

Status of the Super-FRS

M. Winkler

Annual NuSTAR Meeting GSI, March 5 – 7, 2014

M. Winkler, Annual NuSTAR Meeting, GSI, March 5 – 7, 2014

- 1) Super-FRS Layout (Full Version)
- 2) Status of Civil Construction
- 3) Update on the Energy Buncher
- 4) Status on Super-FRS Components
- **5)** Summary

M. Winkler, Annual NuSTAR Meeting, GSI, March 5 – 7, 2014

Layout off the Super-FRS (Full Version)

Layout off the Super-FRS (Full Version)

FAIR CC Today

Super-FRS Buildings (MSV)

- Basic evaluation completed
- Preliminary planning completed
- Approval planning completed
- Execution planning under approval
- Running: route planning (cable, pipes, cryo)
- Formwork planning & Tendering
- Establishing cable data bank \rightarrow tender of cables

Build. 018, Target building

- 5 floors
- Target area, shielding
- Technique (PS, controls, ...)
- Hot Cell complex

Build. 006a, Service building

- 3 floors (~2000 m²)
- Technique (PS, controls, ...)
- Experimental preparation
- Control room, electronics
- Gas supply, gas mixing station
- Main tunnel access

(Detector) Gas Supply

Gas Mixing Station in Build. 6a

Energy Buncher: S-shape layout

(using standard multiplet magnets)

LEB task force H. Geissel, J. Winfield et. al

- Flexible operation
 - o large acceptance spectrometer
 - o high-resolution / energy buncher mode
 - o dispersion matching (Main-Separator and EB)
- Intermediate focus at focal plane FLF4
 - keep overall dispersion in limits
 - in particular reduce gap size of magnets (use standard multipole magnets)
 - reduce requirements on monoenergetic degrader at FLF5
 - reduce technical risks
- Enlarged experimental areas
 - better matching of detectors / spectrometer performance

M. Winkler, Annual NuSTAR Meeting, GSI, March 5 - 7, 2014

Magnets for Energy Buncher

LEB task force

- Magnets are Indian in-kind, revised parameters discussed with VECC
- Maximum beam rigidity: 7 Tm
- 3 dipole units with 30° deflection angle
 - $\circ\,$ superferric, warm iron, SC coils
 - \circ usable aperture: (x = ±250mm, y = ±70mm)
 - expected weight <80 ton,
 - cost reduction, easier to handle and to measure
 - $\circ~$ VECC is working on the new design
- Multiplet (quadrupole design same as in the separator)
 - \circ superferric, cold iron
 - o usable aperture: Ø380 mm,
 - o leff: 800 mm, max. gradient: 10 T/m
 - \circ configurations: 1 x QS, 3 x QQS, 1 x QQQ
 - $\circ~$ y-steerer still in discussion
 - specifications ready
 - saving development time & costs, reducing technical risks
- Magnet testing must be discussed, in principle possible at CERN

M. Winkler, Annual NuSTAR Meeting, GSI, March 5 - 7, 2014

Original VECC dipole design

Cave for LEB/Energy Buncher

LEB task force (D. Ackermann et. al)

- Architects feasibility study prepared by ION42 (FAIR architects)
- Cost estimate: 8.300k€ (2014)
 - breakdown according German CC cost type (KG xxx) provided
- Low-energy cave:
 - o area ≈800 m²
 - o height: 7.6m
 - o 5 ton crane
- MATS/LASPEC (annex):
 - o area ≈430 m²
 - height: 10m (2 floors)
 - o 5 ton crane
- Annex space (technique):
 - o **area 2 x 68 m**²
 - height: 3m / 4.5m (2 floors)
- Most important now: clarify funding
- Discussion with funding agenecies/RRB has been initiated
- Additional required pillars can not be provided in an early phase (mid 2014)
- Discussion with FLAIR/SPARC concerning possible impact of FLAIR SPARC building

Radiation Resistant Magnets (at the Target Area of Super-FRS)

H. LeibrockP. RottländerT. Blatz et. al

- ✓ Normal conducting magnets using MIC cable
- ✓ Prototype dipole built (95 ton) and tested by BINP
- ✓ Handling tests at GSI under way
- New design of first two quadrupoles behind target (field gradients were too high)
- Remote connectors and alignment under revision
- Specification in preparation (Q3/2014)
- Tendering by FAIR, Contracts Q1/2015

BC2

BC₃

SC Dipole Magnets

M. Müller H. Leibrock et. al

- 3 dipole units 11°
- 21 dipole units 9.75°
 - ➢ 3 times modified cryostat
- Iron dominated
- Warm iron
- SC coil
- Aperture ± 190 mm x ± 70 mm
- Weight: 50 to 60 ton
- Prototype built and tested (FAIR China Group)

Status:

- ✓ IMoU with CEA/Saclay signed:
 - Engineering design
 - Technical follow-up
 - Participation at CERN testing
- ✓ Technical Kick-off
- Visit IMP CW14/2014 (with CEA, GSI, FAIR?)
- PDR CW20/2014 (includes external advisor)
- FDR Q2/2014 (without special dipoles)
- Tender by FAIR Q3/2014 (option on special dipoles)
- First of Series ready for testing: Q1/2016
- Series production and testing: Q3/16 Q4/18

SC Multiplets

M. Müller H. Leibrock et. al

- 24 long multiplets (MS)
- 7 short multiplets (PS)
- Quadrupol triplet / QS configuration
- up to 3 sextupoles and 1 steerer
- Octupole coils in short quadrupoles
- iron dominated, cold iron (≈40 tons)
- common helium bath
- warm beam pipe (38 cm inner diameter)
- per magnet 1 pair of current leads
- max. current <300A for all magnets

Tender Status:

- ✓ Bidder submitted quotes Q4/2013
- ✓ 1st round negotiation finished
- 2nd round starting March 2014
- Signing of contract expected Q2/2014
- Testing of First short Multiplet at CERN: Q1/16 – Q2/16
- Testing of first long multiplet at CERN: Q2/16 – Q4/16
- Series testing at CERN: Q1/17 Q2/19

Super-FRS Local Cryogenics

(Including Preparation for CERN Testing)

- Flow scheme / Cooldown processes
 - FB controls: 3 dipoles / 2 multiplets
 - Total cold mass (PS + MS): ≈ 1.100 ton
 - Cryogenic operation modes
- Revision of feedboxes
- Updates of cryogenic interfaces
- Emergency cases
 - Normal quench \rightarrow 70% of energy deposited in quench protection system
 - \circ Worst case scenario \rightarrow full energy in He
 - dimensioning of safety valves/burst disc

M. Winkler, Annual NuSTAR Meeting, GSI, March 5 - 7, 2014

Y. Xiang et. al

Super-FRS Local Cryogenics Routing (Driven by CC Planning)

Y. Xiang S. Purushotaman A. Kratz et. al

Magnet Testing & Mapping @ CERN

✓ GSI-CERN Agreement K1727/DG & Addendum #2 (signed)

- Scope (separator magnets):
 - ✓ 24 Dipoles (PS & MS),
 - ✓ 31 Multipletts (+ 2 spare)
- Place: CERN building 180
- 3 universal test benches, basically:
 - 1 setting-up & cool-down
 - o 1 measuring
 - o 1 warm-up & disassemble

14 days

P. Schnizer et. al

- Ready for testing: Q4/2015
- Time estimate (single multiplet): 44 days
 - o Installation, connection, cool-down: 15 days
 - Cold test (powering, magnetic field): 15 days
 - Warm-up, disassembly:
- overall series measurement time: ≈ 3-3.5 years

M. Winkler, Annual NuSTAR Meeting, GSI, March 5 - 7, 2014

Magnet Testing Area @ CERN

P. Schnizer et. al

Existing equipment

- o magnet-measurement station, crane
- Cryo: Ghe Buffer, distribution box pre-cooler (10kW) + compressor

✓ New required equipment (mainly cryo-parts):

- 2nd pre-cooler (10kW) + compressor
- 3 satellite valve-boxes & cryogenic lines
- o LN2 & LHe tank

Beam Diagnostics & Instrumentation

see also presentation by C. Nociforo

brief detector up-date

- GEM-TPC (Finnish in-kind), running WP
- ✓ prototype ready
- Iow-energy, high-rate beam test: JYU
- high-energy beam test: GSI
- \succ final specification (Q1/15) \rightarrow production
- SEM-GRID & ladder system
- ✓ accepted as Finnish in-kind (Q4/2013)
- ✓ Project engineer hired (Kari Rytkönen)
- integrated together with GEM-TPC
- pre-design for SEM-GRID ready (HEBT)
- Iadder integration to be designed
- various test beam-times in 2014
- Dubna (radiation hard ToF)
- ➤ GSI (MUSIC)
- > JYV & GSI (GEM-TPC)
- Catania (Diamond)

M. Winkler, Annual NuSTAR Meeting, GSI, March 5 - 7, 2014

Slit-systems & Secondary Target

- ✓ accepted as German In-kind (Q4/13)
- ✓ Collaboration MoU with KVI-CART
- ✓ project group at KVI established
- ✓ kick-off / regular meetings with KVI
 - \succ specification, pre-designs
 - technical aspects (e.g. weight)
 - > cost aspects (material)

Target Area Installation

- Target chamber & plug inserts (German in-kind)

 dimensional design ready
 proposed to be contracted to KVI
- Target wheel & plug inserts (German in-kind)

 prototype target wheel with drive available,
 revision ongoing (wheel size, moving mechanism, design for remote handling
- Beam catcher (Indian in-kind)
 - chamber design adjusted
 - (additional pumping channels)
 - o two-halves catcher concept design added
 Be/Al for slow extraction
 Graphite for fast extraction
 by factor ≈ 3
 - $_{\odot}$ clarification with India on scope of work

Shielding flask

- o accepted as Finnish in-kind (Q4/2013)
- Finnish collaborators: Hollming Works Ltd., ENMAC, Aalto University
- Preplanning to go into approval process, then order production.

Hot Cell / Mock-up Installation (German in-kind)

C. Karagiannis H. Weick et. al

- Based on study by nuclear engineering company (includes new tooling required for waste handling)
- Mock-up installed on ESR roof
 - metallic frame & two MS manipulators (load capacity 20kg, slave extention 3270 mm)
 - o validation of design concepts
 - o training of personnel
 - Collaboration with SPIRAL 2 (EU CRISP)
- Manufacturing of window frames for hot cell

•Next step: full realization by contract with company

Large Size Pillow Seals

K.H. Behr A. Kratz et. al

- Pillow seals to be used in the Target Area
- standard will be round Pillow Seal with Ø500mm
- special large size rectangular (1200x160 mm²) seals between dipole and beam catcher
- Developed together with MEWASA
- Test setup at GSI
- Requirements fulfilled
- Long time stability tests running (temperature, ...)
- Next steps: full plug design

new polishing, seal #4 ~ 1x10⁻⁶ mbar l/s seal #3 ~ 1x10⁻⁶ mbar l/s

Leak rate by measuring pressure increase after stopping pumps on 16.5 l volume.

Summary

- Civil Construction progressing
 - execusion planning under approval
 - route planning running
- Energy Buncher redesigned
 - new LEB cave proposed
 - S-shape solution using standard multiplets
 - dipole magnets to be redesigned by VECC
- Procurement of long-term items (magnets) started
- Magnet test facility at CERN under preparation
- Development of various items (beam instrumentation, target area) in progress

M. Winkler, Annual NuSTAR Meeting, GSI, March 5 – 7, 2014