EMMI RRTF - TOP3 discussion session

Vitaly Shklyar

VITALY Shklyar EMMI RRTF - TOP3 discussion session

Baryon resonance analysis technique

50's...60's: discovery of p, n, e^+ , e^- , π what about new particles?

try scattering experiments

$\pi^- N$ elastic by E. Fermi:

- peak in the elastic cross section
- is it a new particle?
- if yes, which properties ?
- why it appears as a broad peak ?

to identify new a particle one needs to know production amplitude

Vitaly Shklyar

Resonance production: reaction amplitude

- production vertices are unknown
- if particle is created it should propagate
- scattering amplitude $T \sim (s m_R^2 + i\epsilon)^{-1}$,

Actual amplitude could be more complicated

How to solve the problem ?

Baryon resonance analysis technique

$\pi^- N$ scattering amplitude :

$$\sigma_{
m tot}(\sqrt{s}) \sim rac{F(s)}{(s-m^2)^2 + \Sigma^2(\sqrt{s})}$$

particle with a short lifetime (resonance) \rightarrow peak in the σ_{tot} ... however: still not enough to identify the peak as a resonance excitation

Vitaly Shklyar EMMI RRTF - TOP3 discussion session

Baryon resonance analysis: isospin of the $\Delta(1232)$.

How to extract isospin of $\Delta(1232)$ from experimental data?

$$\begin{aligned} & T(\pi^+ p \to \pi^+ p) = \langle \frac{3}{2} | T | \frac{3}{2} \rangle = T^{\frac{3}{2}} \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{2}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{2}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{2}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{2}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{2}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{2}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{2}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{2}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{2}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{2}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{2}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{2}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{2}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{2}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{2}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{2}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{2}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{2}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{2}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{2}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{2}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{2}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{2}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{2}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{2}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{2}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{2}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{3}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{3}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{3}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{2}} + 2T^{\frac{1}{3}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{3}} + 2T^{\frac{1}{3}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{3}} + 2T^{\frac{1}{3}}) \\ T(\pi^- p \to \pi^- p) = \frac{1}{3} (T^{\frac{3}{3}} + 2T^{\frac{1}{3}}) \\ T(\pi^- p$$

Baryon resonance analysis technique: Spin of the $\Delta(1232)$.

 $\Delta(1232)$: Spin: $\pi N \rightarrow \Delta(1232) \rightarrow \pi N$ -reaction

angular distribution is defined by total spin J; how to extract ?

 $\pi N \rightarrow \pi N$ differential cross section:

$$rac{d\sigma}{dcos(heta)}\sim\sum_{J\,\lambda\,\lambda'}|d^J_{\lambda\lambda'}(heta) au^J_{\lambda\lambda'}(\sqrt{s})|^2$$

There are two independent amplitudes $\{T_{\frac{1}{2}, \frac{1}{2}}^{J}, T_{\frac{1}{2}, -\frac{1}{2}}^{J}\} \leftrightarrow \{T^{J+}, T^{J-}\}$

$$T_{\frac{1}{2},\frac{1}{2}}^{J} = T^{J+} + T^{J-} T_{\frac{1}{2},-\frac{1}{2}}^{J} = T^{J+} - T^{J-}$$

-rewrite in terms of T^{J-} and T^{J+} parity conserved amplitudes

$$\frac{d\sigma}{dcos(\theta)} \sim \left[\left(d_{\frac{1}{2},\frac{1}{2}}^J(\theta) \right)^2 + \left(d_{\frac{1}{2},-\frac{1}{2}}^J(\theta) \right)^2 \right] |T^{J\pm}(\sqrt{s})|^2$$

Vitaly Shkiyar

Spin of the $\Delta(1232)$.

assuming
$$J = \frac{3}{2}$$
:
 $\frac{d\sigma}{d\cos(\theta)} \sim \left[\left(d_{\frac{1}{2},\frac{1}{2}}^{\frac{3}{2}}(\theta) \right)^2 + \left(d_{\frac{1}{2},-\frac{1}{2}}^{\frac{3}{2}}(\theta) \right)^2 \right] T^{\frac{3}{2}\pm}(\sqrt{s})$
 $\frac{d\sigma}{d\cos(\theta)} \sim const \times (1 + 3cos^2(\theta))$

Inverse task: obtain contributions of given spin from exp. data

$$T^{J}_{\lambda_{N}\lambda'_{N}}(\sqrt{s}) = \int d\theta \ d^{J}_{\lambda\lambda'}(\theta) \ \frac{d\sigma}{d\cos(\theta)}$$
Vitaly Shkiyar EMMI RRTF - TOP3 discus

sion session

Higher energies, many states

 $\pi^- p$ elastic at higher energies

spectrum could be reach: many states + non-resonant background

- write down scattering amplitudes as sum $T(\sqrt{s}, \theta) = \sum_{i} \left(\frac{\Gamma_{i}}{s - m_{R_{i}}^{2} + im_{i}\Gamma_{i}} + T^{non-pole}\right) d_{\lambda\lambda'}^{J_{i}}(\theta)$
- calculate exp. observables
- compares to the data, fix parameters, extract *N*^{*} parameters (poles)

Vitaly Shkiyar

TWO MAIN INGREDIENTS:

- Scattering amplitude (theory).
- Experiment

DEFINE THE SCATTERING AMPLITUDE

- parametrizations: T=(Breit-Wigner + non-pole terms), Chew-Mandelstam formalism, + unitarization, dispersion relations: less model dependence
- dynamical models: calculate T using an effective field theory: Lippman-Schwinger/Bethe-Salpeter equations, coupled-channel, Lagrangian input - coupling constants.

Construct the model for the $\pi N \rightarrow \pi/\eta N$ transitions

take rescattering in the πN and ηN channels into account

The interaction potentials $V_{\pi N \to \eta N}$ and $V_{\pi N \to \pi N}$ enter to

Coupled-channel problem for $\pi N \rightarrow \pi N$ scattering:

$$T_{\pi N \to \pi N} = V_{\pi N \to \pi N} + \int d^4 p V_{\pi N \to \pi N} G_{\pi N}(p) T_{\pi N \to \pi N}$$
$$+ \int d^4 p V_{\pi N \to \eta N} G_{\eta N}(p) T_{\eta N \to \pi N}$$
$$T_{\eta N \to \pi N} = V_{\eta N \to \pi N} + \int d^4 p V_{\eta N \to \pi N} G_{\pi N}(p) T_{\pi N \to \pi N}$$
$$+ \int d^4 p V_{\eta N \to \eta N} G_{\eta N}(p) T_{\eta N \to \pi N}$$

Vitaly Shkiyar

coupled channel problem:

There are four equations for the $T_{\pi N,\pi N}$ $T_{\pi N,\eta N}$ $T_{\eta N,\pi N}$ and $T_{\eta N,\eta N}$. They can be written in the matrix form :

$$\begin{pmatrix} T_{\pi N,\pi N} & T_{\pi N,\eta N} \\ T_{\eta N,\pi N} & T_{\eta N,\eta N} \end{pmatrix} = \begin{pmatrix} V_{\pi N,\pi N} & V_{\pi N,\eta N} \\ V_{\eta N,\pi N} & V_{\eta N,\eta N} \end{pmatrix}$$
$$+ \int d^4 p \begin{pmatrix} V_{\pi N,\pi N} & V_{\pi N,\eta N} \\ V_{\eta N,\pi N} & V_{\eta N,\eta N} \end{pmatrix} \begin{pmatrix} G_{\pi N} & 0 \\ 0 & G_{\eta N} \end{pmatrix} \begin{pmatrix} T_{\pi N,\pi N} & T_{\pi N,\eta N} \\ T_{\eta N,\pi N} & T_{\eta N,\eta N} \end{pmatrix}$$

or more compact:

$$[\hat{T}] = [\hat{V}] + i \int \frac{d^4k}{(2\pi)^4} [\hat{V}] \hat{G}_{\mathrm{mB}}[\hat{T}]$$

- can be easily generalized for any number of channels
- PWD + K-matrix approx \rightarrow algebraic matrix equations

VITALY Shklyar EMMI RRTF - TOP3 discussion session

Giessen model. PRC71, 055206 (2005)

Bethe-Salpeter in K-matrix: dynamical model: based on eff. LmBB

Partial wave version of optical theorem

constraints on partial wave cross sections

$$Im T^{JP}_{\pi N \to \pi N} = \frac{k^2}{4\pi} (\sigma^{JP}_{\pi N \to \pi N} + \sigma^{JP}_{\pi N \to 2\pi N} + \sigma^{JP}_{\pi N \to \eta N} + \sigma^{JP}_{\pi N \to \omega N} + \sigma^{JP}_{\pi N \to K \Lambda} + \sigma^{JP}_{\pi N \to K \Sigma} + ...)$$

all reaction data are linked \rightarrow need for coupled-channel unitary analysis

$$T = \begin{pmatrix} T_{\gamma N, \gamma N} & T_{\gamma N, \pi N} & T_{\gamma N, K\Lambda} & \cdots \\ T_{\pi N, \gamma N} & T_{\pi N, \pi N} & T_{\pi N, K\Lambda} & \cdots \\ T_{K\Lambda, \gamma N} & T_{K\Lambda, \pi N} & T_{K\Lambda, K\Lambda} & \cdots \\ \cdots & \cdots & \cdots & \cdots \end{pmatrix}$$

 $\leftarrow \text{Giessen Model vs} \\ \text{experimental data}$

EMMI RRTF - TOP3 discussion session

pion beam experiments vs. photoproduction

"Missing states" and photoproduction:

Pion beam experiment

- Most of our knowledge about N^* properties comes from single channel partial wave analysis (PWA) of πN elastic scattering
- Isospin decomposition is straightforward

surprisingly ... but pion experiments were stopped in 70s why ? main reasons:

• problems in identification of neutral particles in $\pi^- p \rightarrow \eta n$, KA, ωN , ϕN etc scattering: the most of experiments with charged particles in final states

Main argument against pion-beams

- we know everything from hadronic experiments!
- "missing resonances" are weakly coupled to πN: can only be seen in photoproduction !

$N^* \rightarrow \pi N$ decays

PDG 2012 main contribution from the analysis of the πN elastic scattering

N*	L _{21 2J}	Overall	Br($N^* ightarrow \pi N$)	for $Br(\mathit{N}^* o \pi \mathit{N}) < 20\%$ no
				general agreement between
N(939)	P_{11}	****		different analyses !
N(1440)	P_{11}	****	5567 %	indication for the existence is
N(1520)	D_{13}	****	5565 %	smaller for higher masses
N(1535)	S_{11}	****	3555 %	(more degrees of freedom at
N(1650)	S_{11}	****	5090 %	higher energies, many open
N(1675)	D_{15}	****	3545 %	channels)
N(1680)	F_{15}	****	6570 %	
N(1700)	D_{13}	***	8 17 %	resonance/background
N(1710)	P_{11}	***	5 20 %	separation is difficult
N(1720)	P_{13}	****	914 %	πN elastic scattering: increase
N(1870)	D_{13}	***	10 22 %	exp resolution
N(1900)	P_{13}	***	10 %	
N(2000)	F_{15}	**	9 %	

Vitaly Shkiyar

Another possibility: inelastic reactions

inelastic $\pi N \rightarrow \eta N$, ωN , ρN ... etc scattering

My argument:

• resonance contribution to e.g. η -production: $\frac{d\sigma}{d\Omega} \sim g_{\pi NN^*}^2 g_{\eta NN^*}^2$ • signals from N* with small πN coupling can be visible provided $g_{\eta NN^*}^2$ is large

signals from N* with small πN coupling less screening by contributions from N* with large πN coupling: no clean signal from D₁₃(1520), D₁₅(1680), F₁₅(1680) in πN → ηN

Vitaly Shklyar

EMMI RRTF - TOP3 discussion session

Short summary :

Main argument against pion-beams

- "missing resonances" are weakly coupled to πN : can only be seen in photoproduction NO!
- The pion-induced inelastic reactions provide great possibility to study *N*^{*} spectra !

But

• May be we know everything from old πN experiments ?

ωN -meson dynamics

ωN -meson dynamics in nuclear medium

- in-medium modification of omega-mesons in nuclei: (HADES, CB-ELSA/TAPS etc)
- broading of the omega meson in nuclear medium but no mass shift
- strong absorption in the nuclear medium

but

- large collisional broading
- what about chiral symmetry restoration ?

Microscopical model is needed

ωN -meson in-medium properties

Building block: ωN scattering amplitude

$\omega \textit{N}$ scattering length

- $\bar{a} = -0.026 + i0.28$ fm, Giessen (coupled-channel) NPA780 187
- $\bar{a} = -0.44 + i0.20$ fm, Lutz, et al(coupled-channel, low partial waves) NPA706:431
- $\bar{a} = +1.60 + i0.30$ fm, Kling, Weise (single channel) NPA630:299

Common feature of above analysis:

- constrained by the $\pi N \rightarrow \omega N$ experimental data
- agrees on the value of the imaginary part of the scattering lengths

low density theorem: i0.28 corresponds to \approx 60 MeV broading but too small to explain the strong absorption of ω in medium

- theory: take in-medium corrections into account
- experiment: is everything clear with old $\pi N \rightarrow \omega N$ data?

Giessen model. Results for the $(\pi, \gamma)N \rightarrow \omega N$ reactions

 ωN : coupled channel analysis Shklyar et al PRC 71:055206: Aim: extract resonance coupling to ωN

$\pi N \rightarrow \omega N$ database

- W=1.72 to 1.76 GeV: H. Karami, et al NPB154 503 (1979) : 80 datapoints threshold region
- W=1.8 to 2.1 GeV: J.S. Danburg, PR2, 2564(1970) from $\pi^+D \rightarrow \pi^+\pi^-\pi^0 p(p)$: 41 datapoints Fermi-motion, final state interaction!

Shklyar et al, PRC 71:055206,2005

Difficulties:

- ωN has three helicities: need
 ω-polarization measurements
- Karami data close to threshold
- region 1.76...2.0 GeV is almost empty - standard PWA not possible
- no polarization measurements
- Problem: N* extraction ...

$(\pi/\gamma)N \to \omega N$

Summary of $(\pi/\gamma)N \rightarrow \omega N$ reactions

- γp → ωp: strong t-channel background → other reaction mechanisms are shadowed: hard to see any resonance contributions
- πN → ωN: almost NO data in the region region 1.76...2.0 GeV - standard PWA not possible
- contributions from many groups: Lutz, Wolf, Friman, Titov, Sibirtsev, Zhao, Shklyar, Mosel, Penner - no general conclusion on N* contributions

NEED $\pi^- p \rightarrow \omega p$ measurements in order to

- get information on N^* couplings to ωN fill white pages in PDG
- construct microscopical model of ω-dynamics in nuclear medium; explain large collisional broading

Vitaly Shklyar

EMMI RRTF - TOP3 discussion session

$\pi N \rightarrow 2\pi N$ reactions

investigate cascade reactions e.g. $N^* \to \pi N^* \to \pi \pi N$ etc. : multiparticle production

Analysis of $\pi N \rightarrow 2\pi N$: Manley, Arndt, Goradia, Teplitz PRD**30**,(1984) 904.

Manley, Arndt, Goradia, Teplitz PRD30,(1984) 904.

• isobar appoximation $\pi N \rightarrow 2\pi N$ via σN , ρN , $\pi \Delta \rightarrow 2\pi$

$$T^{JP}_{\pi N \to 2\pi N} = T^{JP}_{\pi N \to \Delta \pi}(\sqrt{s}) S_{\Delta}(p_{\Delta}, m_{\Delta}) \Gamma_{\Delta \pi N}(q'_{\pi_2}, N')$$

Potential problems:

- no three-body unitarity
- no dependence on isobar mass (momentum)
- poor database based on 240000 events from old bubble-chamber experiments W = 1.2...2 GeV: ≈ 9000 events per energy/angular (θ, φ) bin for

$$\pi^- p \rightarrow \pi^+ \pi^- n, \ \pi^- p \rightarrow \pi^0 \pi^- p, \ \pi^+ p \rightarrow \pi^0 \pi^+ p, \ \pi^+ p \rightarrow \pi^+ \pi^+ n$$

 \approx 2000...3000 events per energy bin for each reaction

$\pi N \rightarrow 2\pi N$

New data came later (most of them are total X-sections) (I.Strakovsky, GWU) but not suited for $N^* \rightarrow \rho N$

 $\bullet~W{=}1221$ to 1356 MeV

$$\pi^+ p \to \pi^+ \pi^+ n$$
 PNPI (1978)
 $\pi^+ p \to \pi^+ \pi^+ n$ TRIUMF (1991)
 $\pi^\pm p \to \pi^\pm \pi^\pm n$ TRIUMF (1998)
 $\pi^+ p \to \pi^+ \pi^0 p$ LAMPF (1994)
 $\pi^+ p \to \pi^- \pi^+ p$ CERN (1990)

• W=1213 to 1527 MeV

 $\pi^- p \rightarrow \pi^0 \pi^0 n$ BNL(2004)

• W=1257 to 1302 MeV

 $\pi^{\pm} p \rightarrow \pi^{\pm} \pi^{\pm} n$ TRIUMF (1998)(events)

• W=1300 to 1302 MeV $\pi^- p \to \pi^+ \pi^- n$ PSI (1993)

Why pion beam experiment for $2\pi N$ is production important?

Pion-induced reactions:

$$\pi^{-}p \rightarrow \pi^{+}\pi^{-}n, \ \pi^{-}p \rightarrow \pi^{0}\pi^{-}p, \\ \pi^{+}p \rightarrow \pi^{0}\pi^{+}p, \ \pi^{+}p \rightarrow \pi^{+}\pi^{+}n \\ \pi^{-}p \rightarrow \pi^{0}\pi^{0}n$$

Photon-induced reactions:

$$\gamma m{p}
ightarrow \pi^+ \pi^- m{n}, \ \gamma m{p}
ightarrow \pi^0 \pi^- m{p}, \ \gamma m{p}
ightarrow \pi^0 \pi^0 m{p}$$

- Isospin decomposition : 4 independent isospin amplitudes (in isobar approximation)
- optical theorem $ImT_{\pi N \to \pi N}^{JP} = \frac{k^2}{4\pi} (\sigma_{\pi N \to \pi N}^{JP} + \sigma_{\pi N \to 2\pi N}^{JP} + ...)$

- No isospin decomposition is possible (separation between I = ¹/₂ and ³/₂ states is more difficult)
- difficulties with the gauge invariance
- need input from hadronic reactions

N(1520) D_{13} state

Manley et al: PRD(1984)

 $M_R = 1.52 \text{MeV}$ $\Gamma_{ ext{tot}} = 120 \text{MeV}$

strong N(1520) $\rightarrow 2\pi N$ Br(ρN) $\approx 20\%$

- Giessen : overlapping of spectral functions of N*(1520) and ρ-meson: non-symmetric
- Giessen: no effect below 1.4 GeV
- Manley: no ρ-spectral function: should be updated

Vitaly Shkiyar

Summary of the $\pi N \rightarrow 2\pi N$ reactions

- important for understanding ρ-meson dynamics and resonance couplings
- could solve many puzzles in non-strange baryon spectroscopy: origin and properties of the $P_{11}(1440)$, $P_{11}(1710)$, $D_{13}(1520)$ etc.

Theory

• analysis of Manley et. al. should be updated!

Experiment

• need for new measurements $\pi N \rightarrow 2\pi N$ in region 1.2...2.GeV

Next step: improve description of the $2\pi N$ channel

so far: N^* decay into 'generic' 2π channel

- take $2\pi N$ inelastic flux into account
- $N^* \rightarrow 2\pi N$ couplings constrained by $\sigma_{\pi N \rightarrow 2\pi N}^{JI}$

VITALY Shklyar EMMI RRTF - TOP3 discussion session

Roper resonance N(1440) properties:

- Manley & Saleski PRD30 904, $Br(\Delta \pi) = 22\%$ $Br(\sigma N) = 9\%$
- Vrana et al PRPL328, $Br(\Delta \pi) = 16\% Br(\sigma N) = 12\%$
- Sarantsev et al PLB659,94, $Br(\Delta \pi) = 17\% Br(\sigma N) = 21\%$
- Julich Model: PRC62: pion exchange is responsible for a large amount of attraction: P(1440) is dynamically generated
- Crystal Ball PRL91(2003): PWA of the $2\pi^0$ -subsystem: σ -meson production via pion exchange is small
- Crystal Ball PRL69(2004): measurement of the $\pi N \rightarrow 2\pi^0 N$ -reaction: no direct evidence for a strong σN subchannel

$\pi N \rightarrow 2\pi$ channel in the first resonance energy region

BSE in the isobar approximation: system of coupled-channel integral equations

 $\pi N \rightarrow 2\pi N$ amplitude from BSE

Next step: improve description of the $2\pi N$ channel

 $\pi N \rightarrow 2\pi N$ reaction via ρN , $\pi \Delta$ channels

Assumptions

• decays $N^*
ightarrow
ho N$, σN , $\pi \Delta$ drive the $\pi N
ightarrow 2\pi N$ channel

• two-step diagrams are neglected

σ -meson dynamics

propagator of the σ -meson

$$A_{\sigma}(s) = rac{1}{\pi} \, rac{\Sigma_{\sigma}(s)}{(s-m_{\sigma}^2)^2 + \Sigma_{\sigma}(s)^2}$$

Vitaly Shklyar

EMMI RRTF - TOP3 discussion session

t-channel pion exchange: σN how large?

- coupling constants are well fixed
- $g_{\pi NN} = 13$, $g_{\sigma \pi \pi} = 2$ correspond to $m_{\sigma}^0 = 600$ MeV, $\Gamma_{\sigma \pi \pi} = 600$ MeV
- contribution from the t-channel diagram is well fixed
- shed light on the σ -meson dynamics
- background mechanism in $\pi N \rightarrow 2\pi N$ reaction

Giessen Model vs. Crystal Ball data

Roper resonance

- good description of the $\pi^- p \rightarrow 2\pi^0 n$ data
- three-body unitarity is maintained

$$\operatorname{Im} T_{\pi N}^{11} = \frac{k^2}{4\pi} (\sigma_{\pi N}^{11} + \sigma_{2\pi^0 N}^{11})$$

Vitaly Shkiyar

EMMI RRTF - TOP3 discussion session

Summary

GIModel for $\pi^- p \rightarrow \pi^0 \pi^0 n$ reaction

- model space is extended to include σN , $\pi \Delta$, and ρN channels
- t-channel pion exchange in σN channel is very weak - underestimate the data.
- do not rule out dynamical pole; however if it exists the contribution to the production cross section should be small
- calculation with a genuine Roper resonance: nice description of the CB-measurements