First Taste of HISPEC @ FAIR: PreSPEC-AGATA in Operation

N. Pietralla for ...

Campaign: D. Rudolph, W. Korten, M. Bentley, et al. for PreSPEC-AGATA

GSI: J. Gerl, M. Gorska, I. Kojouharov, H. Schaffner, N. Kurz et al.

FAIR@GSI: H.-J. Wollersheim, P. Boutachkov, S. Pietri et al.

Central Topics for NUSTAR at FAIR

- Quest for the limits of existence
- Halos, Open Quantum Systems, Few Body Correlations
- Changing shell structure far away from stability
- Skins, new collective modes, nuclear matter, neutron stars
- Phases and symmetries of the nuclear many body system
- Origin of the elements
- unified QCD-based effective nuclear theory
HISPEC – High Resolution Gamma Spectroscopy

Purpose:
High-resolution in-flight spectroscopy of exotic nuclei using Super-FRS RIB beams at 3 – 400 A·MeV

Methods:
- Coulex, knock-out, fragmentation at relativistic energies, direct reactions,…

Set-up:
- Beam tracking and identification (LYCCA)
- Active target
- AGATA
- Fast timing
- HYDE particle array
- Magnetic spectrometer

LYCCA Calorimeter

Energy buncher / spectrometer
Super-FRS Buildings (FAIR MSV version)

Warning: Missing LEB-cave is threatening success of all NuSTAR activities!
Outline of Presentation

- Experimental challenges for HISPEC
- Doppler effect in γ-spectroscopy
- History of HISPEC
- PreSPEC
- New experimental techniques (M1 Coulex)
- First week of PreSPEC-AGATA @ FRS 2014
Experimental Challenges

1. Relativistic secondary RI Beam from in-flight separator
2. Nuclear reaction in stationary target
3. Excited reaction products leave the target (flight direction changes)
4. Emission of Doppler-shifted γ-Radiation

- Need γ-energy in rest frame of emitting nucleus (Doppler-correction)
- \rightarrow Need tracks of particle and γ-ray(s)
- Spectroscopic resolution depends on **accurate track reconstruction of both, γ-ray and particle!**
PreSPEC Schematic Setup

Gamma-ray detection
2011: 105 HPGe detectors (Euroball)
 - BaF Scintillators (HECTOR)
2012: HPGe array using pulse-shape analysis and γ-ray tracking techniques (AGATA)
 - BaF&LaBr scintillators (HECTOR+)

FRS
- particle selection: $Bp-\Delta E-Bp$
- Particle identification:
 - TPC tracking detectors
 - ToF measurement
 - Energy-loss measurement

LYCCA
- Outgoing particle tracking and identification:
 - Z identification via $E-\Delta E$
 - Mass identification via E-ToF

Picture from C. Domingo-Pardo et al., NIM A 694, 297-312 (2012)
Particle Tracking & Identification

FRS detectors
- 2 TPCs for trajectory
- 2 Ionization chambers for Z identification

LYCCA detectors
- 17 silicon DSSSD detectors for tracking and energy loss
- 144 CsI scintillators for particle energy
- 3 fast plastic scintillators for time of flight and tracking
Doppler-Effect in γ-Spectroscopy

Doppler shift for photons emitted at $\beta = v/c$:

$$E_{\text{laboratory}} = E_{\text{rest}} \frac{\sqrt{1 - \beta^2}}{1 - \beta \cos(\theta_{\text{lab}})}$$

Achievable resolution for typical PreSPEC-AGATA conditions (analytic Gaussian error propagation):

- More effects depend on half-life and j^π of excited state and geometry:
 - peak shapes
 - centroid shifts
 - angular distribution

Discussion of these effects:
- P. Doornenbal, et. al., NIM A, 613, 2, (2010), 218

Peak shape from Doppler shift effects have been used to measure lifetimes:

Software for peak-shape calculation, fitting, and scientific usage is developed at TU-Darmstadt (C. Stahl / M.Lettmann) → M.Reese
Ge-Spectroscopy at Relativistic Velocities

• Doppler-shift extremely large
 • → precision measurement of gamma and particle positions
 • either HPGe detector at large distance (RISING)
 • or segmented HPGe detector with pulse-shape analysis (PSA):
 AGATA
PSA and γ-Tracking in AGATA

Ingredients of γ-Tracking

1. Highly segmented HPGe detectors
2. Digital electronics to record and process segment signals
3. Identified interaction \((x, y, z, E, t)\)
4. Reconstruction of tracks e.g. by evaluation of permutations of interaction points

Pulse Shape Analysis to decompose recorded waves

reconstructed γ-rays
History of HISPEC

- RISING
 - Fast Beam
 - g-RISING
- PreSPEC phase
 - LYCC-0
 - AGATA-D
 - AIDA
- HISPEC/DESPEC

commissioning of new HISPEC/DESPEC equipment via inclusion in experiments

PRESPEC-AGATA Set-up = Early Implementation of HISPEC

AGATA
Tracking array
5x2+10x3 crystals
R = 12 – 40 cm
\(\varepsilon_{ph} \approx 17\%
\Delta E \approx 0.4\%

From PreSPEC to HISPEC

<table>
<thead>
<tr>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>RISING</td>
<td>PRESPEC In-beam LYCCA-0 Commis.</td>
<td>PRESPEC in-beam with AGATA</td>
<td>active stopper g-factors</td>
<td>Min. 25% bei FAIR, GANIL, Legnaro</td>
<td></td>
</tr>
</tbody>
</table>

AGATA Demonst. Legnaro

AGATA in GANIL

Experimental program 2010-2015: running!

- First experiments with AGATA Demonstr. at Legnaro (2010 – early 2012)
- PRESPEC Experiments at GSI-FRS (2012 - 2014 with AGATA)
PreSPEC in Operation March 2014

FRS Beam

Hector

AGATA

LYCCA
G-PAC (Nov. 2011): 8 experiments (50 days)
12+ weeks of beam time for AGATA (2012/13)
5 weeks scheduled in 2012, 7(5) more in 2014.

- Evolution of nuclear collectivity
 \(^{70}\text{Kr}, ^{106}\text{Zr}, ^{208,212}\text{Po}\)
- Evolution of nuclear shell structure:
 \(^{85}\text{Br}, ^{131}\text{In}\)
- Nuclear structure at the N=Z line:
 \(^{46}\text{Cr}, ^{52}\text{Fe}\)
- Dipole response and novel techniques:
 \(^{64}\text{Fe}, ^{85}\text{Br}\)
Successful Commissioning of Liquid Hydrogen Target

Gamma spectra with gates on outgoing fragments, identified with LYCCA:

GSI in June 2012:
- 54Cr beam with 130 MeV/u at the target position
- thickness of LH$_2$ target: 20mm
PreSPEC-AGATA Commissioning, 2012 (see next talk)

Coulomb excitation of 80Kr

Secondary fragmentation of 80Kr
Physics Topics of PreSPEC

- S426 85Br M1 spin-flip Coulomb excitation
- S427 70Kr energies
- S428 Zr shape evolution
- S429 B(E2) in the Pb region
- S430 64Fe Pygmy fine structure
- S431 132Sn shell structure
- S433 52Fe isomer Coulex
- S434 $T_z = -2$ Lifetime measurements, 44,46Cr
Direct Characterization of Spin-Orbit Splitting (Tensor Force): \(^{85}\text{Br}\) as Test Case

- Direct identification of spin-orbit partners via B(M1) strength measurement
- How to measure on exotic ions?
 - \((\gamma, \gamma')\), or \((e, e')\)? No radioactive target!
 - Coulomb excitation? E2 dominated!
 - But…

\[
\begin{align*}
1p_{1/2} & \quad 1p_{3/2} \\
\quad & \quad \text{Unique signature!} \\
\quad & \quad B(M1; j_\downarrow \rightarrow j_\uparrow) \approx 1\mu_M^2
\end{align*}
\]
Spin-Flip M1: Coulex?

Coulomb excitation only E2 dominated for low energy.
In-flight separation produces exotic ions with high velocity

<table>
<thead>
<tr>
<th>M1 Coulomb excitation is small in relation to E2 excitation for nonrelativistic beams.</th>
</tr>
</thead>
<tbody>
<tr>
<td>For high velocities, M1 can have significant contribution to the total cross-section!</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\sigma_C(E2) & \propto (1/\beta)^2 \\
\sigma_C(M1) & \text{ (independent)}
\end{align*}
\]

\[
\frac{\sigma_C(M1)}{\sigma_C(E2)} \propto \left(\frac{v}{c} \right)^2
\]

Discriminate E2 vs M1-contribution?
I.e. how to measure the multipole mixing ratio?
Two Beam Energies

- Energy dependence: decreasing E2 contribution for high energies
- Ratio of total cross-sections at different energies is sensitive to multipole mixing ratio

\[\delta \propto \frac{\langle f \mid \hat{T}_{E2} \mid i \rangle}{\langle f \mid \hat{T}_{M1} \mid i \rangle} \]
One shift of data taking with 85Br

- 85Br beam: 300 MeV/u
- Mean particle rate: 26kHz (> 50kHz in spill)
- Target: 400 mg/cm2 gold:

- Background higher than initially anticipated, consistent with commissioning
- Need two measurements at different energies
- Improvements: double-target solution: „Coulex-multipolarimetry by active degrader“
Two-Target Solution: Idea (C. Stahl)

Idea: 2 targets. First target thick enough to slow down beam from 300 to 200 MeV/u at the second target. All information in one measurement!

Working principle:

- Lifetime of excited state ~50 fs.
- Decay happens directly after excitation.
- Decay position equal to excitation position.
- Two peaks will appear due to different detection angles (Doppler-effect).
- Excitation in first target happens at high energy (300 MeV/u).
- Excitation in second target happens at lower energy (200 MeV/u).
Two-Target Solution: Simulations

Simulated Peak shapes (Doppler-corrected Energy vs. detection angle):

Pro‘s:
- one beam energy
 - one FRS setting
 - same conditions for both energies
- thick target
 - increased excitation prob.
 - better peak to background ratio

Con‘s:
- thick target
 - increased angular stragglng
 - increased energy stragglng
 - increased velocity uncertainty
Summary

HISPEC is ready, 1st phase (while waiting for the S-FRS)

- evolution of nuclear collectivity
- direct access to shell evolution (spin-orbit splitting)
- several new ideas and methods

too little beam time!

Thank you for attention!