# **BRIKEN:**

# $\beta$ -delayed neutron measurements at RIKEN for nuclear structure, astrophysics and applications



#### Outline

- Motivation & Introduction
- Recent examples of measurements: 2n-emitters (ORNL),  $\beta$ n
- around <sup>78</sup>Ni (JYFL) and stellar nucleosynthesis around N=126 (GSI).
- •The BRIKEN approach:
  - BRIKEN-Collaboration
  - Detector design: a high- and flat-efficiency detection system
- Summary & Outlook

#### **Motivation**

The knowledge we have on nuclear structure and dynamics is based on about 3000 nuclei, whereas still more than 5000 new nuclei must exist.

What we expect (theory):



Almost all new nuclei are expected to be n-emitters

Almost all these new nuclei are expected to be neutron emitters, and hence, an understanding of this ≂5000 new nuclei must exist property and the involved technique becomes of pivotal impotance for NS and future studies.

> What we know (experiments): β-delayed neutron emission probability 80 (experiment) Known T<sub>1/2</sub> **Known Pn-Values**

70

50

Atomic number



#### Introduction

•  $\beta$ -delayed neutron emission may happen when the  $\beta$ -decay energy window  $Q_{\beta}$  exceeds the neutron separation energy  $S_n$  in the daughter nucleus. First reported by Roberts et al. in 1939.

• The half-live  $T_{1/2}$  yields information on the average  $\beta$ -feeding of a nucleus.

•  $P_n$  yields information on the  $\beta$ -feeding above the  $S_n$ 



Despite of the relatively simple Pn "definition", Pn values are rather difficult to predict theoretically, as they are reflecting the "shape" of the b-strength distribution and the underlying fine-structure of the nucleus at high excitation energy (!).

#### Introduction

•  $\beta$ -delayed neutron emission may happen when the  $\beta$ -decay energy window  $Q_{\beta}$  exceeds the neutron separation energy  $S_n$  in the daughter nucleus. First reported by Roberts et al. in 1939.

- The half-live  $T_{1/2}$  yields information on the average  $\beta$ -feeding of a nucleus.
- $P_n$  yields information on the  $\beta$ -feeding above the  $S_n$



Credit: Q. Zhi et al., Phys. Rev. C 87, 2013

Despite of the relatively simple Pn "definition", Pn values are rather difficult to predict theoretically, as they are reflecting the "shape" of the b-strength distribution and the underlying fine-structure of the nucleus at high excitation energy (!).

#### Competition between 1n and 2n emission

- $\rightarrow$ 1n-2n competition and theoretical description
- $\rightarrow$  xn emission is even more difficult to model.
- $\rightarrow$  Postulated for first time in 1960s (Goldansky et al.)
- $\rightarrow$  Only 18 b2n emitters, only tree heavier than Fe: <sup>86</sup>Ga and <sup>98,100</sup>Rb.







Hybrid 3Hen @ HRIBF-LeRIBSS: 48 <sup>3</sup>He Counters + 2 HPGe Clovers

#### Competition between 1n and 2n emission

- $\rightarrow$ 1n-2n competition and theoretical description
- $\rightarrow$  xn emission is even more difficult to model.
- $\rightarrow$  Postulated for first time in 1960s (Goldansky et al.)
- $\rightarrow$  Only 18 b2n emitters, only tree heavier than Fe: <sup>86</sup>Ga and <sup>98,100</sup>Rb.



 $\rightarrow$  P<sub>n</sub> and P<sub>2n</sub> measurements are a very stringent test for theory models far-off stability!



#### Shell structure and GT- FF- competition



#### Shell structure and GT- FF- competition



- Re-activation
- Shift towards lower A





F. Montes et al., Phys. Rev. C 73 (2006)
J. Pereira et al., Phys. Rev. C 79 (2009)
P. Hosmer et al., Phys. Rev. C 82 (2010)
H. Schatz et al., The Astr. Jour. 579 (2002)

I.Dillmann et al., Phys. Rev. Lett 91 (2003)
K.L. Kratz et al., Hyp. Int. 129 (2000)
H. Ohm et al., Zeit. Phys. 296 (1980)
K.L. Kratz et al., Phys. Lett. B 103 (1981)
H. Gabelmann et al., Zeit. Phys. A 308 (1982)
K.-L. Kratz et al., Zeit. Phys. A 306 (1982)
J.C. Wang et al., Phys. Lett. B 454 (1999)
M. Hannawald et al., Phys. Rev. C 62 (2000)





PHYSICAL REVIEW C 83, 045809 (2011)



PHYSICAL REVIEW C 83, 045809 (2011)











### BRIKEN: $\beta$ n measurements of the most exotic nuclei



#### BRIKEN: $\beta$ n measurements of the most exotic nuclei



#### **BRIKEN** neutron detector array







#### 174 <sup>3</sup>He tubes of 6 different types:

| Ring | Radius<br>(cm) | # <sup>3</sup> He<br>Tubes | Pressure<br>(atm) | Diameter<br>(inch) | Institute |
|------|----------------|----------------------------|-------------------|--------------------|-----------|
| 1    | 9.4            | 14                         | 10                | 1                  | ORNL      |
| 2    | 13             | 12+12                      | 5.13              | 1                  | RIKEN     |
| 3    | 16.8           | 10+26                      | 10/8              | 1                  | GSI/UPC   |
| 4    | 20             | 18+18                      | 5/8               | 1.18/1             | JINR/UPC  |
| 5    | 27             | 26                         | 10                | 2                  | ORNL      |
| 6    | 35             | 38                         | 10                | 2                  | ORNL      |

• High average efficiency of > 60 %

• Flat efficiency 6% up to 4 MeV, 12% up to 5 MeV.

#### **BRIKEN** neutron detector array





#### 174 <sup>3</sup>He tubes of 6 different types:

| Ring | Radius<br>(cm) | # <sup>3</sup> He<br>Tubes | Pressure<br>(atm) | Diameter<br>(inch) | Institute |
|------|----------------|----------------------------|-------------------|--------------------|-----------|
| 1    | 9.4            | 14                         | 10                | 1                  | ORNL      |
| 2    | 13             | 12+12                      | 5.13              | 1                  | RIKEN     |
| 3    | 16.8           | 10+26                      | 10/8              | 1                  | GSI/UPC   |
| 4    | 20             | 18+18                      | 5/8               | 1.18/1             | JINR/UPC  |
| 5    | 27             | 26                         | 10                | 2                  | ORNL      |
| 6    | 35             | 38                         | 10                | 2                  | ORNL      |

✓ BRIKEN Construction Proposal Approved @ RIKEN-PAC
 December, 2013

#### **BRIKEN** neutron detector array

High efficiency also for two-fold neutron emission:



Flat efficiency  $\rightarrow$  Pn insensitive to neutron spectrum





174 <sup>3</sup>He tubes of 6 different types:



| Ring | Radius<br>(cm) | # <sup>3</sup> He<br>Tubes | Pressure<br>(atm) | Diameter<br>(inch) | Institute |
|------|----------------|----------------------------|-------------------|--------------------|-----------|
| 1    | 9.4            | 14                         | 10                | 1                  | ORNL      |
| 2    | 13             | 12+12                      | 5.13              | 1                  | RIKEN     |
| 3    | 16.8           | 10+26                      | 10/8              | 1                  | GSI/UPC   |
| 4    | 20             | 18+18                      | 5/8               | 1.18/1             | JINR/UPC  |
| 5    | 27             | 26                         | 10                | 2                  | ORNL      |
| 6    | 35             | 38                         | 10                | 2                  | ORNL      |

✓ BRIKEN Construction Proposal Approved @ RIKEN-PAC
 December, 2013

### BRIKEN Physics Goals for a **Project Proposal** in 2014

| Presenter        | Торіс                     | Nuclei                             | DPOIECT         |
|------------------|---------------------------|------------------------------------|-----------------|
| S.Nishimura      | Below the 2nd r-process   |                                    |                 |
| (RIKEN)          | peak                      | 112Zr-129Pd                        | THOTOSAL        |
| F. Montes (MSU)  | 2nd r-process peak        | 139Sb                              | Astrophysics:   |
| C.Domingo (IFIC) | Rare-earth r-process peak | 151La-173Tb                        | r-process       |
| G. Lorusso       |                           |                                    | nucleosynthesis |
| (RIKEN)          | 2nd r-process peak        | 129Ag-142Te, 133-134Cd             |                 |
| M.Marta          |                           |                                    |                 |
| I.Dillmann       |                           |                                    | ↓               |
| (GSI/TRIUMF)     | Multiple n emission       | 76Co-81Cu, 134Sn-133Cd             | Nuclear         |
| K.Rykaczewski    | One and two n emiiters    |                                    | Structure:      |
| (ORNL)           | above 78Ni and 132Sn      | Ni, Cu ,Zn, Ga, Ge, As, Se, In     | 1n. 2n-         |
| R.Griwacz        | One and two n-emission    | Cl, Ar, K, Ca, Sc, Ti, Ni, Cu, Zn, | competition     |
| (U.Tennessee)    | below and at 78Ni         | Mn, Fe, Co                         | in heavy        |
| A Algora (IFIC)  | Deformation A~110         | 106-110Zr, 110-114Mo               | nuclei, FF vs.  |
| B. Rubio (IFIC)  | Nuclear structure ~132Sn  | 130Ag-138Sb                        | GT, etc         |
| A.Estrade        |                           |                                    |                 |
| (Edinburgh)      | Masses                    | Several                            |                 |
| J.L. Tain (IFIC) | β-strength NE of 78Ni     | 85Ge-97Br                          |                 |
| D.Cano-Ott       |                           | Ge86,Rb-96,Rb100, Y98m,            | V New reactor   |
| (CIEMAT)         | Reactor technologies      | Cd131, Sb137                       | technologies    |

## **BRIKEN Collaboration**



>50 Scientists>20 Research Centers

Open project, to join: <u>briken.project@gmail.com</u> <u>http://indico.ific.uv.es/indico/event/briken</u> 1<sup>st</sup> BRIKEN Workshop, Valencia 17-18 Dec. 2012 <u>http://indico.ific.uv.es/indico/event/briken2</u> 2<sup>nd</sup> BRIKEN Workshop, Tokyo, 30-31 July 2013

#### **BRIKEN: Summary & Outlook**

- Beta-delayed neutrons will be one of the key Gross properties we will aiming at measuring in the next generation of RIB facilities, like NUSTAR-FAIR.
- $\beta$ n measurements respresent an stringent test for nuclear models far-off stability and how well the nuclear structure details (beta-strength function) are included.
- In stellar nucleosynthesis  $\beta$ -delayed neutron emission plays a relevant role for understanding both the observed r-process distributions and dynamical evolution.
- We intend to study these aspects in the framework of the BRIKEN Project devoted to the measurement of the most exotic nuclei at the RIB facility of RIKEN.
- BRIKEN is a joint international effort, to join instrumentation and expertise in order to build a high-performance –high+flat efficiency- neutron detector array, to be set-up and operated for an experimental campaign at RIKEN.
- Physcis proposals will be submitted within the same BRIKEN "umbrella" at the next NP-PAC in june, 2014. The project is open, new collaborators are welcome to join!

Thank you for your attention!

### Thanks to BRIKEN Collaborators

Agnieszka Korgul Albert Riego Alfredo Estrade Aleiandro Algora Anu Kankainen Adam Garnsworthv **Belen Gomez** Berta Rubio Francisco Calvino Cesar Domingo Pardo Chiara Mazzocchi **Christopher Griffin** Claudia Lederer Charlie Rasco Daniel Cano Ott Maria Dolores Jordan David Joss **Giuseppe Lorusso** Carl J. Gross Guillem Cortes Gyurky Gyorgy Hiroyoshi Sakurai H. Ueno Iris Dillmann John Simpson Jorge Agramunt Kiss Gabor Karolina Kolos K. Miernik Krzysztof P. Rykaczewski Karl Smith Gabor Gvula Kiss

University of Warsaw UPC University of Edinburgh IFIC University of Edinburgh TRIUMF UPC IFIC UPC IFIC University of Warsaw University of Edinburgh University of Edinburgh LSU CIEMAT IFIC University of LIverpool RIKEN ORNL UPC ATOMKI The University of Tokyo RIKEN TRIUMF **Daresbury Laboratory** IFIC ATOMKI University of Tennessee University of Warsaw ORNL University of Notre Dame ATOMKI

Toshiuki Kubo Marc Labiche Keishi Matsui Megum Niikura Michele Marta Miguel Madurga Fernando Montes Nathan Brewer Shunji Nishimura Nobuyuki Kobayashi Jorge Pereira Conca Paul Garret Phillip J. Woods Robert Grzywacz Robert Page **Roger Caballero Folch** Rvo Taniuchi Sami Rinta Antilla Satoru Momiyama Evgeny Sokol Tom Davinson Jose Luis Tain Takuya Miyazaki Trino Martinez Hendrik Schatz Yue Ma Zhengyu Xu Zhong Liu Jeff A. Winger M. Wolinska Cichocka Jin Wu Zsolt Fulop

**Daresbury Laboratory** University of Tokyo University of Tokyo GSI University of Tennessee NSCI University of Tennessee RIKEN University of Tokyo NSCL University of Guelph University of Edinburgh University of Tennessee University of Liverpool UPC The University of Tokyo University of Jyvaskyla University of Tokyo JINR University of Edinburgh IFIC University of Tokyo CIEMAT MSU/NSCL RIKEN University of Tokyo IMPCAS Mississippi State Univ. ORNL Peking University ATOMKI

RIKEN