Three-nucleon forces and shell structure of neutron-rich Ca isotopes

Javier Menéndez

Institut für Kernphysik (TU Darmstadt) and ExtreMe Matter Institute (EMMI)

NUSTAR Week 2003, Helsinki, 9 October 2013

Theoretical Approach: NN+3N forces in Shell Model

Neutron rich Ca isotopes: Shell evolution N = 32 shell closure

Proton rich N=8 and N=20 isotopes

Outline

Theoretical Approach: NN+3N forces in Shell Model

Neutron rich Ca isotopes: Shell evolution N = 32 shell closure

Proton rich N=8 and N=20 isotopes

Nuclear Structure approach

TECHNISCHE UNIVERSITÄT DARMSTADT

Big variety of nuclei in the nuclear chart, $A \sim 2...300$

Systematic *ab initio* calculations only possible in the lightest nuclei

Poses a hard many-body problem: design approximate methods suited for different regions

Interacting Shell Model:

Solve the problem choosing the (more) relevant degrees of freedom Use realistic nucleon-nucleon (NN) and three-nucleon (3N) interactions

The Interacting Shell Model

TECHNISCHE UNIVERSITÄT DARMSTADT

Chose as basis states that of the 3D Harmonic Oscillator

To keep the problem feasible, the configuration space is separated into

- Outer orbits: orbits that are always empty
- Valence space: the space in which we explicitly solve the problem

 Inner core: orbits that are always filled

$$\mathrm{Dim} \sim \left(\begin{array}{c} (p+1)(p+2)_{\nu} \\ N \end{array} \right) \left(\begin{array}{c} (p+1)(p+2)_{\pi} \\ Z \end{array} \right)$$

Many Body Perturbation Theory

2.5

U D

TECHNISCHE UNIVERSITÄT DARMSTADT

Single Particle Energies (SPEs)

Two-Body Matrix Elements (TBMEs)

Many-body Perturbation Theory up to third order to build an effective Shell Model interaction in a valence space

 $H \ket{\Psi} = E \ket{\Psi} o H_{eff} \ket{\Psi}_{eff} = E \ket{\Psi}_{eff}$

Full diagonalizations using codes ANTOINE and NATHAN Caurier et al. RMP77 427(2005) and compare to experiment

3N forces: Oxygen dripline

TECHNISCHE UNIVERSITÄT DARMSTADT

Forces and Currents in Chiral EFT

TECHNISCHE UNIVERSITÄT DARMSTADT

Chiral EFT: low energy approach to QCD for nuclear structure energies

Approximate chiral symmetry of QCD: pions pseudo-Goldstone bosons Short-range couplings are fitted to experiment once

Systematic expansion: nuclear forces and electroweak currents

Weinberg, van Kolck, Savage, Epelbaum, Kaiser, Meißner...

NN forces up to N³LO

3N forces up to N²LO

NN fitted to:

NN scattering data

3N fitted to:

- ³H Binding Energy
- ⁴He radius

3N Forces

↓--**↓**) ★

Treatment of 3N forces:

normal-ordered 2B: 2 valence, 1 core particle \Rightarrow (effective) Two-body Matrix Elements (TBME)

normal-ordered 1B: 1 valence, 2 core particles \Rightarrow (effective) Single particle energies (SPE)

$$(-+-1)(\times -1)(\times)$$

residual 3B:

 \Rightarrow Estimated to be suppressed by $N_{valence}/N_{core}$

Residual 3N Forces

TECHNISCHE UNIVERSITÄT DARMSTADT

In the most neutron-rich oxygen isotopes, 3N forces between 3 valence neutrons can give a relevant contribution

O core

Residual 3N contributions are repulsive

They are small compared to normal-ordered 3N force, but increase with NVery good agreement with resonances in ²⁵O and ²⁶O

Caesar, Simonis et al PRC88 034313 (2013)

Outline

TECHNISCHE UNIVERSITÄT DARMSTADT

Theoretical Approach: NN+3N forces in Shell Model

Neutron rich Ca isotopes: Shell evolution N = 32 shell closure

Proton rich N=8 and N=20 isotopes

Ca isotopes: Masses

Ca isotopes: explore nuclear shell evolution N = 20, 28, 32?, 34?

Ca with respect to ⁴⁰Ca core

3N forces repulsive contribution, chiral NN-only forces too attractive

Flat behaviour towards ⁶⁰Ca does not allow clear prediction of the dripline

Results sensitive to SPEs, especially more neutron-rich systems, MBPT (calculated from NN+3N forces) Empirical (from GXPF1 interaction) Estimate of the uncertainty

Two-Neutron separation energies

TECHNISCHE UNIVERSITÄT DARMSTADT

Ca isotopes (on top of ⁴⁰Ca core)

Compare $S_{2n} = -[B(N, Z) - B(N - 2, Z)]$ with experiment

Two-Neutron separation energies

TECHNISCHE UNIVERSITÄT DARMSTADT

Ca isotopes (on top of ⁴⁰Ca core)

Compare $S_{2n} = -[B(N, Z) - B(N - 2, Z)]$ with experiment

⁵⁴Ca and N = 32 shell closure

TECHNISCHE UNIVERSITÄT DARMSTADT

Ca isotopes (on top of ⁴⁰Ca core)

Compare $S_{2n} = -[B(N, Z) - B(N - 2, Z)]$ with experiment

Two-neutron separation energies

Compare $S_{2n} = -[B(N, Z) - B(N - 2, Z)]$ with experiment

 S_{2n} also calculated by other approaches:

Phenomenological interactions also reproduce quite well experiment (input about masses/gaps into the interactions) Differ markedly beyond ⁵⁴Ca

Coupled-Cluster calculations

Hagen et al. PRL109 032502 (2012) very good agreement for even isotopes

Wienholtz et al. Nature 498 346 (2013)

Two-neutron separation energies

TECHNISCHE UNIVERSITÄT DARMSTADT

Compare $S_{2n} = -[B(N, Z) - B(N - 2, Z)]$ with experiment

 S_{2n} also calculated by other approaches:

Shell closures and 2^+_1 energies

Energy (MeV) 6 5 2^+_1 energies characterise shell closures of the neutron 3 rich calcium isotopes ---Holt, JM, Schwenk, NN 0 NN+3N [emp] JPG40 075105 (2013) NN+3N [MBPT] 52 54 56 58 60 62 64 66 68 42 48 50 Mass Number A

- Correct closure at *N* = 28 when 3N forces are included Holt et al. JPG39 085111(2012)
- 3N forces enhance closure at N = 32
- 3N forces reduce strong closure at N = 34 (1.7-2.2 MeV) Measured at 2.1 MeV Steppenbeck et al. Nature, in press

14 / 21

⁴⁸Ca spectrum

Challenge: Doubly-closed nucleus ⁴⁸Ca

Spectra too compressed with NN forces only or *pf* space

 2^+_1 state only $\sim\!appropriate$ energy in $\textit{pfg}_{9/2}$ NN+3N calculation

0⁺₁ state too low (1st excited state) especially compared to phenomenological interactions

Importance of 3N forces

Importance of including $g_{9/2}$ orbit

B(M1) Transition in ⁴⁸Ca

B(M1) strength in ⁴⁸Ca too fragmented in *pf* space Phenomenological calculations reproduce experimental concentration

In the extended $pfg_{9/2}$ space NN forces also fragmented strength

NN+3N calculation in $pfg_{9/2}$ very good agreement with experiment

16/21

B(E2) Transition Strengths

lsotope	Transition	KB3G	GXPF1A	MBPT	EXP.
⁴⁶ Ca	$2^+ \rightarrow 0^+$	9.2	9.2	13.3	25.4±4.5 36.4±2.6
⁴⁶ Ca	$6^+ ightarrow 4^+$	3.6	3.6	4.8	5.38±0.29
⁴⁷ Ca	$3/2^- ightarrow 7/2^-$	0.84	3.6	1.0	4.0±0.2
⁴⁸ Ca	$2^+ ightarrow 0^+$	11.5	11.9	10.3	19±6.4
⁴⁹ Ca	$7/2^- ightarrow 3/2^-$	0.41	4.0	0.22	0.53±0.21
⁵⁰ Ca	$2^+ ightarrow 0^+$	8.9	9.1	11.2	7.4±0.2

B(E2)s in reasonable agreement with experiment (order of magnitude)

Similar quality as phenomenological interactions (very close to KB3G)

⁴⁶Ca: *sd* degrees of freedom?

Outline

Theoretical Approach: NN+3N forces in Shell Model

Neutron rich Ca isotopes: Shell evolution N = 32 shell closure

Proton rich N=8 and N=20 isotopes

Proton dripline at N = 8

Theory complements/improves mass extrapolations and isomeric mass-multiplet formula (IMME) $E(A, T, T_z) = E(A, T, -T_z) + 2b(A, T)T_z$

NN forces oberbind 3N forces essential to describe masses and the predict the proton dripline

Proton dripline not certain predicted either in 20 Mg or 22 Si: S_{2p} = -0.12 (Theory) / +0.01 (IMME) Measurement needed!

Calculations in standard and extended spaces

Spectra of N = 8 isotones

Holt, JM, Schwenk PRL110 022502 (2013)

In ²²Si calculations point to a sub-shell closure (analogous to ²²O)

More experimental information greatly appreciated!

Masses and spectra of N = 20 isotones

Dripline robustly predicted at ⁴⁶Fe

Good description of ⁴⁸Ni: S_{2p}= -1.02 (Th) vs -1.28(6) (Exp) Pomorski (2012)

Summary and Outlook

TECHNISCHE UNIVERSITAT DARMSTADT

Shell Model calculation based on chiral EFT (NN+3N forces) and MBPT gives good agreement with experimental masses, two-neutron separation energies, pairing gaps and excitation spectra for oxygen, calcium isotopes and proton-rich N=8,20 isotones:

- Oxygen dripline, unbound ^{25,26}O reproduced with residual 3N forces
- Predicted neutron rich Ca S_{2n}'s with NN+3N forces agree with recent measurements of ^{51,52}Ca (TRIUMF) and ^{53,54}Ca (ISOLTRAP)
- Shell structure: prominent closure at N = 32
- Ca spectroscopy: spectra, electromagnetic strengths
- Dripline and spectra of proton-rich N = 8, 20 isotones predicted

Outlook:

Heavier isotope and isotone chains: include T=0 (pn) TBME

Explore uncertainties in the theoretical calculation

Collaborators

J. D. Holt, A. Schwenk, J. Simonis

R³B Collaboration (C. Caesar, T. Aumann...)

TITAN Collaboration (A. Gallant, J. Dilling...)

ISOLTRAP Collaboration (F. Wienholtz, K. Blaum...)