

Bundesministerium für Bildung und Forschung

Manchester, UK, 3

h, Y(4260) and ³F₄-state Simulations for PANDA Material from "New Studies of XYZ at PANDA" Talk @

S. Lange, M. Galuska, S. Reiter, M. Wagner *(JLU Gießen)* E. Prencipe *(FZ Jülich)* S. Spataro *(U. and INFN Torino)* **PANDA XLVI Collaboration Meeting, Bochum**

4thSeptember 2013

Outline – New PandaRoot Simulations

Search for rare decay Y(4260) → e+ e Search for high lying charmonium states
 ³F₄ state radiative cascade
 h_c' recoil mass technique

Search for Rare Decay $Y(4260) \rightarrow e+e-$

- Y(4260) has been seen in several experiments
- J^{PC}=1--
- BaBar measured a partial width of

 $\mathcal{B}(\pi^+\pi^- J/\psi)\Gamma_{e^+e^-} = (7.5 \pm 0.9 \pm 0.8) \text{ eV}$

(total width Γ ~108±12 MeV)

■ Y(4260) \rightarrow e+ e– is factor $\geq 10^7$ suppressed BaBar, arXiv:0808.1543

Formation Cross Section of Y(4260) at $\overline{P}ANDA$

■ Breit-Wigner: $\sigma \le 1300$ nb [assuming $\mathcal{B}(Y(4260) \rightarrow J/\psi \pi + \pi -) = 0.1]$ due to high upper limit $\mathcal{B}(Y(4260) \rightarrow \overline{pp}) / \mathcal{B}(Y(4260) \rightarrow J/\psi \pi + \pi -) < 0.13 (90\% C.L.)$ BaBar, Phys. Rev. D73(2006)012005

Scaling:
$$\mathcal{B}(Y(4260) \to \overline{p}p) = \mathcal{B}(J/\psi \to \overline{p}p) \times \frac{\Gamma(J/\psi)}{\Gamma(Y(4260))}$$

 σ =1.9±0.2 nb → 16,400 events per 1 day in high luminosity mode (*L*=2 x 10³² cm⁻² s⁻¹, planned)

Comparison to Belle II

- Y(4260) in B decays never observed
- in ISR \leq 30.000 events in 50 ab⁻¹ (\geq 8 years)

• Comparison to BESIII $\sigma=62.9\pm1.9\pm3.7 \text{ pb}$ ($\pounds=5.3 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$, achieved) Phys. Rev. Lett. 110, 252001 (2013)

Y(4260) @ PANDA

There can be interference between signal and background.

The QQ Potential Model and Search for New States

$\Delta E(c\overline{c}) = \Delta E(b\overline{b})$ is strictly true for a logarithmic potential

C. Quigg, arXiv:hep-ph/9707493 C. Quigg, J. L. Rosner, Phys. Lett. B71(1977)153

C. Quigg, J. L. Rosner, H. B. Thacker, Phys. Rev. D21(1980) 234 C. Quigg, J. L. Rosner, Phys. Rev. D23(1981)2625

Charmonium Bottomonium

Search for Additional

States

Test of flavour independence of $Q\overline{Q}$ Potential

 \rightarrow Are the level spacings the same?

Search for 2 new states (yet unobserved)

2 ¹P₁ state (h_c') partner of h_b' (already observed by Belle) Prediction from potential model m=3934-3956 MeV Prediction from flavour independence ("logarithmic scaling") m=3887 MeV disadvantages: - predicted width Γ=87 MeV (decay to DD* open)

coupling to threshold(s)

1 ³F₄ state

m=4021-4095 MeV

Decay blocked by angular barrier (J^{PC}=4++) → narrow width Γ=8.3 MeV predicted no bottomonium partner observed yet no coupling to threshold(s)

Mass predictions by Barnes, Godfrey, Swanson Phys. Rev. D72(2005)054026

³F₄

Narrow J^{PC}=4++ state with *n*=0, *L*=3, *S=1*, *J*=4 Predicted width Γ~8.3 MeV

Decay of ${}^{3}F_{4}$ blocked by angular barrier (suppressed by 2*L*+1 with *L*=3)

- \rightarrow suppressed in *B* decays
- \rightarrow suppressed in radiative decays
- \rightarrow production in pp possible

Appropriate test for long-range potential

Search for ${}^{3}F_{4}$ at $\overline{P}ANDA$

- Cross section: Assume $\sigma(pp \rightarrow {}^{3}F_{4}) = 10 \text{ nb}$
- Branching fraction from $\psi' \rightarrow \chi_{c0} \gamma$ $\mathcal{B} = 9.84 \pm 0.31\%$ [PDG] → Assume $\mathcal{B} = 10\%$ for all 3 transitions
- High luminosity mode: 8.64 pb⁻¹ per 1 day
- Background:
 - DPM (dual parton model)
 - \rightarrow Photons from light hadron decays
 - Very clean signature of [3 photons with $E_{CMS} > 150 \text{ MeV} + 1 \text{ J/}\psi$]
 - → Suppression of 1.2 x 10^6 achieved
- Estimate: 14 days of data taking (50% duty factor)

Update to talk by S. Reiter, PANDA CM 2013/06 @ GSI, Darmstadt

*h*_c'

J^{PC}=1+ – state with *n*=2, *L*=1, *J*=1 predicted mass m~3.95 GeV, width Γ~87 MeV

Mass & width prediction by Barnes, Godfrey, Swanson Phys. Rev. D72(2005)054026

Why PANDA?

- similar precise states of Bottomonium were already found with recoil mass method at Belle
- ▶ h'_c, h_c suppressed at B-Factories:

$$0^{-+}
ightarrow 0^{-+} 1^{+-} (B
ightarrow K h_c')$$

is forbidden in factorisation limit

▶ h'_c , h_c suppressed at BESIII: in 1⁻⁻ decays, 1⁺⁻ can only be produced by 1⁻⁻ → 1⁺⁻ π^0 , but this is isospin-violating (BR ~ 10⁻³ or less)

M. Galuska with material from S. Lange (Giessen) PANDA XLVI Collaboration Meeting

Simulation

- Full PandaRoot simulation with release apr13 and external packages sep12
- Barrel: SttMvdGemGenTrack; Forward: FtsIdealGenTrack
- ▶ Momentum of p̄ beam: 15 GeV/c
- $\blacktriangleright p\bar{p} \rightarrow h_c' + \pi^+ + \pi^-$
- $\blacktriangleright h'_c \to D^0 + \bar{D}^{0*}$
- ▶ $p\bar{p} \to X(3872) + \pi^+ + \pi^-$
- ► $X(3872) \to D^0 + \bar{D}^{0*}$
- ► $D^{0} \rightarrow K^{-}\pi^{+}$
- $\bar{D}^{0*} \rightarrow \text{anything}$

Background Rejection for h_c '

	Cross section	Reconstruction efficiency
Signal	4.5 nb	8.3%
Background	43 mb	1.6×10^{-5}

Signal cross section is required to achieve $S/\sqrt{(S+B)} \ge 10$ in 6 weeks

- \rightarrow Background suppression:
 - Realistic PID
 - π + K– invariant mass
 - Cut on D⁰ mass range
 - p_{lab}(π±)>1.2 GeV
 - vertex cut ±0.1 cm (z)

$p_{lab}(\pi \pm) > 1.2 \text{ GeV Cut}$

- Cut on invariant mass already applied
- Signal are $\pi \pm$ from pp interaction
- Background from DPM generator
- Cut value determined by maximizing $(1-\varepsilon_{bkg})/(1-\varepsilon_{sig})$

Efficiencies for

 p_{lab} cut only

Summary

- Search for rare decay
- Search for yet unobserved states
 - high mass (for charmonium-like states)
 - high J^{PC} (suppressed in B-decays and e^+e^-)
 - Recoil mass
 - Radiative cascade

Outlook

- Plots for 1 week data + background
- Study best p_{beam} for h'_{c} study

Thank you.

BACKUP

Technique of $\pi^+ \pi^-$ recoil ("missing") mass pioneered by CLEO-c for h_c, Phys. Rev. Lett.107(2011)041803 π^+ Y(5S) Belle, 121.4 fb⁻¹ Phys. Rev. Lett 108(2011)032001 arXiv:1103.3419 detected Events / 5 MeV/c Y(2S) reconstructed 40000 30000 $\Upsilon(1S)$ $h_{b}(2P)$ $\rightarrow \Upsilon(1S)$ $h_{b}(1P)$ 20000 Y(3S) (3S) Υ(1D) 10000 94 9.6 9.8 10 10.2 10.4 $M_{miss}(GeV/c^2)$ $-E_{X}^{*})^{2}$ $E_{\rm c.m.}$ p_{Y}^{*2} $M_{\rm miss}(X)$

M. Galuska with material from S. Lange (Giessen)

PANDA XLVI Collaboration Meeting

Advantages of PANDA

- Charmonium(-like) states with high masses
 - $p_{beam} \le 15 \text{ GeV/c} \rightarrow \text{m}_{cc} \le 5.5 \text{ GeV}$
- Charmonium(-like) states with high quantum numbers up to L = 15
- High statistics

 $\sigma_{pp \rightarrow c\bar{c}} = 50 \text{ nb} \rightarrow 4.3 \text{ x } 10^5 \text{ events per 1 day (high luminosity mode)}$

Good √s resolution

FWHM = 160 keV @ m_{cc} = 4 GeV (high resolution mode)

Formation of states with any (non-exotic) quantum number

2 gluons: 0-+, 0++, 2++, ...

3 gluons: 1--, 1+-, ...

M. Galuska with material from S. Lange (Giessen) PAN

PANDA XLVI Collaboration Meeting

Potential Model

linear confinement term

E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, T.-M. Yan, Phys. Rev. D17(1978)3090

$\Delta E(c\overline{c}) = \Delta E(b\overline{b})$ is mathematically only strictly true for a logarithmic potential

C. Quigg, arXiv:hep-ph/9707493 C. Quigg, J. L. Rosner, Phys. Lett. B71(1977)153 C. Quigg, J. L. Rosner, H. B. Thacker, Phys. Rev. D21(1980) 234 C. Quigg, J. L. Rosner, Phys. Rev. D23(1981)2625

EvtGen Decay File for Search for ${}^{3}F_{4}$ at PANDA

Decay pbarpSystem 1.0 psi(4415) PHSP; Enddecay

Decay psi(4415) 1.0000 psi(4160) gamma VVP 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; Enddecay

Decay psi(4160) 1.0000 chi_c2 gamma VVP 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; Enddecay

Decay chi_c2 1.0000 J/psi gamma VVP 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; Enddecay

Decay J/psi 0.5 e+ e- VLL; 0.5 mu+ mu- VLL; Enddecay

End