

### ELI-NP Nuclear Science and applications with the next generation of High Power Lasers and Gamma beams







Sectoral Operational Programme "Increase of Economic Competitiveness" "Investments for Your Future!"





Europe has decided to build the highest intensity laser ELI For Extreme Light Infrastructure

1PW, 1 µm~highest power laser today

2006 – ELI on ESFRI Roadmap

ELI-PP 2007-2010 (FP7) Three Pillars ( **1B€**) ELI-Beamlines (Czech Republic) ELI-Attoseconds (Hungary) **ELI-Nuclear Physics (Romania)** 



Project Approved by the European Competitiveness Council (December 2009) <u>ELI-DC (Delivery Consortium): April 2010</u>



Laser +e- Acc

LIGNT

### **ELI-NP**

Observation of matter with new powerful probes Two machines of extreme performances Large discovery potential

Two 10 PW lasers,10<sup>23</sup> w/cm<sup>2</sup>

**Extreme E-M fields** 



BCS Brillant Gamma Beams 0,2-19 MeV ,10<sup>13</sup> $\gamma$ /s ,0,3% BW



# **ELI–NP Project Timeline**





BUCHAREST

ring rail/roa

#### **Bucharest-Magurele Physics Campus** National Physics Institutes

"Horia Hulubei" National Institute for Physics and Nuclear Engineering

**ELI-NP** 

Google

Lasers Plasma Optoelectronics Material Physics Theoretical Physics Particle Physics

954 m

NUCLEAR Tandem acc.s Cyclotrons γ – Irradiator Adv. Detectors Life & Env. Radioisotopes Reactor (decomm.) Waste Proc.

> © 2009 ORION-ME © 2009 Tele Atlas

TRAFLE

### **ELI-NP Milestones – Facility Construction**



### **ELI–NP Experiment Building**

E6 10PW

E7,2X10PV

E1 10PW

E5 1PW @ 1 Hz E4 0.1PW @ 10 Hz

E3 Positron

source

E2,NRF

**Experiments** 8 experimental areas

> E8,Gamma **Nuclear reactions**

> > E7,QED High field gamma + electrons

HP Lasers

7000 m<sup>2</sup>

# **ELI–NP Nuclear Physics Research**

Nuclear Physics experiments

Photo-fission & Exotic Nuclei Nuclear Photonics (NRF) Photo-disintegration, Nuclear Astrophysics complementary to other ESFRI Large Scale Physics Facilities (FAIR, SPIRAL2)

- Laser–Target interaction characteristics : NP diagnostics
- Laser Ion driven nuclear physics : fission-fusion
- Strong fields QED. Towards High field (Laser + Gamma) and Plasma
- Applications based on HPLS and High intensity laser and very brilliant © beams complementary to the other ELI pillars

ELI–NP in Romania selected by the most important science committees in Europe – ESFRI and NuPECC, in the 'Nuclear Physics Long Range Plan in Europe' as a major facility







# **ELI–NP Scientific Coordination**



Convener local liaison

### **ELI–NP HPLS**



# **HPLS Delivery**





D.Habs, P.Thirolf et al., Appl. Phys. B 103, 471 (2011)

#### Study of heavy ions acceleration mechanism at laser intensities > 10<sup>23</sup> W/cm<sup>2</sup>

- Deceleration of very dense electron and ion beams
- Understanding influence of screening effect on stellar reaction rates using laser plasma
- Nuclear techniques for characterization of laser-induced radiations

# Strong Field QED

#### ELI–NP delivering pulse at > 10<sup>23</sup> W/cm<sup>2</sup> will enable this exciting new regime to be investigated

Require electrons with a large Lorentz factor ( $\gamma$ ) interacting with strong electromagnetic fields.

Ultra-intense lasers should be able to provide both the Lorentz factor and the fields

(1) Interaction of GeV electron beam (Wakefield) with TW-PW laser

(2) >10PW laser pulse interactions with dense plasma

Reaction rates are high due to high electron density

 $10PW=10^{23}Wcm^{-2} \rightarrow \gamma=300 \rightarrow \eta \approx 0.2$ 

A.R. Bell & J.G. Kirk, Phys Rev Lett, 101, 200403 (2008)







# The Gamma Beam System



Laser Compton Back-scattering (LCB)

the most efficient frequency amplifier

'Photon accelerator'

 $\frac{4\gamma_e E_L}{mc^2} = \text{recoil parameter};$  $\boldsymbol{E}_{\gamma} = 2\gamma_{e}^{2} \cdot \frac{1 + \cos\theta_{L}}{1 + (\gamma_{e}\theta_{\gamma})^{2} + a_{0}^{2} + \frac{4\gamma_{e}E_{L}}{m^{2}}} \cdot \boldsymbol{E}_{L} \quad mc^{2^{--1} \text{ ccon parameter };}$   $a_{L} = \frac{eE}{m\omega_{L}c} = \text{normalized potential vector of the laser field};$ E = laser electric field strength;  $E_I = \hbar \omega_I$ 

Low cross section ( $\sim 10^{-25}$  cm<sup>2</sup>) meed of high photon and electron densities

#### Maximum upshift

- head–on collision ( $\theta_L$ =0) & backscattering ( $\theta_\gamma$ =0)  $E_{\gamma} \sim 4 \gamma_e^2 \cdot E_L$
- $E_L \sim 2.4 \text{ eV (green)} \begin{bmatrix} E_e \sim 300 \text{ MeV} \implies E_{\gamma} < 3.5 \text{ MeV} \\ E_e \sim 720 \text{ MeV} \implies E_{\gamma} < 20 \text{ MeV} \end{bmatrix}$

### GBS – Bandwidth & Brilliance



C.Barty – ELI–NP Gamma Source Meeting, Bucharest, August 18, 2011

### **ELI–NP Gamma Beam System**



- high intensity / small emittance e<sup>-</sup>
  beam from a warm LINAC
- very brillant high rep./rate int. laser
- small collision volume



# **GBS** – The Eurogammas Proposal



In the **context of the ELI-NP Research Infrastructure**, to be built at Magurele (Bucharest, Romania), an advanced Source of Gamma–ray photons is planned, capable to produce beams of mono-chromatic and high spectral density gamma photons. The **Gamma Beam System is based on a Compton back–scattering** source. Its main specifications are: photon energy tunable in the range 1–20 MeV, rms bandwidth smaller than 0.5% and spectral density larger than 10<sup>4</sup> photons/s/eV, with source spot sizes smaller than 10–30 microns.



|                         |                           | Low energy IP              | Low energy IP               | Number of<br>bunches |
|-------------------------|---------------------------|----------------------------|-----------------------------|----------------------|
| S-Band<br>photoinjector | Low Energy<br>diagnostics | E <sub>gamma</sub> =3.5MeV | E <sub>gamma</sub> =19.5MeV | Bunch dista          |
|                         |                           |                            |                             | C-band ave           |
| ,<br>                   |                           |                            |                             | gradient             |
| 12 C-Bar                |                           |                            | High Energy<br>diagnostics  | Norm.<br>emittance   |
|                         |                           |                            |                             | Bunch leng           |
| Booster                 |                           |                            |                             | RF rep Rate          |

| Bunch charge                               | 250 pC             |
|--------------------------------------------|--------------------|
| Number of<br>bunches                       | 32                 |
| Bunch distance                             | 16 ns              |
| C-band average<br>accelerating<br>gradient | 33 MV/m            |
| Norm.<br>emittance                         | 0.2-0.6<br>mm∙mrad |
| Bunch length                               | <300 μm            |
| RF rep Rate                                | 100 Hz             |

# **GBS** – Experimental Setups

#### E3: Positron spectroscopy

#### E2: Low energy gamma vault

- Nuclear Resonance Fluorescence
- Isotope-specific material detection, assay and imaging
- Photofission
- Medical isotopes

#### E8: High energy gamma vault

- $(\gamma, n)$  cross sections
- NRF
- Photofission

### E7: Experiments with combined laser and gamma beams



# NRF – Physics case

#### Electromagnetic dipole response of nuclei

Nuclear structure

Modes of excitation below the GDR

Impact on nucleosynthesis

Gamow window for photo-induced reactions in explosive stellar events

Understanding exotic nuclei

• E1 strength will be shifted to lower energies in neutron rich system





# **Astrophysics – related studies**

- Production of heavy elements in the Universe –a central question for Astrophysics
- Neutron Capture Cross Section of s-Process Branch
- Nuclei with Inverse Reactions  $(\gamma, n)$

•neutron capture cross sections in the models differ by up to 50% from the experimentally determined values



### Measurements of (γ, p) and (γ, α) Reaction Cross Sections for p – **Process-Nucleosynthesis :Key reaction** $\gamma$ +<sup>16</sup>O <sup>12</sup>C+α</sup>

Determination of the reaction rates by an absolute cross section measurement is possible using mono-energetic photon beams produced at ELI-NP

tremendous advance to measure these rates directly broad database of reactions – high intense  $\gamma$  beam needed

### A new ISOL-Photofission concept based on Brillant and Mono-energetic Gamma Beams

- (1) ISOLDE @ CERN
- (2) GANIL, SPIRAL1, 2...
- (2) ALTO @ Orsay
- (3) TRIUMF and ARIEL
- (4) CARIBU @ Argonne
- (6) IGISOL @ Jyvaskyla
- + Many projects at SPES (LNL) RIBF(RIKEN), DESIR(GANIL), NSCL, IThema lab, JINR Dubna.....
- All these laboratories possess huge expertise. Is there really a niche to compete?





First calculation says that the yield is  $\approx 10^{9}$ -<sup>10</sup> f/s.

Low Energy Gamma Beam fully efficient at 15 MeV for producing in thin U targets ,short live and refractory elements using gas cell catcher with high efficiency due low ionizing power of pure  $\gamma$  beams Limited investments , minimize radioactivity, a real niche!!

### Potential Nuclear Photonics Applications from C.P.J. Barty (LLNL)



# **Applications of NRF To Nuclear Materials**







NRF signal U-238 2.176 MeV

2.176 MeV for U-238



# **Radioisotopes for medical use**

• New approaches and methods for producing radioisotopes urgently needed

Nuclear Physics

- •Mo-99 and other medical isotopes used globally for diagnostic medical imaging and radiotherapy
- <sup>195</sup>mPt: In chemotherapy of tumors it can be used to exclude "non responding" patients from unnecessary chemotherapy and optimizing the dose of all chemotherapy



# radiation effects in material

### Dr. Cristian Postolache IFIN HH DRMR

# Perspectives



- a new research facility is being under construction at Bucharest
  - HPLS
  - GBS
- research opportunities
  - nuclear physics
    - nuclear photonics
    - HP laser driven
  - strong field QED
- we are open for collaboration
- young researchers are invited to join the fun !

21<sup>st</sup> Century; the Photon Century Could basic research be driven by the massless and chargeless Photons??

Large Scale Lasers: Could they become the Next Large Scale Fondamental Research Infrastructures?





The First exemple is the Extreme Light Infrastructure ELI.

# **ELI–NP** Core Team

| Management       | GBS          |
|------------------|--------------|
| N.V. Zamfir      | O. Tesileanu |
| G. Cata–Danil    | D. Filipescu |
| S. Gales         | A. Oprisa    |
| I. Ursu          |              |
|                  | HPLS         |
| Head of Research | R. Dabu      |
| Activities       | F. Negoita   |
| C.A. Ur          | E. Turcu     |
| D. Balabanski    | I. Dancus    |
| D. Ursescu       | S. Balascuta |
|                  | L. Neagu     |
|                  | T. Asavei    |

| Engineering     | E |
|-----------------|---|
| C. Ivan         | N |
| M. Toma         |   |
| C. Petcu        |   |
| M. Risca        |   |
| M. Cernaianu    |   |
|                 |   |
| Radioprotection |   |
| S. Bercea       |   |
| E. Iliescu      |   |
| I. Mitu         |   |
|                 |   |

*EMP* M. Gugiu





EUROPEAN UNION





### You are welcome to join us!! Thank you for your patience



Project Co-financed by the European Regional Development Fund





"The content of this document does not necessarily represent the official position of the European Union or of the Government of Romania"

For detailed information regarding the other programmes co-financed by the European Union please visit www.fonduri-ue.ro