

SODANET Specifications

And Current Status of the Implementation

M. Drochner, <u>M. Kavatsyuk</u>, H. Kleines, P. Lemmens, J. Michel, M. Palka, P. Schakel

SODANET

Design considerations:

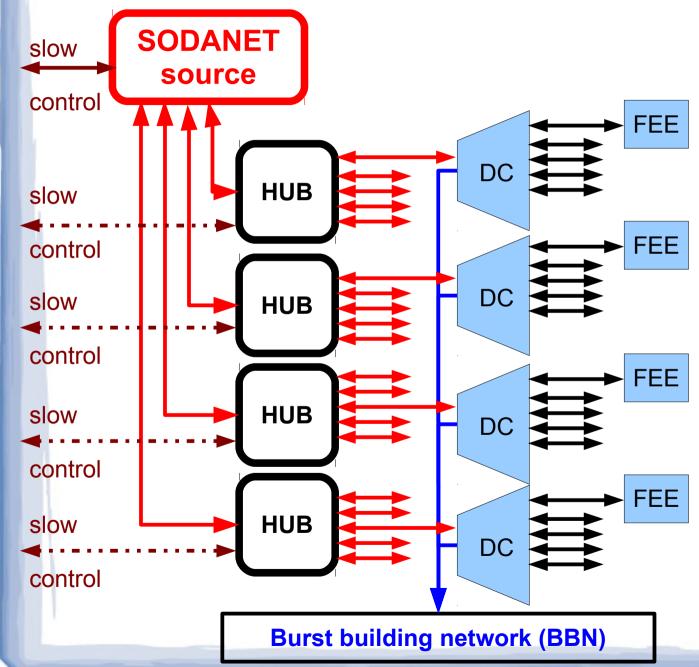
- Preserve readout topology as defined in the PANDA TPR
- Reuse as much as possible code of the TRBNET
- Key changes of the TRBNET compatible with the CBMNET protocol

Note on the synchronous optical link vith TRB boards:

Tested by Jan Michel and Michael Traxler (January 16):

- Synchronous connection works for TRB V3
- First recovery of a clock: 30 ps jitter (10 ps from oscilloscope)
- 6 recoveries in chain: 40 ps jitter

SODANET Functionality


SODANET provides:

- synchronization of the FEE
- Continuous monitoring of the DC/FEE functionality
- Rough (initial) time calibration of the propagation time of the synchronization signal
- Transfer of a slow-control (FEE configuration/status) information: low priority, transmission of a slow-control package can be interrupted at any time by a synchronization package

SODANET Topology

SODANET link:

- Bidirectional
- Synchronous (only in one direction)
- Transfer:
 - source → DC: synchronization information and FEE configuration
 - DC → source: slow control, used for time calibration

Data link (DC → **BBN**):

 Unidirectional Ethernet

Link DC ↔ **FEE**:

- Bidirectional, synchronous
- Protocol up to subsystem

SODANET Synchronous Packages

SODANET protocol foresees two types of sync. packages:

- Command data: issued at any time
- Super-burst start (super burst = 16 bursts of 2.4 μs): issued at the beginning of each Super-burst

Package structure

K	Data	K	Data	K	Data	K	Data
(FB)	31-24	(FB)	23-16	(FB)	15-8	(FB)	7-0

Command package:

- Bit 31: 0
- Bit 30: Time calibration
- Bit 29: DAQ start
- Bit 28: DAQ stop
- Bit 27: Reset
- Bits 26-8: reserved
- Bits 7-0: CRC checksum (CRC8-CCITT)

Super-burst start package:

- Bit 31: 1
- Bits 30-0: Super-burst number

Synchronous Packages

- Have highest priority (interrupt any other transfer)
- Each received SODANET packed acknowledged: continuous monitoring of the readout
 - Malfunction of one of the DC/FEE → trigger slow control;
 the malfunction DC added to the list of non-uses recipients
- Burst counting (within Super-burst) at each DC Error handling:
 - DC checks if received super-burst number is sequential
 - In case of error:
 - the DC uses number distributed by the SODANET,
 - set special error bit in the output data,
 - informs slow-control system
 - If part of SODANET message is missing:
 - DC uses super-burst number from a local counter,
 - reports problem to the slow-control system.

Time Calibration

- Dedicated "time calibration" command is defined
- Once the command is received:
 - reply sent to the transmitter side,
 - original message is forwarded further through the network.
- Propagation time:
 - calculated at the transmitter side
 - stored in a register
 - the register values read out by a slow control system.
- The delay data used to pre-calculate signal-propagation delays (~10 ns precision)
- Delay values used at the DC to delay SODANET-synchronisation signals, before redistribution to FEE.
- The longest delay value used by the SODANET source to send synchronisation commands prior to a bunch crossing

"Triggered" Mode Compatibility mode of operation

- External "trigger" signal is feed to one of the DC/SODANET source
- "trigger" is timestamped, and sent to the burst-building network
- Event builder will select only hits with timestamps, which are in coincidence with the "trigger" signal

DC Output Data-format

- DC can start transmitting FEE data once it is available (without waiting till the end of a super-burst)
- If no data are available –
 DC sends an empty package at the end of the Super-burst

Data-package

31 16	15 0				
last-packet flag; packet number	data size in bytes				
Not used (same as HADES)	Not used (same as HADES)				
Status and error	System ID				
Super-burst number					
Data					

GbE paket builder in FPGA (HADES) can be reused to pack data

SODANETImplementation status

- Cleaned-up SODANET VHDL repository (files, relevant only for the SODANET)
 - Implemented synchronous transmission at 100 MHz on the main and preferential FPGAs of a TRB board [hardware test]
- ✓ SODANET source
- SODANET Hub
- SODANET endpoint (hub/DC)
- Interface of the SODANET to the TRB slow control
- Feedback handler (time calibration, monitoring)
- → Tests with hardware
- → Incorporate SODANET endpoint to subsystems DCs
- → Implement link to compute node
- Fix synchronous-transmission frequency at 77.76 MHz
 (design does not work jet at 125 MHz)

KVI TRB v3 as Data Concentrator

Advantages:

Possibility of different configurations of the readout system

Disadvantages:

- Low optical-fibre speed:
 - max 3.2 Gb/s in asynchronous mode
 - max 2.5 Gb/s in synchronous mode
 - 4 SFPs are connected to a single quad-serdes have to use same frequency
 - In case of usage of all FPGAs for the DC there might be problems with Ethernet connection (mandatory for the TRB) due to non-standard frequency

In case of usage of the SODANET frequency of 154.52 MHz:

- Maximum link speed for SODANET with TRBv3 is 1.54 Gb/s
 - might be too slow for the front-end
- Connection to compute node has to be at 3.08 MHz

Solution: – new hardware (required for the final version)

usage of a standard frequenty

Thank you for your attention!

Time-Synchronisation: Requirements

... To be precisely defined

• Desired:

- Distribution of clock (154.52 SONET standard)
- Distribution of synchronisation commands (Start, Stop, Calibration light-flash, etc.)
- Acceptable jitter:
 - < 20 ps (TOF, DIRC)
 - < 100 ps (EMC)
 - < 200 ps (STT, MWD, etc.)
- Signal distributed over an optical fibre

Optional:

- Measurement of a signal-propagation time (cable length)
- Distribution of detector-configuration data
- Configuration of the burst-building network
- Slow control for small subsystems