

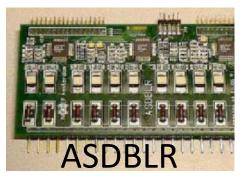
## **MUST Work Packages**

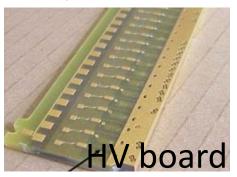
S. Roy, A. Belias

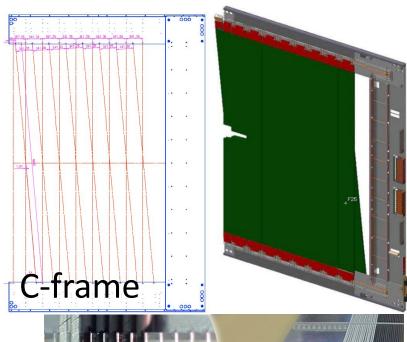


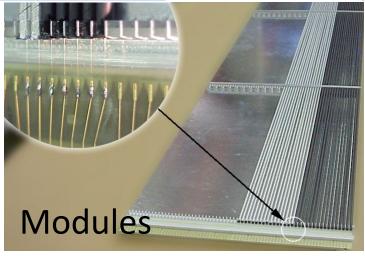
## MUST Work Package Structure

- Detector components and services
- 2. Mechanics
- 3. FEE, DAQ, DCS
- Detector tests
- 5. MUST software integration in CBMROOT
- 6. Installation, Commissioning and Monitoring


## WP1: Detector components and services


### Objective:


To validate and re-qualify all existing LHCb Outer Tracker (OT) hardware components—including straw modules, C-frames, and on-detector services—for reuse as the MUST detector in CBM.


#### Tasks:

- 1.1 C-frames with straw modules (LHCb)
- 1.2 Straw modules with electronics box (LHCb)
- 1.3 On-detector services (LV)
- 1.4 On-detector services (HV)
- 1.5 MUST Gas system
- 1.6 On-detector services (Cooling)

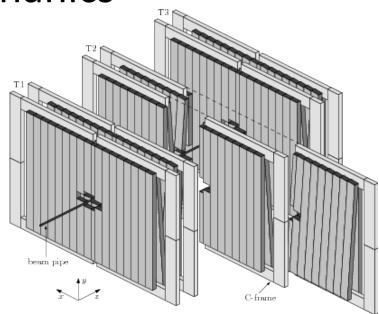








https://www.slideserve.com/cady/the-lhcb-outer-tracker-front-end-what-does-it-look-like-and-what-is-the-sta tus-powerpoint-ppt-presentation


WP2: Mechanics

### Objective:

Design, production, and integration of new mechanical structures required to install MUST inside the MUCH platform.

#### Tasks:

- 2.2 Revisit C-frame module assembly for MUST
- 2.2 Integration of C-frames to Stations for MUST
- 2.3 Mechanical integration of MUST in MUCH





## WP3: FEE, DAQ, DCS

#### Objective:

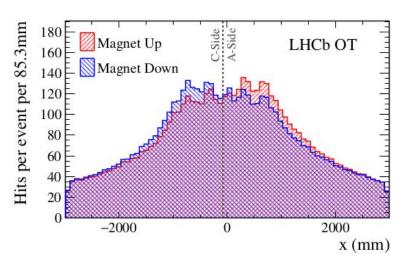
To develop and integrate all front-end electronics, digital readout, DAQ interfaces, and detector control systems needed to run MUST in the CBM environment.

#### Tasks:

- 3.1 Analogue readout (LHCb ASICs)
- 3.2 Digital Readout DiRich (TRBnet based, with GSI-EE-Interface)
- 3.3 Digital Readout DiRich (DOGMA based, CBM-FAIR Interface)
- 3.4 DAQ and integration to CBM [DOGMA]
- 3.5 DCS and integration to CBM



https://www.slideserve.com/horace/the-readout-system-for-the-lhcb-outer-tracker


### WP4: Detector tests

#### Objective

Perform full functional and performance validation of all MUST hardware prior to installation and during commissioning.

#### Tasks:

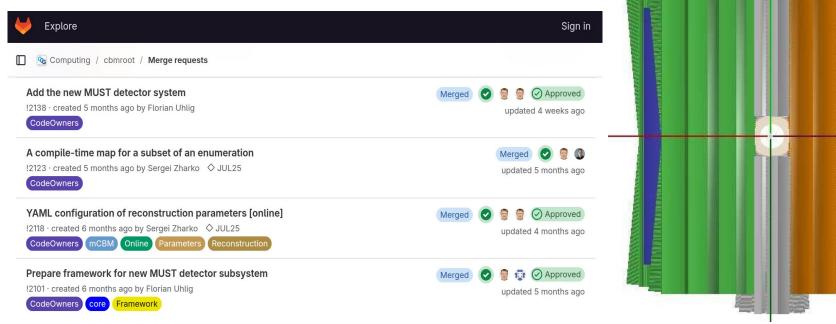
- 4.1 Dismounting of C-frames and modules
- 4.2 Testing of individual modules with electronics box (LHCb)
- 4.3 Detector data analysis & Quality Assurance(QA)
- 4.4 Acceptance tests of MUST modules







LHCb NOTE OTR-2005-014


# WP5 : MUST software integration in CBMROOT

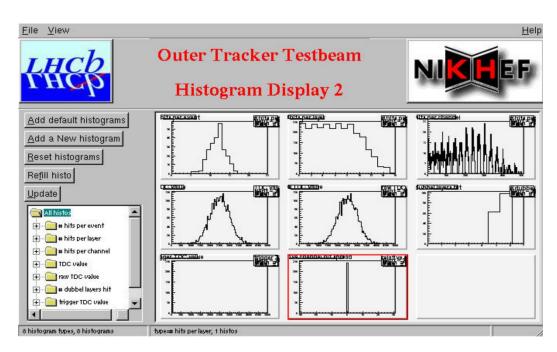
#### Objective:

Develop and integrate the full simulation, digitisation, reconstruction framework in CBMROOT.

#### Tasks:

- 5.1 Simulation within the CBM Framework
- 5.2 Validation & Performance evaluation of the software
- 5.3 Computing tasks




## 6 Installation, Commissioning and Monitoring

#### Objective:

Install MUST in the CBM cave, commission all services, and prepare continuous detector monitoring for data-taking.

#### Tasks:

- 6.1 Installation of gas system, LV, HV infrastructure in CBM
- 6.2 Integration into CBM DAQ (optical backbone)
- 6.3 Alignment & Calibration in CBM



## Work package summary table

| WP  | Description                                  | Exist | Location | WPL | Timeline |
|-----|----------------------------------------------|-------|----------|-----|----------|
| 1   | Detector components and services             |       |          |     |          |
| 1.1 | C-frames with straw modules (LHCb)           | YES   | GSI      |     |          |
| 1.2 | Straw modules with electronics box (LHCb)    | YES   | GSI      |     |          |
| 1.3 | On-detector services (LV)                    | No    | GSI      |     |          |
| 1.4 | On-detector services (HV)                    | Part  | GSI      |     |          |
| 1.5 | MUST Gas system                              | No    | GSI      |     |          |
| 1.6 | On-detector services (Cooling)               | Part  | GSI      |     |          |
| 2   | Mechanics                                    |       |          |     |          |
| 2.1 | Revisit C-frame module assembly for MUST     | NO    |          |     |          |
| 2.2 | Integration of C-frames to Stations for MUST | NO    |          |     |          |
| 2.3 | Mechanical integration of MUST in MUCH       | NO    |          |     |          |
| 3   | FEE, DAQ, DCS                                |       |          |     |          |
| 3.1 | Analogue readout (LHCb ASICs)                | YES   | GSI      |     |          |
| 3.2 | Digital Readout DiRich                       | Part  | GSI      |     |          |
| 3.3 | Digital readout DOGMA (with interface)       | NO    |          |     |          |
| 3.4 | DAQ and integration to CBM [DOGMA]           | NO    | GSI      |     |          |
| 3.5 | DCS and integration to CBM                   | NO    |          |     |          |
| 4   | Detector tests                               |       |          |     |          |
| 4.1 | Testing of Individual Modules with           | Part  |          |     |          |
|     | LHCb electronics box                         |       |          |     |          |
| 4.2 | Acceptance tests of MUST modules             | NO    |          |     |          |
| 4.3 | Dismounting of C-frames and modules          | NO    |          |     |          |
| 4.4 | Detector data analysis & Qual-               | NO    |          |     |          |
|     | ity Assurance(QA)                            |       |          |     |          |
| 5   | MUST software integration in CBMROOT         |       |          |     |          |
| 5.1 | Simulation within the CBM Framework          | Part  |          |     |          |
| 5.2 | Validation & Performance eval-               | NO    |          |     |          |
|     | uation of the software                       |       |          |     |          |
| 5.3 | Computing tasks                              | NO    |          |     |          |
| 6   | Installation, Commissioning and Monitoring   |       |          |     |          |
| 6.1 | Installation of gas system, LV, HV           | NO    |          |     |          |
|     | infrastructure in CBM                        |       |          |     |          |
| 6.2 | Integration into CBM DAQ (optical backbone)  | NO    |          |     |          |
| 6.3 | Alignment & Calibration in CBM               | NO    |          |     |          |

# Backup

### 5.1 Simulation within the CBM Framework

## **Detailed tasks:**

- Implementation of MUST detector elements
- GEANT4 geometry of the modules and stations adapted to CBM
- Digitisation including noise + LHCb OT signal response
- Hit reconstruction algorithms
- Track-matching scheme with MUCH GEMs and STS

# Work Package 6: Installation, Commissioning and Monitoring

## <u>Objective</u>

- Install MUST in the CBM cave, commission services,
- and prepare full detector monitoring for operation.

## <u>Tasks</u>

- 6.1 Installation of gas system, LV, HV infrastructure in CBM
- 6.2 Integration into CBM DAQ (optical backbone)
- 6.3 Alignment & Calibrations in CBM

# 6.2 Integration into CBM DAQ (Optical Backbone)

## **Detailed tasks:**

 Review number of optical fibres required for MUST → CBM DAQ

## 6.4 Alignment & Calibrations in CBM

## **Detailed tasks:**

- Survey campaigns
- Time calibration, threshold tuning, HV optimisation
- Track-based alignment procedures
- Software for alignment and calibration (ask Sergey)