Three-nucleon forces and shell structure of neutron-rich Ca isotopes

Javier Menéndez

Institut für Kernphysik (TU Darmstadt) and ExtreMe Matter Institute (EMMI)

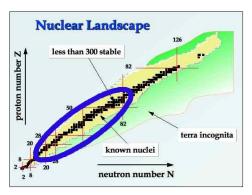
NUSTAR Week 2003, Helsinki, 9 October 2013

Outline

Theoretical Approach: NN+3N forces in Shell Model

Neutron rich Ca isotopes: Shell evolution N = 32 shell closure

Proton rich N=8 and N=20 isotopes


Theoretical Approach: NN+3N forces in Shell Model

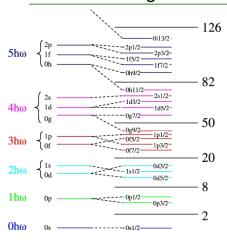
Neutron rich Ca isotopes: Shell evolution N=32 shell closure

Proton rich N=8 and N=20 isotopes

Nuclear Structure approach

Big variety of nuclei in the nuclear chart, $A \sim 2...300$

Systematic *ab initio* calculations only possible in the lightest nuclei


Poses a hard many-body problem: design approximate methods suited for different regions

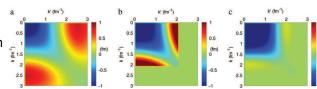
Interacting Shell Model:

Solve the problem choosing the (more) relevant degrees of freedom Use realistic nucleon-nucleon (NN) and three-nucleon (3N) interactions

The Interacting Shell Model

Chose as basis states that of the 3D Harmonic Oscillator

To keep the problem feasible, the configuration space is separated into


- Outer orbits: orbits that are always empty
- Valence space: the space in which we explicitly solve the problem
- Inner core: orbits that are always filled

$$Dim \sim \begin{pmatrix} (p+1)(p+2)_{\nu} \\ N \end{pmatrix} \begin{pmatrix} (p+1)(p+2)_{\pi} \\ Z \end{pmatrix}$$

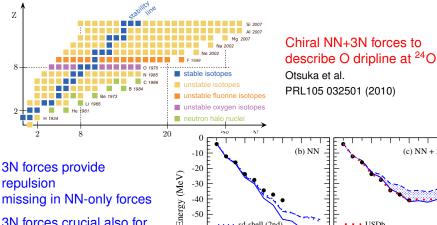
Many Body Perturbation Theory

Better convergence through V_{lowk} transformation

Many-body Perturbation Theory up to third order to build an effective Shell Model interaction in a valence space

$$H\ket{\Psi}=E\ket{\Psi}
ightarrow H_{eff}\ket{\Psi}_{eff}=E\ket{\Psi}_{eff}$$

Single Particle Energies (SPEs)


Two-Body Matrix Elements (TBMEs)

Full diagonalizations using codes ANTOINE and NATHAN Caurier et al. RMP77 427(2005) and compare to experiment

3N forces: Oxygen dripline

(c) NN + 3N

-40

missing in NN-only forces 3N forces crucial also for

reliable description of spectra

-50 sd-shell (2nd) -60 sd-shell sd-shell (3rd) -70 sdf712p312-shell sdf₂₀p₂₀-shell 26

Chiral EFT: low energy approach to QCD for nuclear structure energies

Approximate chiral symmetry of QCD: pions pseudo-Goldstone bosons Short-range couplings are fitted to experiment once

Systematic expansion: nuclear forces and electroweak currents

	2N force	3N force	4N force	
LO	X - 	_	<u> </u>	
NLO	XHMMH	_	_	
N²LO	취석	H H X	_	
№LO	X	母钟\$~	TM 141	

NN forces up to N³LO 3N forces up to N²LO

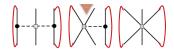
NN fitted to:

NN scattering data
 3N fitted to:

- ³H Binding Energy
- ⁴He radius

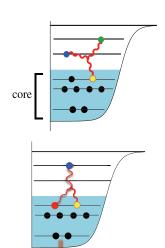
Weinberg, van Kolck, Savage, Epelbaum, Kaiser, Meißner...

3N Forces



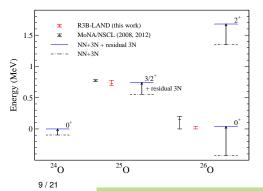
Treatment of 3N forces:

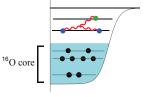
normal-ordered 2B: 2 valence, 1 core particle ⇒ (effective) Two-body Matrix Elements (TBME)



normal-ordered 1B: 1 valence, 2 core particles ⇒ (effective) Single particle energies (SPE)

residual 3B:


 \Rightarrow Estimated to be suppressed by $N_{valence}/N_{core}$



Residual 3N Forces

In the most neutron-rich oxygen isotopes, 3N forces between 3 valence neutrons can give a relevant contribution

Residual 3N contributions are repulsive

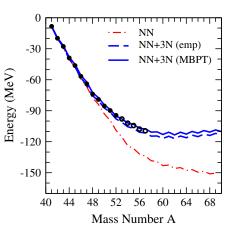
They are small compared to normal-ordered 3N force, but increase with *N*

Very good agreement with resonances in ²⁵O and ²⁶O

Caesar, Simonis et al PRC88 034313 (2013)

Outline

Theoretical Approach: NN+3N forces in Shell Model


Neutron rich Ca isotopes: Shell evolution N=32 shell closure

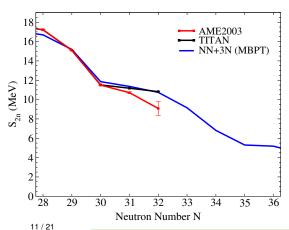
Proton rich N=8 and N=20 isotopes

Ca isotopes: explore nuclear shell evolution N = 20, 28, 32?, 34?

Ca with respect to ⁴⁰Ca core

3N forces repulsive contribution, chiral NN-only forces too attractive

Flat behaviour towards ⁶⁰Ca does not allow clear prediction of the dripline


Results sensitive to SPEs, especially more neutron-rich systems, MBPT (calculated from NN+3N forces) Empirical (from GXPF1 interaction) Estimate of the uncertainty

Two-Neutron separation energies

Ca isotopes (on top of ⁴⁰Ca core)

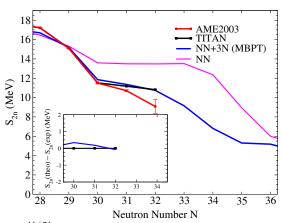
Compare $S_{2n} = -[B(N, Z) - B(N - 2, Z)]$ with experiment

Precision measurements with TITAN changed AME $2003 \sim 1.74$ MeV in 52 Ca

More flat behaviour in ⁵⁰Ca–⁵²Ca

3N forces needed in theoretical calculation

 $pfg_{9/2}$ valence space


Gallant et al. PRL 109 032506 (2012)

Two-Neutron separation energies

Ca isotopes (on top of ⁴⁰Ca core)

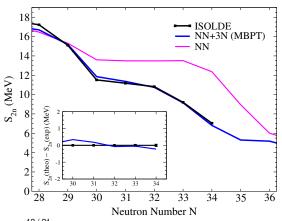
Compare $S_{2n} = -[B(N, Z) - B(N - 2, Z)]$ with experiment

Precision measurements with TITAN changed AME $2003 \sim 1.74$ MeV in 52 Ca

More flat behaviour in ⁵⁰Ca–⁵²Ca

3N forces needed in theoretical calculation

 $pfg_{9/2}$ valence space


Gallant et al. PRL 109 032506 (2012)

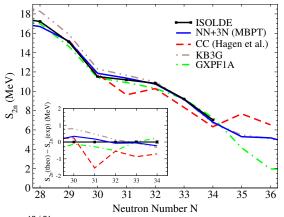
54 Ca and N=32 shell closure

Ca isotopes (on top of ⁴⁰Ca core)

Compare $S_{2n} = -[B(N, Z) - B(N - 2, Z)]$ with experiment

Very recently ^{53,54}Ca measured at ISOLDE

Excellent agreement between calculation and experiment

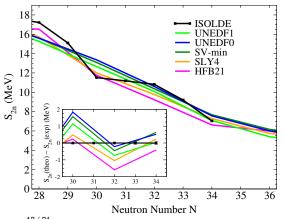

 S_{2n} evolution: 52 Ca $^{-54}$ Ca as 48 Ca $^{-50}$ Ca: N = 32 shell closure

Wienholtz et al. Nature 498 346 (2013)

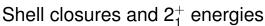
Compare $S_{2n} = -[B(N, Z) - B(N - 2, Z)]$ with experiment S_{2n} also calculated by other approaches:

Phenomenological interactions also reproduce quite well experiment (input about masses/gaps into the interactions)

Differ markedly beyond ⁵⁴Ca

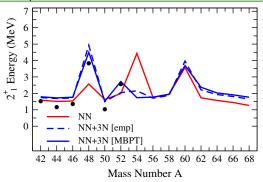

Coupled-Cluster calculations Hagen et al. PRL109 032502 (2012) very good agreement for even isotopes

Wienholtz et al. Nature 498 346 (2013)



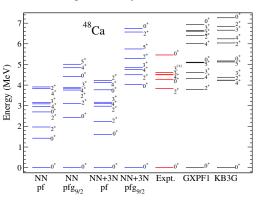
Compare $S_{2n} = -[B(N, Z) - B(N - 2, Z)]$ with experiment S_{2n} also calculated by other approaches:

Modern Energy Density Functionals reproduce correctly overall trends and neutron/proton driplines have more dificulties in describing shell closures Erler et al. Nature486 509(2012)


Wienholtz et al. Nature 498 346 (2013)

2⁺₁ energies characterise shell closures of the neutron rich calcium isotopes

Holt, JM, Schwenk, JPG40 075105 (2013)



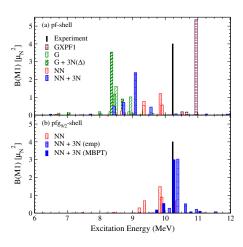
- Correct closure at N = 28 when 3N forces are included Holt et al. JPG39 085111(2012)
- 3N forces enhance closure at N = 32
- 3N forces reduce strong closure at N = 34 (1.7-2.2 MeV)
 Measured at 2.1 MeV Steppenbeck et al. Nature, in press

⁴⁸Ca spectrum

Challenge: Doubly-closed nucleus ⁴⁸Ca

Spectra too compressed with NN forces only or *pf* space

 2^+_1 state only $\sim\!$ appropriate energy in $\textit{pfg}_{9/2}$ NN+3N calculation


0₁⁺ state too low (1st excited state) especially compared to phenomenological interactions

Importance of 3N forces

Importance of including $g_{9/2}$ orbit

B(M1) Transition in ⁴⁸Ca

B(M1) strength in ⁴⁸Ca too fragmented in *pf* space

Phenomenological calculations reproduce experimental concentration

In the extended $pfg_{9/2}$ space NN forces also fragmented strength

NN+3N calculation in $pfg_{9/2}$ very good agreement with experiment

B(E2) Transition Strengths

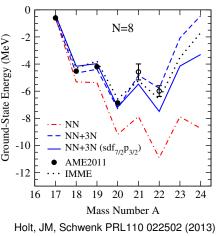
Isotope	Transition	KB3G	GXPF1A	MBPT	EXP.
⁴⁶ Ca	$2^+ \rightarrow 0^+$	9.2	9.2	13.3	25.4±4.5 36.4±2.6
⁴⁶ Ca	$6^+ \rightarrow 4^+$	3.6	3.6	4.8	5.38 ± 0.29
⁴⁷ Ca	$3/2^- \rightarrow 7/2^-$	0.84	3.6	1.0	$4.0 {\pm} 0.2$
⁴⁸ Ca	$2^+ \rightarrow 0^+$	11.5	11.9	10.3	$19 {\pm} 6.4$
⁴⁹ Ca	$7/2^- \rightarrow 3/2^-$	0.41	4.0	0.22	$0.53{\pm}0.21$
⁵⁰ Ca	$2^+ \rightarrow 0^+$	8.9	9.1	11.2	$7.4 {\pm} 0.2$

B(E2)s in reasonable agreement with experiment (order of magnitude)

Similar quality as phenomenological interactions (very close to KB3G)

⁴⁶Ca: *sd* degrees of freedom?

Outline

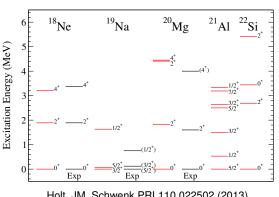

Theoretical Approach: NN+3N forces in Shell Model

Neutron rich Ca isotopes: Shell evolution N = 32 shell closure

Proton rich N=8 and N=20 isotopes

Proton dripline at N=8

Theory complements/improves mass extrapolations and isomeric mass-multiplet formula (IMME) $E(A, T, T_z) = E(A, T, -T_z) + 2b(A, T)T_z$


NN forces oberbind 3N forces essential to describe masses and the predict the proton dripline

Proton dripline not certain predicted either in ²⁰Mg or ²²Si: S_{2p} = -0.12 (Theory) / +0.01 (IMME) Measurement needed!

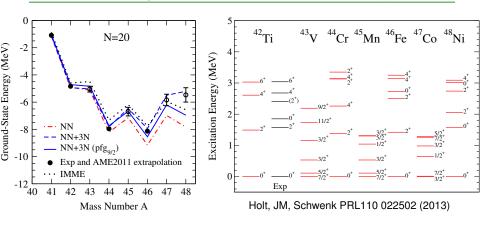
Calculations in standard and extended spaces

Spectra of N = 8 isotones

Holt, JM, Schwenk PRL110 022502 (2013)

Including NN+3N forces good agreement with known spectra

Prediction of 2+,4+ doublet close to previously unpublished 4⁺ state in ²⁰Mg (I. Mukha)


Prediction of ²¹Al and ²²Si spectra

In ²²Si calculations point to a sub-shell closure (analogous to ²²O)

More experimental information greatly appreciated!

Masses and spectra of N = 20 isotones

Dripline robustly predicted at ⁴⁶Fe

Good description of 48 Ni: S_{2p} = -1.02 (Th) vs -1.28(6) (Exp) Pomorski (2012)

Summary and Outlook

Shell Model calculation based on chiral EFT (NN+3N forces) and MBPT gives good agreement with experimental masses, two-neutron separation energies, pairing gaps and excitation spectra for oxygen, calcium isotopes and proton-rich N=8,20 isotones:

- Oxygen dripline, unbound ^{25,26}O reproduced with residual 3N forces
- Predicted neutron rich Ca S_{2n}'s with NN+3N forces agree with recent measurements of ^{51,52}Ca (TRIUMF) and ^{53,54}Ca (ISOLTRAP)
- Shell structure: prominent closure at N = 32
- Ca spectroscopy: spectra, electromagnetic strengths
- Dripline and spectra of proton-rich N = 8,20 isotones predicted

Outlook:

Heavier isotope and isotone chains: include T=0 (pn) TBME Explore uncertainties in the theoretical calculation

Collaborators

J. D. Holt, A. Schwenk, J. Simonis

R³B Collaboration (C. Caesar, T. Aumann...)

TITAN Collaboration (A. Gallant, J. Dilling...)

ISOLTRAP Collaboration (F. Wienholtz, K. Blaum...)