

Charm spectroscopy with PandaRoot: Reconstruction of DsJ mesons (The Good, the Bad, the Ugly...)

PANDA Meeting - Bochum, 12-09-2013

- Motivation
- Technical aspects
- First tests
- Status of this analysis trunk 21003
- Summary

PHYSICS MOTIVATION

Introduction

- D_{sJ} are ($c\bar{s}$) mesons: s content, **J**=0,1
- D_{s0}(2317)⁺ discovered by BaBar
 PRL 90 242001 (2003)
- Not understood its nature: 100 MeV lower than the predicted mass by potential model
- Very thin width
- Observed in $D^{(*)+}\pi^0$ system \Rightarrow isospin violating
- Other similar states found
- $D_{s1}(2460)^+$ close to the D*K threshold
- Width of these states: only UL due to $e_{xperimental}^{1.8}$
- PANDA can reach mass resolution >20 times higher than the previous projects; expected high precision
 - Depending on the width, several interpretations:

- Study of the mixing of $D_{s1}(2536)^+$ and $D_{s1}(2460)+$
- Study of chiral symmetry breaking
- Study of the excitation function of the cross section in $p\overline{p} \rightarrow D_s^- D_{s1}^+$

A precise measurement of the cross section gives a precise determination of the Γ


```
Expected number of events in PANDA=\mathscr{L} * \sigma * \epsilon
```

Cross section: http://arxiv.org/abs/1111.3798 A. Khodjamirian, Ch. Klein, Th. Mannel, Y.M. Wang 20 ÷200 nb

```
Luminosity = 2 * 10^{32} \text{ cm}^{-2} \text{ s}^{-1}
8.64 pb<sup>-1</sup>/day
```

N expected = 8.64 pb⁻¹/day * (20÷200)nb * ε ~ (160k ÷2M) * ε /day

NB. In high resolution mode: we expect a factor 10 less

TECHNICAL ASPECT

- Operative system: FEDORA 19
- Root version: 5.34
- Trunk version in pandaroot: rev-21003 + /rho/ update
- PID algorithm: PidAlgoMvd, PidAlgoStt, PidAlgoDrc, PidEmcBayes
- Analysis package: /rho/

D^{*}_{s0}(2317)⁺

- \Rightarrow fix properly a γ energy cut
 - \Rightarrow N_{MAX} photons/event < 50

noPhotos #	
Decay pbarpSystem 1.0 D_s0*+ D_s- Enddecay	PHSP;
# Decay D_s0*+ 1.0 D_s+ pi0 Enddecay #	PHSP;
Decay D_s+ 1.0 K- K+ pi+ Enddecay	DS_DALITZ;
Decay D_s- 1.0 K+ K- pi- Enddecay	DS_DALITZ;
 # Decay pi0 1.0 gamma gamma Enddecay End 	PHSP;

 $p\overline{p} \to D_{s}^{-} D_{s0}^{*} (2317)^{+}$

D_{s0}^{*}(2317)⁺

$D_{s0}^{*}(2317)^{+}$ BEFORE ANY MASS FIT:

JÜLICH FORSCHUNGSZENTRUM

D [−] BEFORE ANY MASS FIT:

Mitglied in der Helmholtz-Gemeinschaft

Mitglied in der Helmholtz-Gemeinschaft

- -

 χ^2 distribution of mcf

Still to do: optimize the mass cut on γ momentum

Make use of the RhoSelectors: it saves time! Put your macro in a PndTask: it saves YOUR time!

19

D_{s1}(2460)⁺

Updated trunk: rev 21655

Momentum = 9.9 GeV

E(γ)>30 MeV p(π^{0}) >100 MeV/c N_{MAX} photons/event < 50

 π^{0} mass window: 30 MeV/c² D_{s}^{-} mass window: 300 MeV/c² D_{s}^{*} + mass window: 300 MeV/c²

Test: 2000 events available Time needed: >1.5h/2000 events

PID: likelihood "best"

	JULICH
noPhotos #	FORSCHUNGSZENTRUM
Decay pbarpSystem 1.0 D_s1+ D_s- Enddecay #	PHSP;
Decay D_s1+ 1.0 D_s*+ pi0 F Enddecay #	PARTWAVE 1.0 0.0 0.0 0.0 0.0 0.0;
Decay D_s*+ 1.0 D_s+ gamma Enddecay #	VSP_PWAVE;
Decay D_s+ 1.0 K- K+ pi+ Enddecay	DS_DALITZ;
Decay D_s- 1.0 K+ K- pi- Enddecay	DS_DALITZ;
# Decay pi0 1.0 gamma gamma Enddecay End	PHSP;

[GeV]

Mitglied in der Helmholtz-Gemeinschaft

21

D_{s1}(2460)⁺

Ds- mass (full truth match)

Mitglied in der Helmholtz-Gemeinschaft

noPhotos Easiest case of today: # reconstruction of the $D'_{s1}(2536)$ + Decay pbarpSystem 1.0 D' s1+ D s- PHSP; Enddecay Tricky: it is the one ۰. # with the most thin width of the family Decay D' s1+ 1.0 D*0 K+ VVS_PWAVE 0.0 0.0 0.0 0.0 1.0 0.0; Momentum: 10.5 GeV Enddecay # D'₁(2536)⁺ is just above the Decay D*0 1.0 D0 gamma PHSP; threshold of D⁰*K. A simulation Enddecay to D⁰* K will be presented Decay D0 1.0 K- pi+ PHSP; 5000 events generated Enddecay # Decay D s-1.0 K+ K- pi-DS DALITZ; Enddecay # Need to limit number of photons/event? End Need to limit the photon energy? Yes, so the simulation runs very fast!

-0.2

-0.4

-0.3

-0.1

0

0.1

0.2

0.3

0.4

0.5

10

8

D0 mass (full truth match) D0 mass (mass constraint fit) hd0 ftm Res, no fit: 27 MeV 900 F Entries 2973 Mcf fit 1.841 Mean RMS 0.1194 800 700 400 600 500 300 400 200 300 200 100 100 0 2.2 2. D0 mass [GeV/c²] 1.4 1.6 1.8 2 2.5 0.5 1.5 2 D0 mass diff to truth after vertex fit hm diff3 D0: χ² mass fit Entries 948 Mean 0.009863 160 Mcf fit:χ2 RMS 0.06997 140 Res, vtx fit: 22 MeV 700 χ^2 / ndf 129.1/56 150.4 ± 7.4 Constant 600 0.001653 ± 0.000767 120 Mean Sigma 0.02173 ± 0.00075 500 100 Res, mcf fit ~ 11 MeV 400 80 300 60 200 40 100 20

2

- Problems with vtx fit: bunch of negative entries in χ^2 distribution
- χ^2 of mcf too low
- Efficiency drop when we add photons to the decay channel: more photons, less efficiency
- Mass window for mcf: larger interval, larger resolution. 3σ ? 5σ ?
- >3% of tracks found with momentum of the last hit larger than at the first hit ($p_1=0$; $1/p_1...$)
- "Evil tracks"
- What is good, then? Reconstruction of particles decaying to charged K/ π /e works pretty good!

	D _{s0} *(2317)+	D _{s1} (2460)+	D' _{s1} (2536)+
Efficiency	16%	9%	20%
Resolution, mcf	17 MeV	18 MeV	17 MeV

Expected improvements in the mass resolution and the efficiency in the next release

<u>A proposal</u>: $V \rightarrow e^+e^-$

Vector state	BR(→e+e-)	Width (MeV)
ψ(4040)	(1.07 ±0.16) ×10 ⁻⁵	80 ± 10
ψ(4160)	(8.1 ±0.9) ×10 ⁻⁶	103 ± 8
Y(4260)		108 ± 12
Y(4360)		74 ± 18
Y(4660)		48 ± 15

- Vectors: J^{PC} = 1⁻⁻
- Expected to decay to e+e-
- Only 2 measured: very low BR
- Large width, probably they interfere
- PANDA can do better than its predecessors: 16400 Y(4260)/day similar Y(4160)/day

Momentum: 9.24 GeV/c
 Threshold of production of Y(4160)
 Standalone Y(4160)

Momentum: 9.45 GeV/c
 It is between the 2 resonances
 File with Y(4160) and Y(4260)

Momentum: 9.68 GeV/c
 Threshold of production of Y(4260)
 File with Y(4160) and Y(4260)

Efficiency in reconstruction: $(83 \div 88)\%$ After selection: 60%

Interference can modify the line shape

High reconstruction efficiency of mesons decaying to charged particles only

Need to optimize the selection of the neutral list "a priori": gain in CPU time and memory

Problem of lack of efficiency with neutrals still to be solved

About problems with tracking and fitters: open discussion!

MANY THANKS TO KLAUS AND STEFANO FOR THEIR SUPPORT!

"...is 1% talent and 99% hard work ... "

THANKS!