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Nuclear Structure approach

Big variety of nuclei in the nuclear
chart, A ∼ 2...300

Systematic ab initio calculations
only possible in the lightest nuclei

Poses a hard many-body
problem: design approximate
methods suited for different
regions

Interacting Shell Model:
Solve the problem choosing the (more) relevant degrees of freedom
Use realistic nucleon-nucleon (NN) and three-nucleon (3N) interactions

3 / 21



The Interacting Shell Model

Chose as basis states that of the 3D
Harmonic Oscillator

To keep the problem feasible, the
configuration space is separated into

• Outer orbits:
orbits that are always empty

• Valence space: the space in which
we explicitly solve the problem

• Inner core:
orbits that are always filled

Dim ∼
(

(p + 1)(p + 2)ν
N

)(
(p + 1)(p + 2)π

Z

)
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Many Body Perturbation Theory

Better convergence through
Vlowk transformation

Many-body Perturbation Theory
up to third order to build
an effective Shell Model interaction
in a valence space
H |Ψ〉 = E |Ψ〉 → Heff |Ψ〉eff = E |Ψ〉eff

Single Particle Energies
(SPEs)

Two-Body Matrix Elements
(TBMEs)

Full diagonalizations using codes ANTOINE and NATHAN
Caurier et al. RMP77 427(2005) and compare to experiment
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3N forces: Oxygen dripline
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Chiral NN+3N forces to
describe O dripline at 24O
Otsuka et al.
PRL105 032501 (2010)

3N forces provide
repulsion
missing in NN-only forces

3N forces crucial also for
reliable description of
spectra
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Forces and Currents in Chiral EFT
Chiral EFT: low energy approach to QCD for nuclear structure energies

Approximate chiral symmetry of QCD: pions pseudo-Goldstone bosons

Short-range couplings are fitted to experiment once

Systematic expansion: nuclear forces and electroweak currents

2
N LO

N LO
3

NLO

LO

3N force 4N force2N force

Weinberg, van Kolck, Savage, Epelbaum, Kaiser, Meißner...

NN forces up to N3LO

3N forces up to N2LO

NN fitted to:

• NN scattering data

3N fitted to:

• 3H Binding Energy

• 4He radius
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3N Forces
Treatment of 3N forces:

normal-ordered 2B: 2 valence, 1 core particle
⇒ (effective) Two-body Matrix Elements (TBME)

normal-ordered 1B: 1 valence, 2 core particles
⇒ (effective) Single particle energies (SPE)

'b'

residual 3B:
⇒ Estimated to be suppressed by Nvalence/Ncore

O core

'b'
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Residual 3N Forces

In the most neutron-rich oxygen isotopes,
3N forces between 3 valence neutrons
can give a relevant contribution
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MoNA/NSCL (2008, 2012)

R3B-LAND (this work)

+ residual 3N

Residual 3N contributions are
repulsive
They are small compared to
normal-ordered 3N force, but
increase with N
Very good agreement with
resonances in 25O and 26O

Caesar, Simonis et al
PRC88 034313 (2013)
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Ca isotopes: Masses

Ca isotopes: explore nuclear shell evolution N = 20,28,32?,34?
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Ca with respect to 40Ca core

3N forces repulsive contribution,
chiral NN-only forces too attractive

Flat behaviour towards 60Ca does not
allow clear prediction of the dripline

Results sensitive to SPEs, especially
more neutron-rich systems,
MBPT (calculated from NN+3N forces)
Empirical (from GXPF1 interaction)
Estimate of the uncertainty
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Two-Neutron separation energies
Ca isotopes (on top of 40Ca core)

Compare S2n = −[B(N,Z )− B(N − 2,Z )] with experiment
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Precision measurements
with TITAN changed AME
2003 ∼ 1.74 MeV in 52Ca

More flat behaviour in
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3N forces needed in
theoretical calculation

pfg9/2 valence space

Gallant et al.
PRL 109 032506 (2012)
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54Ca and N = 32 shell closure
Ca isotopes (on top of 40Ca core)

Compare S2n = −[B(N,Z )− B(N − 2,Z )] with experiment
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Very recently 53,54Ca
measured at ISOLDE

Excellent agreement
between calculation and
experiment

S2n evolution:
52Ca–54Ca as 48Ca–50Ca:
N = 32 shell closure

Wienholtz et al.
Nature 498 346 (2013)
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Two-neutron separation energies
Compare S2n = −[B(N,Z )− B(N − 2,Z )] with experiment

S2n also calculated by other approaches:
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Phenomenological
interactions also reproduce
quite well experiment
(input about masses/gaps
into the interactions)
Differ markedly beyond 54Ca

Coupled-Cluster calculations
Hagen et al. PRL109 032502
(2012) very good agreement
for even isotopes

Wienholtz et al.
Nature 498 346 (2013)
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Modern Energy Density
Functionals reproduce
correctly overall trends
and neutron/proton driplines
have more dificulties
in describing shell closures
Erler et al. Nature486 509(2012)

Wienholtz et al.
Nature 498 346 (2013)
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Shell closures and 2+
1 energies

2+
1 energies characterise

shell closures of the neutron
rich calcium isotopes

Holt, JM, Schwenk,
JPG40 075105 (2013)
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• Correct closure at N = 28 when 3N forces are included
Holt et al. JPG39 085111(2012)

• 3N forces enhance closure at N = 32
• 3N forces reduce strong closure at N = 34 (1.7-2.2 MeV)

Measured at 2.1 MeV Steppenbeck et al. Nature, in press
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48Ca spectrum

Challenge: Doubly-closed nucleus 48Ca
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Spectra too compressed
with NN forces only or pf space

2+
1 state only ∼appropriate energy

in pfg9/2 NN+3N calculation

0+
1 state too low (1st excited state)

especially compared to
phenomenological interactions

Importance of 3N forces

Importance of including g9/2 orbit
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B(M1) Transition in 48Ca
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B(M1) strength in 48Ca too fragmented
in pf space
Phenomenological calculations
reproduce experimental concentration

In the extended pfg9/2 space NN
forces also fragmented strength

NN+3N calculation in pfg9/2 very good
agreement with experiment
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B(E2) Transition Strengths

Isotope Transition KB3G GXPF1A MBPT EXP.

46Ca 2+ → 0+ 9.2 9.2 13.3 25.4±4.5
36.4±2.6

46Ca 6+ → 4+ 3.6 3.6 4.8 5.38±0.29
47Ca 3/2− → 7/2− 0.84 3.6 1.0 4.0±0.2
48Ca 2+ → 0+ 11.5 11.9 10.3 19±6.4
49Ca 7/2− → 3/2− 0.41 4.0 0.22 0.53±0.21
50Ca 2+ → 0+ 8.9 9.1 11.2 7.4±0.2

B(E2)s in reasonable agreement with experiment
(order of magnitude)

Similar quality as phenomenological interactions (very close to KB3G)

46Ca: sd degrees of freedom?
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Proton dripline at N = 8
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Theory complements/improves
mass extrapolations and
isomeric mass-multiplet formula (IMME)
E(A,T ,Tz) = E(A,T ,−Tz) + 2b(A,T )Tz

NN forces oberbind
3N forces essential to describe masses
and the predict the proton dripline

Proton dripline not certain
predicted either in 20Mg or 22Si:
S2p= -0.12 (Theory) / +0.01 (IMME)
Measurement needed!

Calculations in standard
and extended spaces
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Spectra of N = 8 isotones
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Including NN+3N forces
good agreement with
known spectra

Prediction of 2+,4+ doublet
close to previously
unpublished 4+ state in 20Mg
(I. Mukha)

Prediction of 21Al and 22Si
spectra

Holt, JM, Schwenk PRL110 022502 (2013)

In 22Si calculations point to a sub-shell closure (analogous to 22O)

More experimental information greatly appreciated!
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Masses and spectra of N = 20 isotones
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Holt, JM, Schwenk PRL110 022502 (2013)

Dripline robustly predicted at 46Fe

Good description of 48Ni: S2p= -1.02 (Th) vs -1.28(6) (Exp) Pomorski (2012)
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Summary and Outlook
Shell Model calculation based on chiral EFT (NN+3N forces)
and MBPT gives good agreement with experimental masses,
two-neutron separation energies, pairing gaps and excitation spectra
for oxygen, calcium isotopes and proton-rich N=8,20 isotones:

• Oxygen dripline, unbound 25,26O reproduced with residual 3N forces

• Predicted neutron rich Ca S2n’s with NN+3N forces agree with recent
measurements of 51,52Ca (TRIUMF) and 53,54Ca (ISOLTRAP)

• Shell structure: prominent closure at N = 32

• Ca spectroscopy: spectra, electromagnetic strengths

• Dripline and spectra of proton-rich N = 8,20 isotones predicted

Outlook:

Heavier isotope and isotone chains: include T=0 (pn) TBME

Explore uncertainties in the theoretical calculation
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