = 0.8 GeV. Here
the effects for SRC are indicated. All results are obtained at ρ = ρ0.

wave, thus reducing the effectively available phase space. This relatively small broadening
is at variance with the findings of [35] where a strong broadening of several hundred MeV
from this channel is reported. We recall that in [35] the D13(1520) is dynamically generated
in a coupled channel approach. Even though our results are quite sensitive on the value of
the cutoff parameter Λ, we would have to relax Λ from 1.0 GeV - as appropriate in π N ∆
dynamics - to a value of at least 2 GeV in order to generate a broadening of about 200
MeV. We conclude that within our approach a substantial softening of the D13(1520) state
due to the decay into an in-medium pion seems unlikely. The decay mode D13(1520) → ∆π
is not modified in the nuclear medium.

The spectral function is shown in Fig. 24 in the dashed lines for two different momenta
k = 0 (left) GeV and k = 0.8 GeV (right). In comparison to the vacuum spectral function
(dotted line) the main modifications are a shift of the peak to smaller invariant masses
accompanied by a smearing of the peak. Concerning the peak shift, we obtain an attraction
of about 50 − 100 MeV within our scheme. This is demonstrated in Fig. 26 where the
dashed line shows the peak as a function of the 3-momentum of the resonance.The major
part of this shift is not due to the influence of ReΣ, however. In the left plot of Fig. 25
(dashed line) we show ReΣmed for a momentum of k = 0.8 GeV, where the peak shift is
larger than at small momenta (see Fig. 24). At k2 = m2

R one finds an attractive mass
shift of ReΣmed/(2mR) ≈ 10 MeV. The remaining larger part of the peak shift is due to
the energy dependence of the width as outlined in the introduction to this Section: Owing
to the large absolute size and energy dependence of ImΣmed as shown in Fig. 23, the
maximum of the spectral function is shifted to smaller energies. As a consequence the
resonant peak is not as broad as one might expect from the large in-medium widths at
k2 = m2

R. We have visualized this effect by plotting the width of the D13(1520) not at
k2 = m2

R but rather at the true maximum of the spectral function in the right graph of
Fig. 26 (dashed line). The fluctuations in the curves are due to the finite grid used in the
calculations. Concerning the size of the peak shift, we argue that the form factor FF1 of
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Figure 24: Spectral function of the D13(1520) resonance at momenta k = 0 GeV and
k = 0.8 GeV. The solid lines are obtained with SRC, in the dashed lines effects from SRC
are not included. The results are shown for ρ = ρ0.

Eq. 13 leads to conservative estimates since it produces a relatively flat energy dependence.
By considering the shape of the spectral function shown in Fig. 24, it becomes clear that a
Breit-Wigner type parametrization in terms of mass and width is not possible, a tendency
that is already visible in the vacuum. Instead, we find a structure with a rather narrow
peak, but a large tail for k2 > m2

R. In comparison to the vacuum curve, the overall picture
is that of a smearing of spectral strength over a much larger energy interval. In that sense
the qualitative picture of a broadening of the resonance as advocated in [19] is not changed,
although the calculations have been refined in many details.

The effect of the iterations is found to be quite small both for pion and ρ meson. This
we have shown in Fig. 23 for ΓNρ, where the solid lines represent the results obtained
after convergence has been reached. A tendency persists that in the second iteration the
width gets somewhat reduced. This results from the effect of resonance broadening on
the ρ spectral function: there the D13 peak ”dies out” and less spectral strength sits at
low invariant masses, leading to a relative suppression of the ρ decay mode. Since the
D13(1520) decouples more or less completely from the pion spectral function, we do not
find any effects from the iterations in this sector and we do not show explicit results for
this channel. Higher iterations then change only very little in the actual results.

Let us now switch on the SRC. In connection with Eq. 37, Chapter D.2, we have
already argued that for s-wave potentials these effects are supposedly small, since unlike
the p-wave case no big additional scale (like qc) is introduced. However, in a full in-
medium calculation the contact interactions are iterated to all orders, see Chapter 5.2.
This produces a correction of the form 1/(1−gs

ρ χs) for the resonance width, which is large
if either gs

ρ or the coupling constant at the meson-nucleon-resonance vertex are large. Due
to the large coupling of the D13(1520) to N ρ, a sizeable reduction might result.

Using for the strength of the contact interaction gs
ρ = 0.1 as advocated in Section D.2,
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Figure 25: Effect of SRC on ΓNρ (left) and ReΣ (right). The solid lines indicate the
results with SRC, the dashed lines obtained w/o SRC.

a reduction of the broadening from the N ρ channel from 250 MeV down to around 150
MeV results, see right plot in Fig. 25. This result is quite sensitive on the value chosen for
gs

ρ, similar to the case of the P33(1232). A smaller value of gs
ρ leads to more broadening of

the D13(1520), while a larger value further enhances the suppression. Unfortunately, gs
ρ is

completely unconstrained from experiment and thus some model dependence of our results
remains. Since in our model positive and negative parity states do not couple directly to
each other via SRC, the decay width into N∆ or NN is left untouched and the reduction
happens primarily in the channel D13N → ND13. The effect of the correlations on the
pionic decay mode, for which the results are shown in the right plot of Fig. 23, is just the
opposite. Since the channel D13N → ND13 is not important, it is the mixing to nucleon-
and P33(1232) states that leads to a reduction of the width. Again there exists some
uncertainty about the correlation strength. Using gd

π = 0.4, the broadening is reduced and
the width into Nπ is about 20 MeV larger than the Pauli-blocked width.

The pole of the spectral function is less shifted once the correlations are switched on,
compare solid and dashed curves in the left plot of Fig. 24. The total broadening is
smaller and therefore the kinematic effect leading to a shift of the peak of the spectral
function is reduced. Furthermore, as can be seen in the left plot of Fig. 25, ReΣ itself is
a little bit more repulsive when the short-range interactions are switched on. The effect of
the correlations on the width of the peak is not as strong as one might have expected by
comparing the width at equal values of k2 as shown in Fig. 26. This is easy to understand:
due to the smaller attraction, with SRC the width is tested at larger invariant masses,
leading to a relative increase. Comparing both scenarios, even though the in-medium
effects are somewhat reduced if the SRC are taken into account, the overall picture of a
strongly broadened resonance structure survives.

We close this discussion by considering the spectral function as following from the
parameter set of [61], where the branching ratio into Nρ is only about half the size as com-

46



0.0 0.2 0.4 0.6 0.8
1.40

1.42

1.44

1.46

1.48

1.50

1.52

1.54

1.56

0.0 0.2 0.4 0.6 0.8
0.10

0.15

0.20

0.25

0.30

 

 
m

pe
ak

 [G
eV

]

k [GeV]

 

 

pe
ak

 [G
eV

]
k [GeV]

 g s = 0.1 , g d = 0.4 

 g s = 0.0 , g d = 0.0 

Figure 26: Left: Peak position of the spectral function of the D13(1520). Right: Width
of the D13(1520) taken at the peak position. Shown are calculations with gs

ρ = 0.1 (solid
line) and gs

ρ = 0.0 (dashed line). The density is ρ = ρ0.

pared to what is found in [54]. In the discussion concerning the ρ in-medium properties we
were able to conclude that the gross features of the in-medium spectrum are left untouched
by considering this parameter set. For the D13(1520) this statement does not necessarily
hold any more. In Fig. 27, we compare the results as following from the parameter sets of
[54] (solid line) and [61] (dashed line) for two values of the short-range parameters gd

π and
gs

ρ. The momentum of the resonance is k = 0.8 GeV. As shown in the right graph of Fig.
27, if one chooses the parameters of [61] together with maximal suppression from SRC,
i.e. gs

ρ = 0.1 and gd
π = 0.4, a spectral function results which is already rather close to the

vacuum one. In that case the total broadening does not exceed 50 MeV, which is a small
value as compared to the vacuum width of 120 MeV. Also the shift of the peak position is
very modest. Taking the parameters of [61] with gs

ρ = 0 = gd
π as shown in the left plot of

Fig. 27, a considerable broadening of more than 100 MeV at k2 = m2
R remains.

6.2.3 S11(1535)

In this Section we discuss the results for the S11(1535) resonance. It will turn out that the
main part of the medium modifications is due to Pauli-blocking in the Nη channel and to
the coupling of the D13(1520) resonance to the ρ meson.

In the left plot of Fig. 28 we show the in-medium width of a S11(1535) with relative
3-momentum k = 0.8 GeV, which is approximately the momentum of an S11(1535) if
produced from a photon scattering on a nucleon at rest. Shown is the decay width after
the fourth iteration (dashed line) in comparison with a Pauli-blocked vacuum width (dotted
line), which is calculated on the basis of the Feynman graph Fig. 2, taking into account
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Pauli-blocking of the nucleon. We find a broadening of about 20 MeV at the point k2 = m2
R

relative to the Pauli-blocked width. Although πN and η N produce the main part of the
total width, the in-medium modifications of π and η mesons do not lead to a broadening of
the S11(1535). In fact, for these two channels we find even a reduction of the width below
the Pauli-blocked width. This is due to the renormalization of the meson decay width, as
discussed in Section 4.2. The main effect comes from the in-medium modification of the ρ
meson. The origin of this broadening is the same as found for the D13(1520) state: in the
nuclear medium the ρ meson couples to the D13(1520)N−1 state and various other particle-
hole states which leads to shift of spectral strength to smaller invariant masses. Therefore
also the phase space available for decay of the S11(1535) opens up, thus enhancing the 5
MeV partial decay width as found in [54] to values around 20− 30 MeV. This is a typical
coupled channel effect: the coupling of the D13(1520) to Nρ generates a broadening of the
S11(1535) state.

In the work of [40] a qualitatively similar picture emerges. There the S11 is considered
to be at rest. In that formalism the particle-hole loops are not iterated and the 2π channel
is treated as pure phase space with a partial decay width of 10 MeV. Again, the broadening
found from π N and η N is small. The broadening from the 2π channel is somewhat larger
that found in our work, but this is partly due to the fact that the total 2πN width is taken
to be larger than our N ρ width.

The spectral function is only slightly modified as can be inferred from the right plot in
Fig. 28 by comparing the spectral function in the vacuum (dash-dotted line), with Pauli-
blocking only (dotted line) and the full results without SRC (dashed line). The peak of the
spectral function is shifted upwards relative to the nucleon by about 10 − 20 MeV. Such
a small (dispersive) mass shift is found also in other theoretical works on the S11(1535)
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Figure 28: Left: Partial decay widths of the S11(1535) at a momentum of k = 0.8 GeV.
We compare results obtained from Pauli-blocking and our full in-medium calculations with
and w/o SRC. For the Nπ and Nη channels the effect of SRC is very small, therefore the
in-medium width is represented by the full lines only. Right: spectral function ρ of the
S11(1535) at the same momentum. The density is ρ = ρ0.

[41, 42].

In Fig. 29 we show the position of the peak (left) and the width of the peak (right)
as a function of the 3-momentum k. The peak position varies only very little. The width
taken at the peak position displays some momentum dependence. This is mostly due to
Pauli-blocking of the Nη channel, which completely prohibits the decay into this channel
at vanishing 3-momentum. At finite momenta the effects of Pauli-blocking are reduced,
leading to an increase of the the width, which is enhanced by the fact that – as in the
case of the D13(1520) – the Nρ broadening receives additional support from the opening
of phase space. As in the case of the D13(1520) the numerical fluctuations in the curves
are due to finite grid effects.

Switching on the SRC reduces the broadening, see Figs. 28 and 29. Just as in the case
of the D13(1520) we find a reduction of the broadening in the ρN channel, whereas the
other two channels remain essentially untouched. The insensitivity of the π N and η N
channels to effects from SRC is explained from the comparatively small coupling constants
at the respective resonance-nucleon-meson vertices, which prevent large corrections terms
of the form 1/(1 − gχ). This substantiates our statement made in the introduction of
Chapter 5 that for s-wave states the SRC become only sizeable in the presence of large
coupling constants. The effects from the iteration are also similar to those observed for the
D13(1520). The strong broadening of that state leads to a reduction of strength at small
invariant masses and therefore the in-medium width of the S11(1535) slightly decreases.

We conclude from our results and those obtained in [40, 41, 42] that some consensus
exists in the literature concerning the in-medium properties of the S11(1535). A small
broadening relative to the Pauli-blocked width is expected, accompanied by a slight re-
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Figure 29: Left: Peak position of the spectral function ρ of the S11(1535). Right: Width of
this state taken at the peak position. Shown are calculations with gs
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For the width we also show the results from Pauli-blocking. The calculations are carried
out at normal nuclear matter density.

pulsive mass shift. In [43] is has been demonstrated that such medium modifications lead
to a natural explanation of experimental data on η photoproduction [13, 14]. There the
relatively large observed mass shift hinted in the data [14] is generated by the assumption
that resonance and nucleon feel the same momentum dependent mean-field potential. As
pointed out in [43], a small collisional broadening of the S11(1535) has also been found in
[36] based on estimates of resonance-nucleon cross sections.

Summarizing, the broadening of the S11(1535) is a typical example of a coupled-
channel effect. The main physical effects are generated by the D13(1520) via the process
S11(1535)N → N D13(1520). Whereas we do not claim that the broadening found is accu-
rate within 10 MeV, we can exclude a significant in-medium modification of the S11(1535)
within the mechanisms discussed in this work. A strong broadening would either require a
much larger coupling to Nρ – which is unlikely since the total 2π width Γ2πN is estimated
to be around 10 MeV in the vacuum [57, 55] – or effects from nuclear mean fields, which
might increase the mass difference between nucleon and S11(1535) and thus enhance the
phase space available for the decay.

6.3 Density Dependence

In this Section we analyze the density dependence of our results. Within the low den-
sity expansion the in-medium self energies of mesons and baryon resonances are directly
proportional to the nuclear density ρ. Deviations from this linear scaling are already intro-
duced from Pauli blocking and Fermi motion. More importantly, within our self-consistent
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scheme meson and resonance interactions with more than one nucleon are generated. They
correspond to terms of higher order in the nuclear density. Finally, short-range correlations
(SRC) exhibit terms of the from 1/(1 − gχ) which also produce deviations from a linear
density dependence. It is therefore interesting to study our results as a function of the
nuclear density and determine a critical density above which the low density expansion
becomes unreliable.
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Figure 30: Collisional broadening of a D13(1520) with momenta k = 0.4 GeV (left)
and k = 0.8 GeV (right) as a function of the nuclear density ρ. Compared are four
calculations: low-density limit with Pauli blocking and Fermi motion (dotted), results of
the first iteration (dash-dotted) and the self-consistent (SC) calculation (dashed). By the
solid line we indicate the results from a self-consistent calculation where also effects from
SRC are taken into account.

We begin with a study of the density dependence of our results for baryon resonances
and will restrict ourselves to the case of the Nρ decay of the D13(1520). In Fig. 30 we
show the collisional broadening defined as

Γcoll =
ImΣmed − ImΣpauli√

k2
, (67)

in the Nρ channel of the D13(1520) as a function of the nuclear density for two momenta,
k = 0.4 GeV (left) and k = 0.8 GeV (right). The broadening is evaluated at k2 = m2

R.
The dotted lines indicate the results from a calculation where the particle-hole loops have
not been iterated. It has been obtained by the replacement

AT/L
ρ (q0,q) → −1

π
|Dvac

ρ (q)|2 ImΠ
T/L
ρ (q0,q) (68)

in Eq. 28. This expression already goes beyond the low density theorem Γcoll = ρ v σ
[36, 12, 78] by including Pauli-blocking and Fermi motion. Here σ is the total resonance-
nucleon cross section and v the velocity of the resonance in nuclear matter. The effects
from resumming the particle-hole loops are shown by the dash-dotted lines and the impact
of the self-consistent (SC) scheme is shown by the dashed line. The solid line shows the
results from a self-consistent calculation which contains also the effects from SRC.

51



As one can see in the left plot of Fig. 30, already the low density curve (dotted line)
shows sizeable deviations from a linear density dependence for a resonance with momentum
k = 0.4 GeV. This is due to Pauli blocking, which becomes more active as the density
increases. The resummation of particle-hole loops in the ρ propagator leads to a sizeable
enhancement of the broadening already at small densities around 0.25ρ0. This is a direct
consequence of the fact that due to level repulsion this resummation leads to an attractive
shift of the position of the D13(1520) excitation in the ρ spectral function. Due to this shift
the phase space available for the reaction D13(1520)N → ND13(1520) is enhanced. The
effect of self consistency (dashed line) and short-range correlations (solid line) is to reduce
the width as has been discussed in Section 6.2.2. One should not compare the results
obtained with SRC and the low density curve, because the SRC change the resonance-
nucleon cross section.

At k = 0.8 GeV (see right plot in Fig. 30) the low density calculation (dotted line)
displays a nearly linear density dependence, which is due to the smaller impact of Pauli-
blocking at large momenta. The effect of resumming the particle-hole excitations is smaller
at k = 0.8 GeV than at k = 0.4 GeV as can be seen by comparing the dotted and
dash-dotted lines. This is explained as follows: The resummation is important when the
particle-hole excitation and the ρ peak have comparable energies. This is the case for a
D13(1520)N−1 excitation at low resonance momenta. However, when calculating the in-
medium width of a fast moving D13(1520) the spectral function is tested at large momenta,
where the particle-hole excitation is far away from the ρ peak (cf. Fig. 8) and a smaller
effect of the resummation is to be expected. The effects of self-consistency (dashed line)
and SRC (solid line) are similar for both resonance momenta, both leading to a reduction
of the resonance width. The different slope found already at very small densities for
the calculation with SRC is due to a modification of the resonance-nucleon cross section
from the short-range terms. Summarizing these results, we find for the D13(1520) strong
deviations from a low density expansion. In particular for smaller momenta the low density
results are found to be unreliable already at densities around 0.25 ρ0, whereas at larger
momenta the low density expansion starts to work better. This has an interesting effect on
the momentum dependence of the width: in the low density limit the collisional broadening
rises nearly linearly with the momentum. Since the resummation of particle-hole loops
leads to an enhancement of the broadening at smaller momenta while having only a small
influence on the results at large momenta, a flatter momentum dependence is expected
(compare also right plot of Fig. 26).

Next we discuss the self energy of pion, η and ρ meson. Due to the complicated
peak structure arising from the resonance-hole excitations it is difficult to summarize the
information contained in the self energy at given density and momentum in one number.
Therefore we show the self energy as a function of the invariant mass in Fig. 31. There
the imaginary part of the self energy of the ρ meson (left, top), the pion (right) and the
η meson (left, botttom) are displayed for three densities ρ = 0.5 ρ0 (dotted lines), ρ = ρ0

(solid lines) and ρ = 1.5 ρ0 (dashed lines). In order to facilitate the comparison we also show
with dotted lines the result obtained at ρ = 0.5 ρ0 multiplied by a factor of 3, which would
equal the result at ρ = 1.5 ρ0 if the self energies would scale linearly with the density. We
observe that for the pion and the ρ meson a linear scaling with the density is badly violated.
A more detailed investigation shows that higher order corrections are already important
for densities ≤ 0.5 ρ0. This is not shown in Fig. 31. For the η meson we find that the
height of the peak scales nearly directly with the density whereas the position of the peak
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Figure 31: Influence of the density on the imaginary part of the in-medium self energy of
ρ meson (left, top), pion (right) and η meson (left, bottom). The ρ meson and η meson
are taken to be at rest while for the pion is moving with a momentum of q = 0.5 GeV.
The results are shown for three different densities. In order to facilitate the comparison
we have rescaled the result obtained for ρ = 0.5 ρ0 by a factor of 3. In all calculations the
SRC have been taken into account.

is slightly shifted. As discussed in Section 6.1.3, this shift of the peak leads to the observed
strong non-linearities of the optical potential (cf. Fig. 20). We already mentioned that the
following sources act against a linear density dependence: Fermi-motion, Pauli-blocking,
self-consistent iterations and short-range correlations. It is interesting to note that for each
meson the most important deviation is generated by a different mechanism: For η and ρ
the iterations act against the low density theorem by inducing a strong broadening for the
D13(1520) and a slight repulsive mass shift for the S11(1535). In contrast, for the pion it is
mainly the sum of Fermi motion and short-range interactions which is responsible for the
non linear density dependence.

We close this Section by noting that for channels characterized by a small coupling
strength we find a nearly linear density dependence when Pauli-blocking effects are not
taken into account. This is due to the fact that for such systems the forces acting against
a linear density dependence are weak.
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7 Conclusions

We have constructed a model that allows for a combined description of in-medium mod-
ifications of hadrons. The constituents of the model are on the meson sector the pion, η
meson and ρ meson and on the baryonic sector all resonances that couple at least to one of
these states and the nucleon. Thus, the model assumption implicit in our analysis is that
resonant terms lead to a satisfying description of the meson-nucleon scattering amplitude.
Non-resonant background terms as well as contact and tadpole contributions to the meson
self energy are not taken into account.

Our previous work in this direction [19, 20] has been extended and improved in several
ways: The basis space of included states has been significantly enlarged. Due to the use of
dispersion relations the spectral functions of all states are guaranteed to remain normalized
both in the nuclear medium and in the vacuum. Special care has been taken with respect
to the treatment of short-range correlations (SRC), in particular in the s-wave sector. This
was motivated by the fact that a realistic description of the in-medium properties of the
P33(1232) requires such repulsive mechanisms.

For the ρ meson we find a significant shift of spectral strength down to smaller invariant
masses generated by its coupling to the D13(1520)N−1 state. In particular at smaller
momenta, the coupling to this state leads to a pronounced double-peak structure in the
spectral function. In order to corroborate this finding we have tested it against variations
of the coupling strength and against possible effects from SRC. As a result we find that the
results remain quite stable when varying the width within ranges suggested by different
analyses of pion-nucleon scattering. Also SRC do not qualitatively change the results.
At finite momenta, the in-medium properties of the ρ meson are influenced not only by
the D13(1520) but also by some other higher lying resonances and our model predicts a
different momentum dependence of transverse and longitudinal modes. In the transverse
channel we find that the spectral function is characterized by a substantially broadened
peak, whereas in the longitudinal channel the medium modifications get weaker and at
momenta q ≥ 0.8 GeV the vacuum spectral function is recovered in this channel. The
self-consistent iteration scheme mainly affects the results at low momenta and smears out
the D13(1520)N−1 peak. Thus the central findings from our previous calculation [19] can
be confirmed. On a quantitative level we find that the effects from iterations are reduced
with respect to the findings in [19], which – as argued in the text – is mainly due to a
more realistic choice of the form factor. We have also calculated the momentum integrated
dilepton rate at densities and temperatures typically encountered at SPS energies. The
results suggest that our model is able to generate the observed shift of spectral strength
down to smaller invariant masses.

For the pion we reproduce the essential features of the ∆-hole model, i.e. at finite
momenta around 0.3 − 0.6 MeV the pion spectral function is dominated by a complicated
peak structure which is derived from the coupling of the pion to NN−1 and P33(1232)N−1

states. Going beyond the usual ∆-hole model we have also investigated the effects of cou-
pling the pion to other resonance-hole states. The coupling of these states is not sufficient
to generate distinct peaks, but it nonetheless produces a smooth background that influ-
ences the detailed structure of the pion spectral function. Turning to the η meson, we have
calculated both the optical potential – which is of relevance for a quantitative analysis of
η-mesic nuclei – and its spectral function. Based on reasonable predictions for the ηN
scattering length, we arrive at a potential that provides rather strong binding relative to
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the life-time of the η. On a quantitative level the inclusion of medium modifications of
the S11(1535) is found to be important. The spectral function of the η meson exhibits an
interesting momentum dependence, receiving attraction at small and repulsion at large mo-
menta (q ≈ 0.8 GeV), while in the intermediate momentum region we observe a significant
broadening of the η meson.

Turning to the baryon resonances, our model is able to reproduce the in-medium prop-
erties of the P33(1232) resonance and we obtain a reasonable fit of the phenomenological
spreading potential if SRC are taken into account. We observe only small contributions
from three-body processes. Our results for the D13(1520) show some sensitivity on coupling
parameters and the effects of SRC. Assuming both a large coupling of this resonance to
the Nρ channel (corresponding to ΓNρ = 26 MeV), and small effects from SRC leads to a
significant total broadening of about 250−300 MeV. If, on the other hand, ΓNρ = 12 MeV
is taken in combination with a rather large value for the SRC, the in-medium broadening
of the D13(1520) is much reduced. We do not find large contributions to the broadening
from the pion sector. With these uncertainties in mind, the experimental and theoretical
challenge is to pin down the unsettled parameters – in particular the Nρ partial width and
the strength of the short-range interactions – in more detail. Finally, for the S11(1535) we
find only modest medium effects. Even though there is some uncertainty concerning the
resonance parameters and the strength of SRC, we can exclude the appearance of large
medium modifications on the basis of our model. It is interesting to mention that the
main body of the broadening found for the S11(1535) is due to typical coupled channel
effect: without the rearrangement of spectral strength in the ρ spectral function due to the
D13(1520), the observed broadening would have been even smaller.

In a last step we have investigated our results as a function of the nuclear density and
compared it to a low density expansion. We find that for the D13(1520) already at small
densities around 0.25 ρ0 the low density expansion breaks down and terms of higher order
become important. Also the in-medium properties of the mesons deviate from a low density
expansion, which is either due to effects from self consistency (ρ meson, η meson) or the
effects of SRC (pion). Such effects are already important at small densities 0.25 ρ0 – 0.5 ρ0.

Summarizing we have constructed a model that is able to describe or predict in-medium
effects from very different areas, ranging from dilepton spectra measured in heavy ion
collisions to photoproduction data on nuclei and η mesic atoms.
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A Relations for Feynman and retarded propagators

In this Appendix we derive some basic relations for retarded and Feynman propagators.
Starting point is the representation of these quantities in position space. In order to obtain
relations in momentum space, a Fourier transformation is performed. The relations thus
derived carry over directly to the self energies.

A.1 Bosons

For boson fields, the retarded and the Feynman propagator are defined as:

iD+(x, y) = θ(x0 − y0)
〈[
φ(x), φ†(y)

]〉
(69)

iDF (x, y) = θ(x0 − y0)
〈
φ(x)φ†(y)

〉
+ θ(y0 − x0)

〈
φ†(y)φ(x)

〉
,

where the expectation value can be taken either with respect to the vacuum ground state or
the ground state of nuclear matter. By performing a Fourier transformation, one can prove
from the definition of DF and D+ that the real parts of both propagators in momentum
space are identical:

ReDF (q) = ReD+(q) . (70)

This holds in the vacuum as well as in the medium. The spectral function A(q) is defined
as the imaginary part of D+(q), which allows for the following representation:

A(q) ≡ −ImD+(q)

π
=

1

2π

∫

d4x eiqx
[
φ(x), φ†(0)

]
. (71)

Using the equal-time commutator relation of scalar fields, this representation leads to a
sum rule for A(q):

∞∫

−∞

dq0 q0 A(q) = 1 . (72)

In vacuum and in isospin symmetric nuclear matter the spectral function is antisymmetric
in the energy, i.e. A(−q0,q) = −A(q0,q). One can see this by changing q → −q in
the defining Eq. 71 and using that an isospin rotation transforms a boson into its own
antiparticle while leaving the nuclear ground state invariant. This argument implies, that
for charged bosons in asymmetric nuclear matter the relation between negative and positive
energies is lost. Finally, by invoking the KMS relation [79], one can establish a relation
between the imaginary part of DF (q) and D+(q):

ImDF (q) = −(1 + 2nB) πA(q)
T=0→ − sgn(q0) πA(q) . (73)

Here nB is the thermal distribution factor defined in Eq. 62. The arguments presented in
this Section show that in symmetric nuclear matter both the Feynman and the retarded
propagator are completely determined from the positive energy sector and a dispersion
relation extending over all energies q0 can easily be written down, cf. Eqs. 7 and 26 in
Chapters 2 and 4.
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A.2 Fermions

For fermions, retarded and Feynman propagator are defined as follows:

iG+(x, y) = θ(x0 − y0)
〈{
ψ(x), ψ̄(y)

}〉
(74)

iGF (x, y) = θ(x0 − y0)
〈
ψ(x) ψ̄(y)

〉
− θ(y0 − x0)

〈
ψ̄(y)ψ(x)

〉
.

In analogy to bosons, one finds that the real parts of both propagators are identical both
in the vacuum and in the medium. The matrix A(p) is introduced in analogy to Eq. 71
as:

A(p) ≡ −ImG+(p)

π
=

1

2π

∫

d4x eipx
{
ψ(x), ψ†(0)

}
, (75)

where real and imaginary part of the matrix G(p) are defined as [80]:

ReG(p) =
1

2

[
G(p) + γ0 G†(p) γ0

]
, ImG(p) =

1

2i

[
G(p) − γ0 G†(p) γ0

]
(76)

Tracing A with γ0 defines the spectral function ρ:

Tr [γ0 A] = 4 p0 ρ(p) sgn(p0) , (77)

for which a sum rule is obtained by imposing the equal-time commutator relations for
fermion fields:

+∞∫

−∞

dp0

4
Tr [γ0 A(p)] = 1 . (78)

In vacuum one can derive the symmetry relation ρ(−p0) = ρ(p0) by utilizing the invariance
of the ground state under charge conjugation. Isospin rotations do not help in this case since
they do not relate particles and antiparticles. Due to the finite baryo-chemical potential
µ, charge conjugation is not a good symmetry in nuclear matter and the relation between
positive and negative energies is lost. The finite µ also complicates the relation between
the imaginary parts of G+(p) and GF (p). Imposing again the KMS relation [79], we find:

ImGF (p) = − (1 − 2nF ) πA(p) → sgn(p0 − µ) πA(p) , (79)

with the Fermi distribution factor

nF (p0) =
1

e(p0−µ)/T + 1
. (80)

The above arguments show that for fermions in nuclear matter the relation between the
positive and negative energy sector is non-trivial, which explains why we restrict ourselves
to the positive energies when applying dispersion relations to fermion self energies. Anyway
we do not expect that antibaryons are important in cold nuclear matter.
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coupling constant fNNπ = 1.0 fNNη = 2.34 fNNρ = 7.8 f∆Nρ = 10.5

cutoff [GeV] Λπ = 1.0 Λη = 1.5 Λρ = 1.5 Λg = 1.5

short range gp,NN
π = 0.6 gp,RNRM

π = 0.45 gp,NN
η = 0.6

gs
π = (0, 0.1) gs

ρ = (0, 0.1) gd
π = (0, 0.4) = gdp

π gs
η = (0, 0.1)

Table 2: Coupling constants, short-range and cutoff parameters of our model.

B Parameters

In Table 2 we give a list of coupling constants, cutoff and short-range parameters used
in the calculations. The brackets denote the range within which we allow the respective
parameter to vary. Note that at each vertex corresponding to short-range interactions we
multiply a monopole form factor [30, 31]:

Fg(q
2) =

(
Λ2

g

Λ2
g − q2

)2

. (81)

The value for also Λg is also taken from this reference. Let us comment on theses choices
for coupling constants and cutoff parameters. For the πNN coupling constant a value
around fπNN = 1 is a standard choice, see for example [74, 30]. For fNNη and the cutoff Λη

we take the values originally suggested in [81]. The values for fρNN and fρN∆ lie within the
ranges suggested in for example [31, 82, 74] and are a obtained by a mix of quark model
considerations and fits to NN scattering. These fits also determine the approximately the
values of the cutoff parameters, in particular the rather large value for Λρ is suggested
from those data, see for example [31]. The cutoff used in the form factor F (k2) of Eq. 14
for pseudoscalar (π, η) meson is taken to be Λ = 1 GeV and for normal nuclear matter
density we take a value of ρ0 = 0.15 fm−3.

C Lagrangians and Traces

In the following paragraphs we give the Lagrangians used for the description of meson-
nucleon-resonance dynamics. Of course, these Lagrangians also have an isospin part. We
denote the isospin part explicitly here and omit it in the Lagrangians. The isospin coupling
of an isovector meson and nucleon forming a resonance with I = 1

2
or I = 3

2
is given by:

ψ† τ ψϕ (82)

ψ† Tψϕ .

Here T and τ are the usual spin-3
2

transition and Pauli operators. The the isospin com-
ponents of the isovector meson are denoted by ϕ.
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C.1 Lagrangian Relativistic

In this Section we will write down the relativistic Lagrangians used for the description
of the coupling of baryon resonances to nucleons and pseudoscalar mesons ϕ or vector
mesons/photons V µ. The guiding principle in writing down these interaction terms is
that they fulfill the usual symmetry requirements Lorentz invariance, gauge invariance and
parity conservation. In addition, they are required to be hermitian. The standard coupling
of a resonance with the quantum numbers Jπ for spin J and parity π to the ϕN channel
reads:

LRNϕ =
f

mϕ

ψ̄R γ
µ

{
i γ5

11

}

ψN ∂µ ϕ for Jπ = 1
2

±

LRNϕ =
f

mϕ

ψ̄µ
R

{
11
i γ5

}

ψN ∂µ ϕ for Jπ = 3
2

±

(83)

The standard coupling of a resonance with the quantum numbers Jπ for spin J and
parity π to the ρN channel reads:

LRNρ =
f

mρ
ψ̄R σ

µν

{
11
i γ5

}

ψN ∂µ ρν for Jπ = 1
2

±

LRNρ =
f

mρ
ψ̄µ

R γ
ν

{
i γ5

11

}

ψN ρµν for Jπ = 3
2

±

(84)

Here ρµ describes the ρ meson and ρµν = ∂µ ρν − ∂ν ρµ.

C.2 Lagrangian Non-Relativistic

Expect for spin-5
2

resonances, the non-relativistic Lagrangians presented here are derived
from the relativistic ones as given in Eqs. 83 and 84.

The Lagrangian describing the coupling to a pseudoscalar meson and a nucleon reads:

LRNϕ = i
f

mϕ
ψ†

R σk ψN ∂k ϕ for Jπ = 1
2

+

=
f

mϕ

ψ†
R ψN ∂0 ϕ for Jπ = 1

2

−

LRNϕ =
f

mϕ

ψ†
R S

†
k ψN ∂k ϕ for Jπ = 3

2

+

= i
f

2mN mϕ
ψ†

R S
†
k σl (∂l ψN ) ∂k ϕ for Jπ = 3

2

−

LRNϕ =
f

mϕ
ψ†

RRi j σkψN ∂i ∂j ∂k ϕ for Jπ = 5
2

+

(85)

The spin transition operators Si and Rij can be found in [18].
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Ω
ϕ
1/2 π = +1 8mN mR q2 Ω

ϕ
3/2 π = +1

16

3
mN mR q2

π = −1 8mN mR q
2
0 π = −1

16

3
mN mR

q4

4m2
N

Ω
ϕ
5/2 π = +1

16

5
mN mR q2

ΩT
1/2 π = +1 8mN mR q2 ΩT

3/2 π = +1
16

3
mN mR q2

π = −1 8mN mR q0
2 π = −1

16

3
mN mR q0

2

ΩL
1/2 π = +1 0 ΩL

3/2 π = +1 0

π = −1 8mN mR q
2 π = −1

16

3
mN mR q

2

ΩT
5/2 π = +1

12

5
mN mR q2

Table 3: Non-relativistic traces for the resonance decay and the meson self energy.

The coupling to vector mesons and nucleons is described by:

LRNρ =
f

mV
ψ†

R σj ψN ǫjkl ∂k ρl for Jπ = 1
2

+

= i
f

mV

ψ†
Rσk ψN (∂k ρ0 − ∂0 ρk) for Jπ = 1

2

−

LRNρ = i
f

mV
ψ†

R S
†
j ψN ǫjkl ∂k ρl for Jπ = 3

2

+

=
f

mV
ψ†

R S
†
k ψN (∂k ρ0 − ∂0 ρk) for Jπ = 3

2

−

LRNρ =
f

mV
ψ†

R Rij ψN∂j ρ
T
i for Jπ = 5

2

+

(86)

In the last line the notion ρT
i is meant to imply that only transversely polarized vector

particles couple to spin-5
2

resonances.

For the coupling of spin-3
2

resonances to the ∆π channel we use the following La-
grangian:

LR∆π =
f

m∆
ψ†

R S
†
k Sk ψ∆ π for Jπ = 3

2

−
.

LR∆π =
f

m∆
ψ†

R S
†
i Sj ψ∆ǫijk∂k π for Jπ = 3

2

+
.

(87)

For the coupling of spin-1
2

resonances the appropriate Lagrangians of Eq. 85 can be applied.

60



Ω
ϕ,red
1/2 π = +1 8mN mR Ω

,red
3/2 π = +1

16

3
mN mR

π = −1 8mN mR π = −1
16

3
mN mR

q2

4m2
N

Ω
T,red
1/2 π = +1 8mN mR Ω

T,red
3/2 π = +1

16

3
mN mR

π = −1 8mN mR π = −1
16

3
mN mR

Ω
L,red
1/2 π = +1 0 Ω

L,red
3/2 π = +1 0

π = −1 8mN mR π = −1
16

3
mN mR

Ω
T,red
5/2 π = +1

12

5
mN mR

Table 4: Reduced traces Ωred, which arise from the contact interactions.

C.3 Traces

In this work, the Lagrangians are used to find analytic expressions for the decay width
of a resonance and to calculate the meson-nucleon forward scattering amplitude, which
is closely related to the in-medium self energy of the meson. In both cases one needs to
calculate a trace which is of the generic form

Ωϕ
1/2 = Tr

[
ΓΓ†] , (88)

Ωϕ
3/2 = Tr

[

Γi P
ij
3/2 Γ†

j

]

.

for pseudoscalar mesons and

Ω
T/L
1/2 = P T/L

µν Tr
[
Γµ Γν†] , (89)

Ω
T/L
3/2 = P T/L

µν Tr
[

Γµ
i P

ij
3/2 Γν†

j

]

.

for vector mesons. As usual T and L denote the polarization of the vector meson. The
vertex factors Γ are obtained from the above non-relativistic Lagriangians. We display the
results for these traces in Table 3. In the actual calculations, energy q0 and momentum q

of the meson are taken in the rest frame of the resonance.

In calculating these traces we have used the projectors onto spin-3
2

and spin-5
2

fields,
which are given by [18, 65]:

P ij
3/2 = δij − 1

3
σi σj (90)

P ij,kl
5/2 =

1

2
(δikδjl + δilδjk) −

1

5
δijδkl −

− 1

10
(δik σj σl + δil σj σk + δjk σi σl + δjl σi σk) .
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D Details of the Derivation of Short-Range Interac-

tions

This Appendix is concerned about the derivation of the contact interactions given in Eqs.
39, 40 and 41. We also present details of how we obtain estimates for the strength of the
short-range correlations by matching contact interactions and correlation potential.

D.1 Positive Parity States

We begin with a discussion of positive parity states. Reading the hadronic current Jµ off
the Lagrangians Eq. 83 in Appendix C and performing a non-relativistic reduction, the
following contact interactions Lπ

C result for the nucleon-resonance interactions.

Jπ = 1
2

+
:

Lπ
C = cπ

(
f

mπ

)2
(
ψ̄R γ5 γ

µ ψN

) (
ψ̄N γ5 γµ ψR

)
(91)

⇒ cπ

(
f

mπ

)2 (

ψ†
R σ

i ψN

) (

ψ†
N σi ψR

)

,

Jπ = 3
2

+
:

Lπ
C = cπ

(
f

mπ

)2
(
ψ̄µ

RψN

) (
ψ̄NψR,µ

)
(92)

⇒ cπ

(
f

mπ

)2 (

ψ†
R S

i † ψN

)(

ψ†
N Si ψR

)

,

Here the spin-3
2

transition matrix S has been introduced, which contains the Clebsch-
Gordan coefficients for the spin coupling 1

2
⊕1 = 3

2
[65]. Note that in the lower line of each

of the equations ψN and ψR denote non-relativistic two-component spinor fields.
In order to build Lρ

C , we first decompose the baryonic tensor Bµ ν into its spatial (j, k)
and time (j, 0), (0, k) components. The non-relativistic interaction is then obtained by
keeping only the leading terms in pN/mN of Bµν .

Jπ = 1
2

+
:

ψ̄R σ
µ ν ψN =







(j, k) : ǫjkl ψ†
R σl ψN

(j, 0) : −i ψ†
R σ

j σm ∂m

2mN

ψN

(0, k) : −(j, 0)

(93)

Dropping now the terms σ·pN

2mN
gives:

Lρ
C = 2 cρ

(
f

mρ

)2 (

ψ†
R σ

i ψN

)(

ψ†
N σi ψR

)

.
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Jπ = 3
2

+
:

i
(
ψ̄µ

R γ
ν − ψ̄ν

R γ
µ
)
γ5 ψN =







(j, k) : ψ†
R ǫ

jkl S†
l ψN

(j, 0) : i ψ†
R S

j † σm ∂m

2mN
ψN

(0, k) : −(j, 0)

(94)

Again dropping terms σ·pN

2mN
leads to:

Lρ
C = 2 cρ

(
f

mρ

)2 (

ψ†
R S

i † ψN

)(

ψ†
N Si ψR

)

,

Both π and ρ induced interactions have the same spin-structure ∝ σ1 · σ2 for spin-1
2

states and ∝ S1 · S2 for spin-3
2

states, as required from Eq. 32. The form of Lπ
C and

Lρ
C implies, that in any calculation where Lπ

C contributes, also Lρ
C has to be considered.

Therefore it is advisable to consider the sum of both terms with a new parameter gp, where
the index p refers to the p-wave coupling of the underlying interaction. To give an example,
the short-range interactions for Jπ = 1

2

+
states then read:

gp

(
fπ

mπ

)2

σ1 · σ2 =

[

cπ

(
fπ

mπ

)2

+ 2 cρ

(
fρ

mρ

)2
]

σ1 · σ2 . (95)

Now we need to determine the strength parameter gp. To this end we subject the p-wave
potential corresponding to P = +1 states to the correlation integral Eq. 36, as motivated
in the introduction of Chapter 5.

As an example let us discuss the π exchange in the NN potential, Eq. 31. Plugging in
the central part of the potential one obtains the following result [69]:

VC(q0,q) =

∫
dΩq′

4π

(
fNNπ

mπ

)2

F 2(q + q′)
σ1 · σ2 δij

q2
0 − (q′ + q)2 −m2

π

×

×
[
qi qj + q′i q

′
j + q′i qj + q′j qi

]

|q′|=qc
(96)

≈
(
fNNπ

mπ

)2

F̃ 2(q) D̃π(q0,q) σ1 · σ2
1

3
q2
c .

The form factor F introduced in [69] is the monopole form factor of Eq. 12. The new
quantities D̃ρ/π and F̃ρ/π are defined like the usual propagators and form factors with the
replacement q2 → q2 + q2

c [69].
A similar term is found for ρ exchange, and the sum of both yields for the central part

of the correlation potential in the limit q = 0, see also Eq. 32:

VC(q0, 0) =
q2
c

3

[(
fNNπ

mπ

)2

F̃ 2
π D̃π(q0, 0) + 2

(
fNNρ

mρ

)2

F̃ 2
ρ D̃ρ(q0, 0)

]

σ1 · σ2 . (97)

Note that the correlation induces a large correction to the free potential Eq. 31 due to the
presence of the large scale set by qc. For spin-3

2
states the potential is obtained with the

replacement σ → S.
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The correlation potential Eq. 97 and the contact interaction Eq. 95 can now be
matched, yielding the following results for gp:

gp

(
fπ

mπ

)2

=
q2
c

3

[(
fπ

mπ

)2

F̃ 2
π D̃π + 2

(
fρ

mρ

)2

F̃ 2
ρ D̃ρ

]

. (98)

It has been known for a long time that this sort of matching leads to reasonable guesses for
gp with the kinematical matching point chosen to be q = (0, 0) [69, 74]. Phenomenology
requires values for gp to be in the order of 0.6 for the NN potential and somewhat less for
N∆ and ∆∆ transition potentials. Similar results are found by using Eq. 98. Depending
on one’s favourite values for cutoff parameters and coupling constants, one obtains for the
NN potential values in the range of 0.4 − 0.7, owing to a large extent to the ρ exchange.
Somewhat smaller values are found for the ∆N transition potential.

We have now achieved a description of SRC from two different starting points, namely
contact interactions of Eqs. 93, 94 and the correlation approach Eq. 97. Matching both
approaches gives reasonable results for the strength parameter gp of the SRC. This success
in setting up a model for the short-range correlations for P = +1 states motivates us to
proceed along the same lines for the P = −1 sector and thus obtain reasonable parameter
ranges describing the strength of the SRC. At this point we iterate that in the actual
calculations we do not use the values for gp as obtained from Eq. 98 but vary gp within
accepted boundaries in order to obtain a reasonable description of the in-medium properties
of the P33(1232).

D.2 Negative Parity States

Let us now turn to the discussion of negative parity states. We proceed along the same
lines as for P = +1 states. For the contact interactions derived in the π sector the following
Lagrangians are obtained.

Jπ = 1
2

−
:

Lπ
C = cπ

(
f

mπ

)2
(
ψ̄R γ

µ ψN

) (
ψ̄N γµ ψR

)
(99)

⇒ cπ

(
f

mπ

)2 (

ψ†
R ψN

)(

ψ†
N ψR

)

.

Jπ = 3
2

−
:

Lπ
C = cπ

(
f

mπ

)2
(
ψ̄µ

R γ
5 ψN

) (
ψ̄N γ5 ψR,µ

)
(100)

⇒ cπ

(
f

mπ

)2 (

ψ†
R S

i † σk ∂k

2mN
ψN

)(

ψ†
N

←

∂k σk

2mN
Si ψR

)

.

For Jπ = 3
2

−
resonances, the contact interaction is of the order σ·pN

2mN
and up to now

we have dropped such terms. Here these terms should be kept for consistency, since they
also arise in the non-relativistic reduction of the πNR interaction (see Eqs. 83 and 85 in
Appendix C), where they produce the necessary d-wave coupling.
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In order to obtain the non-relativistic contact interaction Lρ
C, we first decompose the

tensor Bµν into spatial (j, k) and time (j, 0), (0, k) components. Keeping only the leading
non-relativistic terms, this leads to the following expressions for the nucleon-resonance
interaction:

Jπ = 1
2

−
:

i ψ̄R σ
µ ν γ5 ψN =







(j, k) : i ψ†
R ǫ

jkl σl
σm ∂m

2mN

ψN

(j, 0) : ψ†
R σ

j ψN

(0, k) : −(j, 0)

(101)

Lρ
C = 2 cρ

(
f

mρ

)2 (

ψ†
R σ

i ψN

)(

ψ†
N σi ψR

)

.

Jπ = 3
2

−
:

(
ψ̄µ

R γ
ν − ψ̄ν

R γ
µ
)
ψN =







(j, k) : −i ψ†
R ǫ

jkl S†
l

σm ∂m

2mN
ψN

(j, 0) : ψ†
R S

j † ψN

(0, k) : −(j, 0)

(102)

Lρ
C = 2 cρ

(
f

mρ

)2 (

ψ†
R S

i † ψN

)(

ψ†
N Si ψR

)

.

As in the P = +1 case, these interactions are the simplest contact interactions leading to
non-vanishing contributions in typical diagrams such as Fig. 12.

As mentioned already in the introduction of Chapter 5, there is a clear difference
between the contact interactions for P = +1 and those for P = −1 states. In the negative
parity sector Lπ

C and Lρ
C are not equivalent. Considering, for example, a correction to the

meson self energy according to Fig. 12, the pion self energy will not receive contributions
from Lρ

C and neither will the ρ self energy receive contributions form Lπ
C . For spin-1

2

resonances this can be motivated as follows: since the coupling to pions is s-wave and the
pion is a pseudoscalar particle, there is no vector available that could couple to a σ matrix
and consequently the leading non-relativistic term of Jµ contains no spin-flip terms. For
the ρ meson, albeit coupling in an s-wave as well, there is still the polarization vector and
therefore the leading non-relativistic terms of Bµν produce spin-flip contributions. Doing
the spin-summation as appropriate for calculations in nuclear matter, the decoupling of π
and ρ sector follows. A similar argument holds for Jπ = 3

2

−
states. It is therefore necessary

to keep both Lπ
C and Lρ

C independently and fix the respective parameters cπ and cρ. We
will from now on denote cπ and cρ by gd

π, gs
π and gs

ρ, where s and d indicate the angular
momentum of the underlying meson-nucleon interaction.

We now subject the π and ρ exchange potentials to the correlation integral Eq. 36,
which allows us to determine the strength of the contact interaction. Let us start off with
the ρ exchange for Jπ = 3

2

−
states. Constructing the potential from the corresponding
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non-relativistic Lagrangian as given in the Appendix C, Eq. 85, leads to the following
result:

V s
ρ (q0,q) = −

(
f

mρ

)2

F 2
ρ V

µν gµν Dρ(q0,q)

=

(
f

mρ

)2

F 2
ρ Dρ(q0,q)

(
q2
0 S1 · S2 − S1 · qS2 · q

)
(103)

⇒
(
f

mρ

)2

F 2
ρ Dρ(q0,q)

(
q2
0 − q2

)
S1 · S2

with

V µν = Si
1 S

j
2





qi qj q0 qj

qi q0 q2
0



 .

Here we have projected out the spin-central part S1 ·S2, which is generated by the contact
interactions. The energy dependence of the s-wave potential is a direct consequence of
current conservation, which we impose on the coupling of the baryon resonances to the
vector meson-nucleon channel.

The correlation potential VC obtained via Eq. 36 reads:

VC(q0,q) =

(
f

mρ

)2

F̃ 2
ρ D̃ρ(q0,q)

(

q2
0 −

1

3
q2
C

)

S1 · S2 . (104)

By matching this with Eq. 102, we estimate the strength of the contact interaction to be

gs
ρ ≡ 2 cρ =

(

q2
0 −

1

3
q2
c

)

F̃ 2
ρ D̃ρ(q0,q) . (105)

This expression should be evaluated at the energy which a ρ meson needs to excite a
resonance:

q0(q) =
√

m2
R + q2 −mN . (106)

Comparable energies are also encountered in the reaction RN → N R. For the D13(1520)
this amounts to q0 ≈ 0.5 GeV at vanishing 3-momentum. Plugging this value into Eq. 105
we find gs

ρ ≈ 0.05−0.1. In the calculations we vary the parameter gs
ρ within the boundaries

(0, 0.1), and take the same value for gs
ρ for all other 3

2

−
resonances.

The non-relativistic Lagrangian describing the coupling of Jπ = 3
2

−
states to Nπ is

given in Appendix C and leads to a d-wave potential:

V (q0,q) =

(
f

mπ

)2

F 2
π

1

4m2
N

(S1 · q) (σ1 · pN) (S2 · q)(σ2 · pN)

q2
0 − q2 −m2

π

. (107)

Just as for Jπ = 3
2

+
states, the interaction of pions and nucleons is spin-longitudinal in the

D13 channel. The only difference is an additional momentum dependence coming from the
nucleon. From Eq. 36 we obtain for the central part of the correlation potential:

VC(q0,q) =
1

3
q2
c F̃

2
π

(σ1 · pN) (σ2 · pN)

4m2
N

(
f

mπ

)2

(S1 · S2) D̃π(q0,q) . (108)
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While VC scales with 1
3
q2
c

p2
N

4 m2
N

, comparison with Eq. 107 shows that the meson exchange

potential scales like q2 p2
N

4 m2
N

. Therefore the relative correction from VC is large (in fact as

large as for p-wave states). The spin-structure of VC is the same as found in Lπ
C , Eq. 100,

which in principle allows for the matching:

gd
π =

1

3
q2
c F̃

2
π D̃π(q0,q) . (109)

Taking as a matching energy the solution of Eq. 106, a large value of about 0.6 for gd
π

results when the D13(1520) is considered. However, this value has to be interpreted with
some care since at these comparatively large energies one approaches an pole of D̃π when
q2
0 − q2 − q2

c = m2
π. Such a pole already is found in scattering processes in the vacuum

where the exchange particle can go on-shell, as detailed in [83, 84, 29]. We therefore
prefer to utilize the above mentioned similarity of d-wave potentials Eq. 108 and the p-
wave potentials Eq. 97, which suggests that the strength of the respective SRC should be
comparable. Taking into account the uncertainties for gd

π, we vary this parameter in the
interval (0, 0.4). Note that due to the larger mass of the ρ meson this problem does not
arise when matching gs

ρ.

Turning finally to Jπ = 1
2

−
states, not much changes in the ρ sector. With the usual

replacement S → σ, we find exactly the same expressions as for Jπ = 3
2

−
states, Eqs. 104

and 105. Here the state we are most interested in is the S11(1535) and we take the same

value for gs
ρ as for Jπ = 3

2

−
resonances. This is suggested from Eqs. 105, 106 and the

fact that the S11(1535) and the D13(1520) have similar masses. We take this value also for

all other 1
2

−
resonances, thus reducing the amount of parameters. For the pion one runs

again into the pole problem. We therefore take gs
π = 0.1 as in the ρ sector. As it will turn

out, our results are not sensitive to this parameter, since there are no s-wave states with a
large coupling to N π and consequently the effects from the contact interactions are small
regardless of the precise value for gs

π. In our model only Jπ = 1
2

−
states couple to the η

meson. For the corresponding short-range parameter gs
η we take in accordance to the pion

a value of gs
η = 0.1.

D.3 Mixing

Up to now we have considered processes of the type RN → NR. An interesting question
is whether the contact interactions allow for mixing of different resonance states. On the
level of Feynman diagrams, this corresponds to a situation where R1 and R2 in Fig. 12
resemble different resonances. The terms driving these processes are determined by the
Lagrangian:

Lπ
C = cπ J

µ
R1 Jµ,R2 (110)

Lρ
C = cρB

µν
R1Bµν,R2 .

Clearly, processes like R1N → NR2 are possible if R2 has the same quantum numbers as
R1. The situation is more complicated if resonance R2 has different quantum numbers.
Then for pions mixing is allowed in the non-relativistic reduction, if the leading terms
of both Jµ

R1 and Jµ
R2 are derived either from the vector (i) or the time (0) component.

Similarly, in Lρ
C the leading terms of Bµν

R1 and Bµν
R2 must both be either the spatial (j, k)

or the time (j, 0), (0, k) components.
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For the pion sector, it follows that mixing is allowed between Jπ = 3
2

+
, Jπ = 3

2

−
and

Jπ = 1
2

+
states. In all three cases the leading non-relativistic contributions come from the

vector components of Jµ. In contrast, there is no mixing to Jπ = 1
2

−
states, which derive

their leading behaviour from the 0-th component of Jµ. For the remainder of this work
the most important finding is the possibility that nucleon, P33(1232) and D13(1520) states
can mix.

In the ρ sector the situation is slightly different. For positive parity states the leading
components come from the spatial (j, k) components and for negative states from the time
(j, 0) or (0, k) components of Bµν , such that the contraction vanishes if states of different
parity are considered. This implies, that unlike the pion case, there is no mixing of the
D13(1520) state to the P33(1232) or the nucleon. However, mixing between states of the
same parity is possible and taken into account in this work.

The mixing of negative parity and positive parity states in the pion sector is proportional
to the momentum pN as is evident from Eq. 41. This is to be expected from parity
conservation: consider a scattering process of a P = +1 state and a nucleon into a P =
−1 state and a nucleon. The switch in the internal parities of the involved states must
then be compensated by an odd angular momentum, leading to the observed momentum
dependence.
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