

Studying nuclei at the dripline and unbound nuclei

NUSTAR Week 2013 University of Helsinki (Kumpula Campus) October 10, 2013

Djån nam

Ligh	t Nuc	lei in	Natu	re		¹⁵ F	¹⁶ F	¹⁷ F	¹⁸ F	19 F	²⁰ F	²¹ F
Prot	on Rid	ch				unbound	unbound	64.8 s	109.7 m	T,	11 s	4.16 s
Neu	tron f	Rich		12O unbound	13 O 8.58 ms	14 O 70.6 s	15 O 2.03 m	¹⁶ O	¹⁷ O	$^{18}\mathrm{O}$	19 O 27.1 s	20 <mark>0</mark> 13.5 s
Reso	onance	25		11N unbound	12N 20.4 m	13N 20.4 m	^{14}N	^{15}N	16N 7.13 s	17 <mark>N</mark> 4.17 s	18N 0.63 s	19 _N 329 ms
Z 9 C 125 m			9 С 125 ms	10 C 19.3 s	11 C 20.4 m	¹² C	¹³ C	14 С 5730 у	15 C 2.45 s	16C 0.747 s	17 C 193 ms	18C 92 ms
8 B 770 n			8 B 770 ms	⁹ B unbound	$^{10}\mathrm{B}$	$^{11}\mathbf{B}$	12 B 20.20 ms	13 B 17.33 ms	14 B 13.8 ms	15 B 10.4 ms	16B unbound	17 B 5.1 ms
7 _E			⁷ Be	⁸ Be unbound	⁹ Be	¹⁰ Be 1.6 10 ⁶ y	¹¹ Be _{13.8 s}	¹² Be 23.6 ms	¹³ Be unbound	¹⁴ Be _{4.35 ms}	¹⁵ Be unbound	¹⁶ Be unbound
			⁶ Li	⁷ Li	⁸ Li ^{840 ms}	⁹ Li 179 ms	10Li unbound	11Li 8.5 ms	¹² Li unbound	¹³ Li unbound		
	³ He	⁴ He	⁵ He unbound	⁶ He ^{808 ms}	⁷ He unbound	⁸ He 119 ms	⁹ He unbound	¹⁰ He unbound				
¹ H ² H ³ H _{12.323 y}			⁵ H unbound		7H unbound							
	n 10 25 m							→ N				

3He	⁴ He	⁵ He	⁶ He	⁷ He	⁸ He	⁹ He	¹⁰ He
	110	unbound	808 ms	unbound	119 ms	unbound	unbound

K. Markenroth et al., NPA 679 (2001) 462

L.V. Chulkov, G. Schrieder, Z. Phys A359 (97) 231

Yu. Aksyutina et al., PLB 679 (2009) 191

$$k = \sqrt{2\mu\varepsilon}$$

$$\varepsilon = 0.94(23) MeV$$

$$a = 3.37(38) fm$$

$$d\sigma / dE_{fn} \propto \frac{\Gamma_l(E_{fn})}{[E_r + \Delta_l(E_{fn}) - E_{fn}]^2 + \frac{1}{4}\Gamma_l^2(E_{fn})}$$

s-wave: Effective-range approximation

$$\frac{d\sigma}{dE_{fn}} \propto p_{fn} \left[\frac{1}{k^2 + p_{fn}^2}\right]^2 \left[\cos(\delta) + \frac{k}{p_{fn}}\sin(\delta)\right]^2$$
$$p_{fn}\cot(\delta) = -\frac{1}{a} + \frac{1}{2}r_0p_{fn}^2 + O(p_{fn}^4)$$

Bertch et al., PRC 57 (1998) 1366

$$(p_{3/2})^2 \sim 86 \%$$

$$(p_{1/2})^2 \sim 5 \%$$

$$(s_{1/2})^2 \sim 7 \%$$
B.V. Danilin et al., NPA 632 (98) 383

Sääf and Forssén, to be published

						15F unbound	16F unbound	17F 64.8 s	18F 109.7 m	¹⁹ F	20F	21 _F 4.16 s
				12O unbound	13 0 8.58 ms	14 0 70.6 s	15 () 2.03 m	¹⁶ O	¹⁷ O	¹⁸ O	19 0 27.1 s	20 13.5 s
				11N unbound	12N 20.4 m	13 N 20.4 m	¹⁴ N	¹⁵ N	16N 7.13 s	17N 4.17 s	18N 0.63 s	19 _N 329 ms
Z			9 <u>С</u> 125 ms	10 <u>С</u> 19.3 s	11 С 20.4 m	¹² C	¹³ C	14 С 5730 у	15 <u>C</u> 2.45 s	16C 0.747 s	17 <u>C</u> 193 ms	18C 92 ms
			8 B 770 ms	9B unbound	$^{10}\mathrm{B}$	$^{11}\mathbf{B}$	12 B 20.20 ms	13 B 17.33 ms	14 B 13.8 ms	15 B 10.4 ms	16 B unbound	17 B 5.1 ms
			⁷ Be	⁸ Be unbound	⁹ Be	10 Be 1.6 10 ⁶ y	¹¹ Be 13.8 s	12 Be 23.6 ms	¹³ Be unbound	¹⁴ Be 4.35 ms	¹⁵ Be unbound	¹⁶ Be
			⁶ Li	⁷ Li	8L1 840 ms	9Li 179 ms	¹⁰ Li unbound	¹¹ Li 8.5 ms	12Li unbound	¹³ Li unbound		
	³ He	⁴ He	⁵ He unbound	⁶ He ^{808 ms}	⁷ He unbound	⁸ He 119 ms	⁹ He unbound	¹⁰ He unbound				
lΗ	$^{2}\mathrm{H}$	3 Н 12.323 у		⁵ H unbound		7H unbound						
	n 10.25 m							→ N				

K. Markenroth et al., NP A679 (2001) 462

$$W(\vartheta_{^{6}\text{He}-n}) \sim 1 + 0.7(1)\cos^{2}(\vartheta_{^{6}\text{He}-n})$$

Yu. Aksyutina *et al.*, PLB **679** (2009) 191

$$\frac{d\sigma}{dE_{\rm fn}} \propto \frac{\Gamma_l(E_{\rm fn})}{[E_r + \Delta_l(E_{\rm fn}) - E_{\rm fn}]^2 + \frac{1}{4}\Gamma_l^2(E_{\rm fn})}$$

$$\Gamma_l = 2P_l(E_{\rm fn})\gamma^2$$

$$\gamma_{\rm sp}^2 = \frac{2}{3}\hbar^2/\mu R^2$$

$$\mathcal{S}_n = \gamma_{\rm obs}^2/\gamma_{\rm sp}^2$$
Yu. Aksyutina *et al.*, PLB 679 (2009) 191

³He
$$\gamma_{\rm obs} = \gamma_{\rm sp}$$

⁷He ⁶He(0⁺) + n $S_n = 0.61(3)$

not a pure single-particle $p_{3/2}$ -state.

Momentum Profile Function

$$P(E_{fn}) = \sqrt{\left\langle (p_f^x + p_n^x)^2 \right\rangle - \left\langle (p_f^x + p_n^x) \right\rangle^2}$$

Transverse Momentum Distribution

$$\frac{dN}{dp}(l=0) \propto K_1^2(\xi) - K_0^2(\xi)$$

P.G. Hansen, PRL **77** (1996) 1016 D. Basin et al., Phys. Rev. **57** (1998) 2156

GSI, 287 MeV/u 11 Li

Simon, et al., Nucl. Phys. A791 (2007) 267.

Momentum Profile Function

$$P(E_{fn}) = \sqrt{\left\langle \left(p_f^x + p_n^x\right)^2\right\rangle - \left\langle \left(p_f^x + p_n^x\right)\right\rangle^2}$$

J.L. Lecouey, Few Body Systems 34 (2004)21 G. Randisi, Thesis Uni. Caen (2011)

RIKEN

69 MeV/u ¹⁴Be, Lq H target

INTERFERENCE ?

1

$${}^{2}\text{Be}(0^{+}) = \alpha [{}^{10}\text{Be} \otimes (1s_{1/2})^{2}] + \beta [{}^{10}\text{Be} \otimes (0p_{1/2})^{2}] + \gamma [{}^{10}\text{Be} \otimes (0d_{5/2})^{2}],$$

$$= \gamma [{}^{10}\text{Be} \otimes (0d_{5/2})^{2}],$$

$$= \alpha^{2} = 0.35, \beta^{2} = 0.31, \gamma^{2} = 0.34$$

$${}^{13}\text{Be}(1/2_{2}^{+}) = \mu [{}^{10}\text{Be} \otimes (0p_{1/2})^{2} \otimes (1s_{1/2})] - \lambda [{}^{10}\text{Be} \otimes (0d_{5/2})^{2} \otimes (1s_{1/2})]$$

$$= \lambda [{}^{10}\text{Be} \otimes (0p_{1/2})^{2} \otimes (1s_{1/2})] + \mu [{}^{10}\text{Be} \otimes (0d_{5/2})^{2} \otimes (1s_{1/2})].$$

$$= \lambda [{}^{10}\text{Be} \otimes (0d_{5/2})^{2} \otimes (1s_{1/2})] + \mu [{}^{10}\text{Be} \otimes (0d_{5/2})^{2} \otimes (1s_{1/2})].$$

Phys. Rev. C 87 (2013) 064316

						15F	16F	17F	18F	¹⁹ F	20F	21F
				120	130 8 58 ms	unbound 140	unbound 150 2.03 m	64.8 s 16O	109.7 m 17O	¹⁸ O	11 s 190	4.16 s 200
				11N unbound	12N 20.4 m	13N 20.4 m	¹⁴ N	¹⁵ N	16N 7.13 s	17 _N 4.17 s	18N 0.63 s	19 _N 329 ms
Z			9 С 125 ms	10 <u>С</u> 19.3 s	11 С 20.4 m	¹² C	¹³ C	14 С 5730 у	15 C 2.45 s	16 C 0.747 s	17 C 193 ms	18C 92 ms
			8 B 770 ms	9B unbound	¹⁰ B	$^{11}\mathbf{B}$	12 B 20.20 ms	13 B 17.33 ms	14 B 13.8 ms	15 B 10.4 ms	16B unbound	17 B 5.1 ms
			⁷ Be	⁸ Be unbound	⁹ Be	10 Ве 1.6 10 ⁶ у	¹¹ Be 13.8 s	12 Be 23.6 ms	¹³ Be unbound	¹⁴ Be _{4.35 ms}	¹⁵ Be unbound	¹⁶ Be
			6Li	⁷ Li	8 L1 840 ms	9 <mark>Li</mark> 179 ms	10Li unbound	¹¹ Li ^{8.5 ms}	¹² Li unbound	¹³ Li unbound		
	³ He	⁴ He	⁵ He unbound	6He 808 ms	⁷ He unbound	⁸ He 119 ms	⁹ He	¹⁰ He unbound				
$^{1}\mathrm{H}$	$^{2}\mathrm{H}$	³ Н 12.323 у		⁵ H unbound		⁷ H unbound						
	n 10.25 m							→ N				

- ¹¹Li: Neutron knock-out reaction -> ¹⁰Li Proton knock-out reactions -> ^{9,10}He
- ¹⁴Be: Neutron knock-out reaction -> ¹³Be Proton knock-out reactions -> ^{12,13}Li
- ⁸He: Neutron knock-out reaction -> ⁷He Proton knock-out reaction -> (⁷H)

Johansson et al., Nucl. Phys. A842 (2010) 15

Al Kalanee et al., PRC 88 (2013) 034301

 $\sqrt{2\chi^2} - \sqrt{2n-1} = -1.56$

Neyman-Pearson test

⁸He+n+n

⁹ He unbound	¹¹ Li ^{8.5 ms} ¹⁰ He unbound	
$(s_{1/2})^2$ $(p_{1/2})^2$ $(p_{3/2})^2$	~ 37 % ~ 47 % ~ 9 %	

N.B. Shulgina et al., Nucl. Phys. A825 (2009) 175

Energy and angular correlations

Energy and angular correlations

⁸He + n + n Ground state $I^{\pi} = 0^+$ Excited state $I^{\pi} = 2^+$

Johansson et al., Nucl. Phys. A847 (2010) 66

 $2 \text{ MeV} < E_{\text{fmn}} < 3 \text{ MeV}$

 $0.5 \text{ MeV} < E_{\text{fnn}} < 1.0 \text{ MeV}$

¹²Be(0⁺) = ¹⁰ Be
$$\otimes \left[\alpha (1s_{1/2})_{I=0}^2 + \beta (0p_{1/2})_{I=0}^2 + \gamma (0d_{5/2})_{I=0}^2 \right]$$

$${}^{14}\text{Be}(2^+) = {}^{10}\text{Be} \otimes \left[\left\{ \begin{array}{c} \alpha_1(1s_{1/2})_{I=0}^2 \\ \alpha_2(0p_{1/2})_{I=0}^2 \\ \alpha_3(0d_{5/2})_{I=0}^2 \end{array} \right\} (0d_{5/2})_{I=2}^2 + \left\{ \begin{array}{c} \beta_1(0p_{1/2})_{I=0}^2 \\ \beta_2(0d_{5/2})_{I=0}^2 \end{array} \right\} (1s_{1/2}, 0d_{5/2})_{I=2} \right]$$

$$\alpha_1 \alpha + \alpha_2 \beta + \alpha_3 \gamma \quad l = 2$$

$$\beta_1 \beta + \beta_2 \gamma \qquad l = 0, 2$$

Sequential Decay

R. Kanungo et al., PRL 102 (2009) 152501

MSU

2+: 4.7 MeV

Shell evolution and nuclear forces

N.A. Smirnova et al., PLB 686 (2010) 109

Novel Features of Nuclear Forces and Shell Evolution in Exotic Nuclei

Three-Body Forces and the Limit of Oxygen Isotopes

T. Otsuka et al., PRL 105 (2010) 032501

C.R. Hoffman et al. PRL 100 (2008) 152502

B. Juradoet al. PLB 649 (2007) 43

Nobelpriset i fysik 2013

François Englert Université libre de Bruxelles, Belgium **Peter W. Higgs** University of Edinburgh, UK

"For the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider."

