Motivation	Effective field theories	Vector mesons	Form factors	Summary

In-medium changes of properties of hadrons

dilepton spectrum from a nucleus-nucleus collision

models:

- dropping mass
- broad spectral function

data: NA60

S. Damjanovic et al. (NA60), Nucl. Phys. A 774, 715 (2006)

Chiral restoration

Dileptons

a₁-meson

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Summary 000000000

Dileptons, hadronic resonances and chiral symmetry Established connections and missing links

Stefan Leupold¹ Markus Wagner²

¹GSI Darmstadt

²Giessen University

CPOD, GSI, Darmstadt, July 2007

Symmetry breaking	Chiral restoration	Dileptons o●oooo	<i>a</i> ₁-meson ೦೦೦೦೦೦೦೦	Summary 00000000
Four gener	ric processes			
π ρ γ	ℓ^{ℓ^+}		$ \begin{array}{c} \pi \\ \pi \\ \pi \\ \pi \end{array} $	ℓ^- ℓ^+
	$\pi+\pi\to\rho\to\ell^+\ell^-$	4π –	$ ightarrow ho' ightarrow \ell^+ \ell^-$	
$\pi + h$	$U \to N^* \to \ell^+ \ell^- + N$	3π –	$a_1 \rightarrow \ell^+ \ell^- + \eta$	π
	ρ $\ell^ \ell^+$ ℓ^+ N	π π π	<i>a</i> ₁ <i>ρ</i> , <i>γ</i>	l- l+

◆□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Equir gonori										
Symmetry breaking		oo€ooo	a ₁ -meson 00000000	00000000						
	Chiral restaration	Dilentere								

Four generic processes

from conceptual/technical point of view on equal level:

- $\pi + \pi \rightarrow \ell^+ \ell^-$ and $4\pi \rightarrow \ell^+ \ell^-$
 - both known from back reaction in vacuum
 - total invariant mass of hadrons = invariant mass of dilepton
- 2 $\pi + N \rightarrow \ell^+ \ell^- + N$ and $3\pi \rightarrow \ell^+ \ell^- + \pi$
 - both scattering of dilepton on one medium constituent
 - total invariant mass of hadrons does not translate to invariant mass of dilepton (Dalitz decay)
 - \hookrightarrow populate especially low invariant masses
 - \hookrightarrow low mass enhancement

from point of view of production on equal level:

() $\pi + \pi \rightarrow \ell^+ \ell^-$ and $\pi + N \rightarrow \ell^+ \ell^- + N$

• both two-body reactions (and both genuine "in-medium")

- 2 $4\pi \rightarrow \ell^+ \ell^-$ and $3\pi \rightarrow \ell^+ \ell^- + \pi$
 - both N-body reactions (N>2)

Importance of the four generic processes

- $\pi + \pi \rightarrow \ell^+ \ell^-$: important in ρ -meson region
- $4\pi \rightarrow \ell^+ \ell^-$: important above 1 GeV (cf. Rapp/van Hees, PRL 2006)
- $\pi + N \rightarrow \ell^+ \ell^- + N$: low-mass enhancement
- 3π → ℓ⁺ℓ⁻ + π: conceptually interesting (chiral mixing) (cf. Steele/Yamagishi/Zahed, PLB 384 (1996) 255)

Hadronic many-body theory

- HMBT for vector mesons [Ko et al, Chanfray et al, Herrmann et al, Rapp et al, ...]
- $\pi\pi$ interactions and baryonic excitations

- +corresponding vertex corrections ⇔ gauge invariance
- Baryon (resonances) important, even at RHIC with low **net** baryon density $n_B n_B$
- reason: $n_B + n_{\bar{B}}$ relevant (CP inv. of strong interactions)

Symmetry 000	/ breaki	ng	Chira 000	al restor: 000000	ation	Dileptons 000000	a ₁ 00	-meson	Summary 0000000
_									

Required input for hadronic models

central quantity (at least in equilibrium):

- spectral function
- $\hookrightarrow\,$ need contributions to self energy from various processes

elementary input:

- (hadronic) decays of vector mesons
- scattering of vector mesons on medium constituents (pions, nucleons, ...)

→ related to Dalitz decays = inverse reaction

how well do we know input?

- **()** decays from $e^+e^- \rightarrow$ vector meson \rightarrow hadrons
- scattering: so far sizable model dependences

Symmetry breaking Chiral restoration Dileptons a1-meson Summary

Hadronic models for the rho meson in nuclear matter

▲□▶▲□▶▲□▶▲□▶ □ ● ●

The second of features and a second street from a time.						
000	000000000000000	000000	0000000	00000000		
Symmetry breaking	Chiral restoration	Dileptons	a ₁ -meson	Summary		

Toy model for ρ -meson spectral function

- self energy $\Pi(q) = \Pi_{2\pi}(q) + \Pi_{N^*N^{-1}}(q)$
- spectral function

$$\mathcal{A}(\boldsymbol{q}) ~=~ -\mathrm{Im}rac{1}{q^2-m_
ho^2-\Pi(\boldsymbol{q})}$$

$$= \frac{-\mathrm{Im}\Pi(q)}{[q^2 - m_{\rho}^2 - \mathrm{Re}\Pi(q)]^2 + [\mathrm{Im}\Pi(q)]^2}$$
$$= -\frac{\mathrm{Im}\Pi_{2\pi}(q)}{[\dots]^2 + [\dots]^2} - \frac{\mathrm{Im}\Pi_{N^*N^{-1}}(q)}{[\dots]^2 + [\dots]^2}$$

 how to get back elementary two-body reactions? (=traditional transport)

→ replace in denominator $\Pi \to \Pi_{vac} \approx \Pi_{2\pi}$ (violates unitarity)

- sum of colored curves (contributions unitarized) <u>different</u> from sum of black curves (elementary)
- especially: level repulsion, depletion of ρ-meson peak

Dileptons

*a*₁-meson 00000000

Summary

Elementary versus unitarized contributions

- unitarized effects different from pure two-body reactions
- especially: level repulsion, depletion of ρ -meson peak
- but: strength at low invariant masses already from two-body reactions πN → R → ℓ⁺ℓ⁻N, i.e. Dalitz decays
- → need good resolution to distinguish

Symmetry breaking	Chiral restoration	Dileptons 000000	a ₁ -meson 00000000	Summary 0e0000000	
Outlook					

missing links:

- further justifi cations for resonance scenario
- models for chiral restoration including transition, not only way towards it
- \hookrightarrow inclusion of chiral restoration simpler in schematic models, more complicated for more realistic ones
 - explore further connection between vacuum properties of resonances and chiral symmetry breaking
- \hookrightarrow measure elementary dilepton production, especially $\pi N \to \ell^+ \ell^- N$
 - explore many-body aspects in heavy-ion reactions (unitarization, resummation methods)

Electromagnetic spectra at the CERN-SPS

Hendrik van Hees

Goethe-Universität Frankfurt

May 21, 2013

Importance of baryon effects

- Baryonic interactions important!
- in-medium broadening
- Iow-mass tail!

Hendrik van Hees (GU Frankfurt)

DILEPTON SIGNAL FROM GIBUU TRANSPORT MODEL

Janus Weil

Frankfurt Institute for Advanced Studies

in collab. with: U. Mosel, H. van Hees, K. Gallmeister, S. Endres, M. Bleicher

Workshop on Electromagnetic Probes of Strongly Interacting Matter ECT* Trento, May 20, 2013

J. WEIL DILEPTON SIGNAL FROM GIBUU TRANSPORT MODEL

Ar + KCl @ 1.76: Status (aka the " Δ puzzle")

- Is a 'vacuum' cocktail sufficient to describe the ArKCI spectrum?
- Is there hope to see any modifications of the ρ spec. func.?
- answers currently depend on which model you believe in ...
- biggest discrepancy: Δ Dalitz channel
- $\bullet \; \Rightarrow \;$ we need to check very carefully if we understand the cocktail with all its contributions
- separating vacuum cocktail from medium modifications requires two steps:
 - fix vacuum cocktail & model input via elementary collisions only!
 - only afterwards: check if the same cocktail can describe heavy-ion collisions (or if medium-mod. are required)

Where to get the information from?

- $\Delta \rightarrow \pi \pi N$:
- \hookrightarrow e.g. from data on $\pi N \to \Delta \to \pi \pi N$
- ↔ HADES pion beam can improve data basis
 - $\pi \pi \rightarrow \gamma^*$:
- \hookrightarrow pion form factor, very well known

Hanhart, Phys.Lett. B715 (2012) 170