PI-ICR technique for high-precision measurements of nuclide masses (development at SHIPTRAP)

Sergey Eliseev

K. Blaum, M. Block, S. Chenmarev, A. Dörr, C. Droese, T. Eronen,P. Filjanin, M. Goncharov, M. Höcker, J. Ketter, E. Minaya Ramirez,D. Nesterenko, Yu. Novikov, L. Schweikhard, V. Simon

GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany Max-Planck-Institut für Kernphysik, Germany Institut für Physik, Ernst-Moritz-Arndt-Universität,Germany Petersburg Nuclear Physics Institute, Russia

NUSTAR Meeting, March 5th

high-precision measurements of masses of exotic nuclides

Field	Examples	δm/m
nuclear structure physics	shell closures, shell quenching, regions of deformation, drip lines, halos, island of stability <i>rp</i> -process and <i>r</i> -process path, waiting-points	10 ⁻⁶ - 10 ⁻⁷
astrophysics	nuclei, astrophysical reaction rates, neutron stars	
weak interaction studies	CVC hypothesis, CKM matrix unitarity, <i>Ft</i> of superallowed <i>ß</i> -emitters	10 ⁻⁸
metrology, fundamental const. neutrino physics	α (h/m _{Cs} , m _{Cs} /m _p , m _p /m _e), m _{Si} 0vββ, 0v2EC	10 ⁻⁹ -10 ⁻¹⁰
neutrino mass CPT tests QED in highly-charged ions	eta-decay, EC m_p and $m_{\overline{p}}$ m_{e} and m_{e_+} m_{ion} , electron binding energy	<10 ⁻¹¹

high-precision measurements of masses of exotic nuclides

Field	Examples	δm/m
nuclear structure physics	shell closures, shell quenching, regions of deformation, drip lines, halos, island of stability <i>rp</i> -process and <i>r</i> -process path, waiting-points	10 ⁻⁶ - 10 ⁻⁷
astrophysics	nuclei, astrophysical reaction rates, neutron stars	
weak interaction studies	CVC hypothesis, CKM matrix unitarity, <i>Ft</i> of superallowed <i>β</i> -emitters	10 ⁻⁸
metrology, fundamental const. neutrino physics	α (h/m _{Cs} , m _{Cs} /m _p , m _p /m _e), m _{Si} 0vββ, 0v2EC	10 ⁻⁹ -10 ⁻¹⁰
neutrino mass CPT tests QED in highly-charged ions	eta-decay, EC m_p and $m_{\overline{p}}$ m_{e} and m_{e_+} m_{ion} , electron binding energy	<10 ⁻¹¹

Penning trap → the most accurate mass spectrometer

strong uniform static B-field

Penning trap \rightarrow the most accurate mass spectrometer

strong uniform

THe-TRAP

Max-Planck Institute for Nuclear Physics, Heidelberg

Penning trap → the most accurate mass spectrometer

 $V_{c} = V_{+} + V_{-}$

 $\frac{\Delta v_c}{v_c} > 10^{-10}$

Penning-Traps worldwide

Penning-Traps worldwide

on-line facilities (short-lived nuclides)

δm/m ~ 10⁻⁶ - 10⁻⁸

Bolivia

until now ToF-ICR technique

Penning-Traps worldwide

on-line facilities (short-lived nuclides)

δm/m ~ 10⁻⁶ - 10⁻⁸

until now ToF-ICR technique

Bolivia

future ? PI-ICR technique

SHIPTRAP

150-1000 keV/u - - - - - - - - - → ≈ 1 eV

M. Block et al., Eur. Phys. J. D 45 (2007) 39

Currently used **ToF-ICR** technique (Time-of-Flight Ion-Cyclotron-Resonance)

$$\vec{F} = -\vec{\mu} \cdot \frac{\partial \vec{B}}{\partial z}$$

larger $\mu \rightarrow$ shorter ToF

MAX PLANCK INSTITU For Nuclear Physic

Currently used **ToF-ICR** technique (Time-of-Flight Ion-Cyclotron-Resonance)

 $\vec{F} = -\vec{\mu} \cdot \frac{\partial \vec{B}}{\partial z}$

larger $\mu \rightarrow$ shorter ToF

Penning trap

injection

EAR PHYSICS

[NST]

MAX

Currently used **ToF-ICR** technique (Time-of-Flight Ion-Cyclotron-Resonance)

 $\vec{F} = -\vec{\mu} \cdot \frac{\partial \vec{B}}{\partial z}$

larger $\mu \rightarrow$ shorter ToF

[NST]

MAX

Max Planck Institut] for Nuclear Physics

AX-PLANCE CEBELL BOT IAF

AAX PLANCK INSTI

MAX-PLANCE-CERELL BOHAFT

Perfomance of ToF-ICR technique

X-FLANCE-CESELLSCHAFT

new technique for singly-charged ions

- gain in resolving power: ~ 50
- much faster measurements
- gain in precision: ~ 5

determination of neutrino mass with accuracy of 0.2 eV

ECHO - Project
$$\rightarrow$$
 Analysis $\begin{array}{c} \text{EC in}^{163}\text{Ho} \\ \beta^{-}\text{decay of}^{187}\text{Re} \end{array}$

$\delta Q \sim 50 \text{ eV} (\delta Q/m < 3.10^{-10}) \longrightarrow \text{development of experiment}$

Development of the ECHo-Project (scale of experiment)

¹⁶³Ho

¹⁸⁷**Re**

SHIPTRAP in 2014-2015 Measurement of *Q*-values of ¹⁸⁷Re β-decay & EC in ¹⁶³Ho

with 50 eV-uncertainty

New **PI-ICR** technique (Phase-Imaging Ion-Cyclotron-Resonance)

 $v_c = v_+ + v_-$

modified cyclotron

≽ B

New **PI-ICR** technique (Phase-Imaging Ion-Cyclotron-Resonance)

$$V_{c} = V_{+} + V_{-}$$

MAX-PLANCE CEBELLBOHAFT

position-sensitive detector

Penning trap

delayline position-sensitive detector RoentDek GmbH DLD40

Active diameter	42 mm
Channel diameter	25 um
Open area ratio	<u>∽50 %</u>
Desition regulation	70 um
Position resolution	70 µm
Max. B-field	a few mT
Time resolution	~ 10 ns

60

45

30

15

0

measurement of free cyclotron frequency: $V_c = V_+ + V_-$

measurement of free cyclotron frequency: $V_c = V_+ + V_-$

if production rates of exotic nuclides are extremely low and experiment time is limited?

it is desirable to skip the measurement of the reference phases

measurement of free cyclotron frequency: $v_c = v_+ + v_-$

• gain in precision =
$$\frac{(\delta v_c)_{ToF-ICR}}{(\delta v_c)_{PI \ ICR}} = 1.6 \cdot \pi \cong 5$$

• gain in resolving power = $\frac{0.6\pi r}{\Delta r} = \frac{0.6 \cdot \pi \cdot 1}{0.05} \cong 40$

δ[M(¹²⁴Xe) - M(¹²⁴Te)] ~ 300 eV

δ[M(¹³²Xe) - M(¹³¹Xe)] ~ 70 eV !!!

PI-ICR vs. ToF-ICR in experiment

PI-ICR in experiment

 $\delta(\Delta M)_{\text{SHIPTRAP}} = (30_{\text{stat}})(12_{\text{sys}}) \text{ eV}$ $\Delta M_{\text{SHIPTRAP}} - \Delta M_{\text{reference}} = (8 \pm 35) \text{ eV}$

PI-ICR in experiment

first ever measurement of mass difference of *singly charged* medium-heavy non-mass-doublets with a relative accuracy of 2.10⁻¹⁰ !!!

SHIPTRAP in 2014-2015

We are preparing for the measurement of the *Q*-value of:

(1) β⁻-decay of ¹⁸⁷Re
(2) EC in ¹⁶³Ho

with an uncertainty of $\sim 50 \text{ eV}$

MAX PLANCK INSTITUTI FOR NUCLEAR PHYSICS

- PI-ICR has been developed at SHIPTRAP for mass measurements on singly-charged short-lived nuclides
- PI-ICR is much faster than ToF-ICR and offers very high mass resolving power

• Performance at SHIPTRAP:

 $\delta(M(^{132}Xe) - M(^{131}Xe)) = \pm 30 \text{ eV}$

• Plans at SHIPTRAP: Q-values of EC in ^{163}Ho and $$\beta$-decay of <math display="inline">^{187}\text{Re}$$

Acknowledgements

Max-Planck-Institut für Kernphysik

Deutsche Forschungsgemeinschaft

DFG BL981/2-1

adv. grant MEFUCO (# 290870) EMMI

Helmholtz Alliance (HA 216)

Thank you for your attention !

- Presence of Helium in the Trap
- Anharmonicity of the Trap Potential
- Instability of the Trap Potential in Time
- Instability of the B-Field in Time
- Error due to Conversion

Presence of Helium in the Trap

collisions with He atoms in trap increase the size of cyclotron phase spot

$$\left(\frac{\nu_c}{\Delta\nu_c}\right)^{max} \approx \left(\frac{\nu_+}{\Delta\nu_+}\right)^{max} \approx 5 \cdot 10^6 \qquad (M = 200 \text{ u}) \\ \Delta M = 40 \text{ keV}$$

Anharmonicity of the Trap Potential

$$v_{-} = v_{-}^{harmonic} + C'_{4}r_{-}^{2} + C'_{6}r_{-}^{4} + \dots$$

$$v_{+} = v_{+}^{harmonic} - C'_{4}r_{+}^{2} - C'_{6}r_{+}^{4} - \dots$$

$$U_{trap} = C_{2}\frac{U_{0}}{2d^{2}}z^{2} + C_{4}\frac{U_{0}}{2d^{4}}z^{4} + C_{6}\frac{U_{0}}{2d^{6}}z^{6} + \dots$$

harmonic trap

anharmonic trap

MAX PLANCK INSTITUT FOR NUCLEAR PHYSICS

MAX-PLANCK-CESELLBOHAFT

Instability of Trap Potential in Time

temporal instability of trapping voltage causes angular smearing of both phase spots

MAX PLANCK INSTITUT FOR NUCLEAR PHYSIC

Instability of B-Field in Time

temporal instability of B-field causes angular smearing of cyclotron phase spot

$$\left(\frac{\nu_c}{\Delta\nu_c}\right)^{max} \approx \left(\frac{\nu_+}{\Delta\nu_+}\right)^{max} \approx 2 \cdot 10^7 \quad (M = 200 \text{ u})$$

 $\Delta \Phi = f(\phi, \omega_{c} t,$

S)
$$\phi = \phi_{rf}^{(i)} - \phi_{-}^{(i)} - \phi_{+}^{(i)}$$
$$S = r_{-}^{(i)} / r_{+}^{(i)}$$

$$\Delta \Phi = f(\phi, \omega_{c}t, S) \qquad \phi = \phi_{rf}^{(i)} - \phi_{-}^{(i)} - \phi_{+}^{(i)}$$
$$S = r_{-}^{(i)} / r_{+}^{(i)}$$

IVSICS

magnetron motion vs. modified cyclotron motion

time of flight of ¹³²Xe ions between the trap and the detector

projection of modified cyclotron motion

modified cyclotron motion direct projection

magnetron motion projection after full conversion

Phase (after conversion) = - Phase (before conversion) + Const \oint (after conversion) = - \oint (before conversion)

measurement sequence Nr. 1

magnetron frequency v_{-}

modified cyclotron frequency v_{\star}

phase accumulation time

reference phase

magnetron frequency ν_{-}

modified cyclotron frequency v_+

measurement sequence Nr. 2

AX-PLANCE CESELL SCHAFT

measurement sequence Nr. 2

if production rates of exotic nuclides are extremely low and experiment time is limited?

free cyclotron frequency v_c

determination of neutrino mass with accuracy of 0.2 eV

