
SHE experiments with GARIS-I/-II at RIKEN

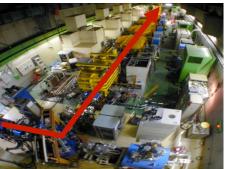
Daiya Kaji

SHE device development team Nishina Center, RIKEN, JAPAN

RIBF (RI Beam Factory)

- SHE study is mainly performed at RILAC facility.
- High-intense heavy-ion beam is powerful to produce SHE nuclides.
- RILAC can operate stand-alone, because RILAC-II was installed as an injector for SRC at 2010.
- Long MT is available for SHE study.

RILAC


RIKEN heavy-Ion Linear ACcelerator

Up-grade RILAC

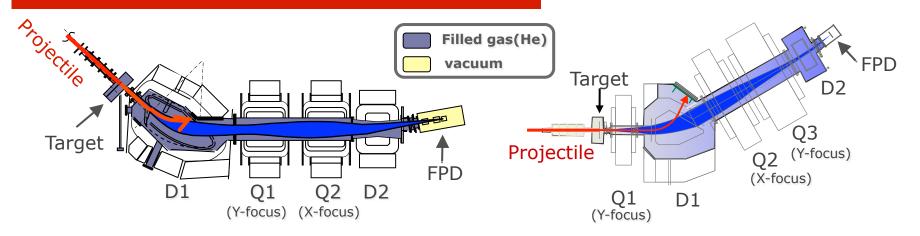
RFQ LINAC

RFQ LI

GARIS & GARIS-II

Upgrade RILAC

RFQ LINAC


18 GHz ECR-IS

6th-MAR-2014

GARIS & GARIS-II

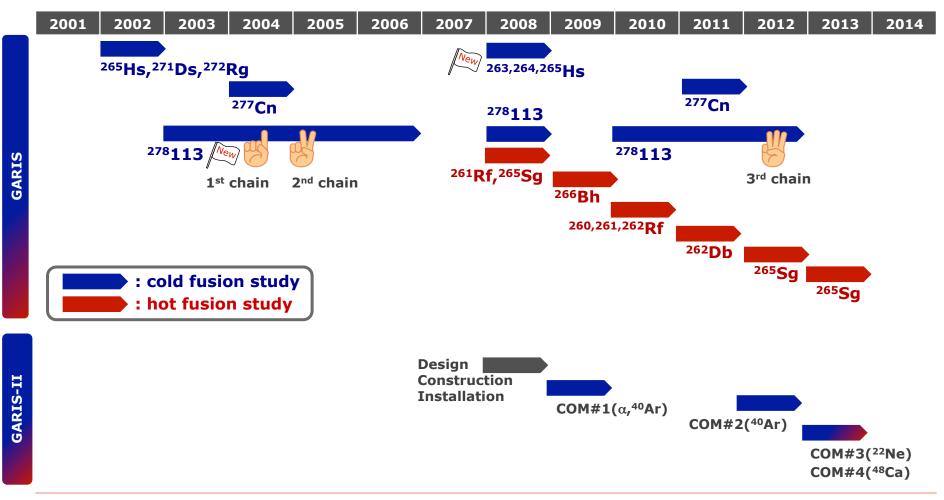
GAs-filled Recoil Ion Separator

Reaction product recoiled out of target is separated from projectiles and other *BG*, and then it is transported to FPD (focal plane detector).

Large transmission under low BG-level

Gas-filled type

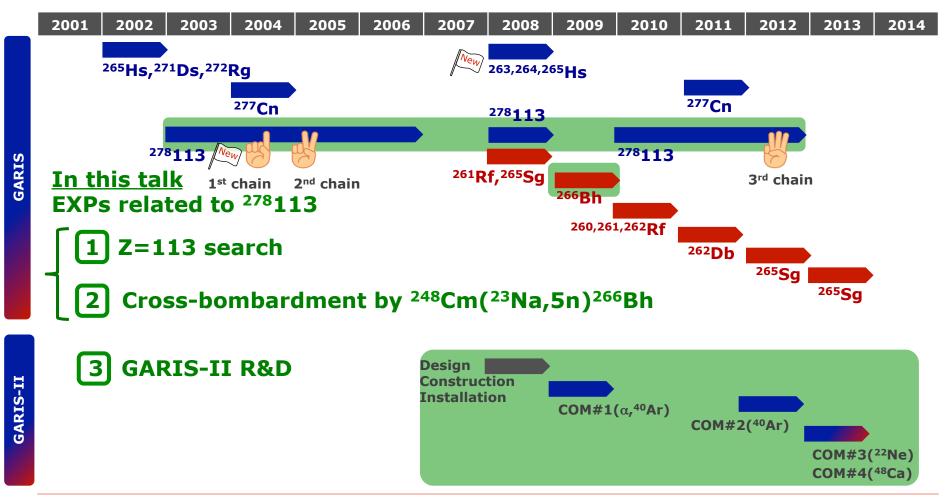
Large bending angle
Deep structure of beam-dump
2-dipoles to suppress *BG* particles


Possible to stand against high-intense beam

Windowless operation of GARIS & gas-cooling of target by differential pumping

Timeline

SHE experiments with GARIS-I/-II



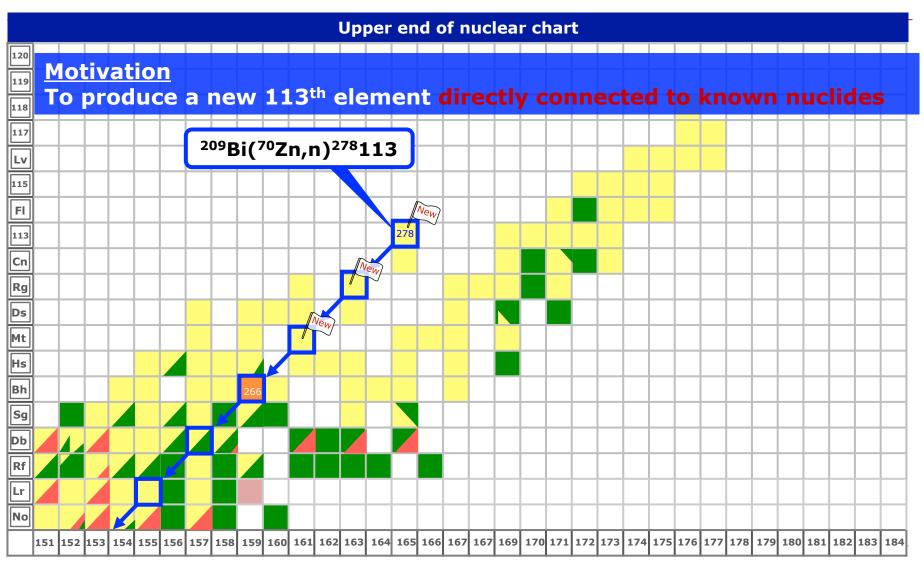
6th-MAR-2014

Timeline

SHE experiments with GARIS-I/-II

6th-MAR-2014

1 Z=**113** search



- [1] K. Morita, K. Morimoto, D. Kaji et al., JPSJ 73, 2593(2004).
- [2] K. Morita, K. Morimoto, D. Kaji et al., JPSJ 76, 045001(2007).
- [3] K. Morita, K. Morimoto, D. Kaji et al., JPSJ 81, 103201(2012).

[SHE Experiments with GARIS]

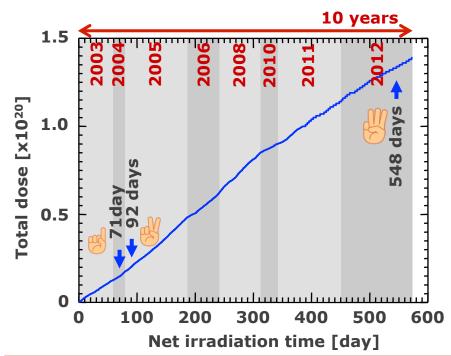
Z=113 search

6th-MAR-2014

Neutron number

8

Irradiation


Nuclear reaction : 209 Bi(70 Zn,n) 278 113

Experimental period : 5^{th} -SEP-2003 ~ 1^{st} -OCT-2012 (10 years in total)

Net irradiation time : 576 days

Beam energy : 349 MeV @ middle of target

Beam intensity (Average) : $0.5 \text{ p}\mu\text{A}$ Dose : 1.4×10^{20}

Appearance of irradiation 新規カメラ 2004/7/12 16:26:33

D. Kaji et al. Nucl. Instr. and Meth. A737, p.19 (2014).

During irradiation, we observed 3 decay chains in total.

 $\sigma = 22^{+18}_{-12}$ fb (the lowest in SHE study)

Target

Preparation

by vacuum evaporation on 30~60 μg/cm² C backing foil D. Kaji et al. Nucl. Instr. and Meth. A590, p.198 (2007).

Target thickness 0.45 mg/cm²

- → The 16 sector targets were mounted on a rotating wheel of 300 mm in diameter.
- → The wheel was rotated at 3000 rpm during irradiation.

Operation of GARIS

Magnetic field ($B\rho$) : 2.09 Tm (based on empirical formula of q_{ave})

Filled gas : He at 86 Pa

Transmission of GARIS: 80%

Empirical formula on q_{ave} of recoil ion moving in a He gas

For cold fusion

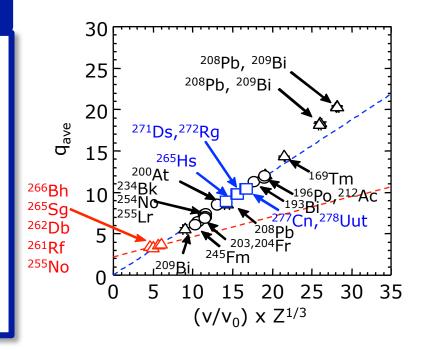
 $q_{ave} = 0.625 \times (v/v_0) \times Z^{1/3}$

 $9.1 \leq (v/v_0) \times Z^{1/3} \leq 19.1, Z \geq 82$

Application

^{263264,265}Hs, ²⁷¹Ds, ²⁷²Rg, ²⁷⁷Cn, ²⁷⁸Uut

For hot fusion

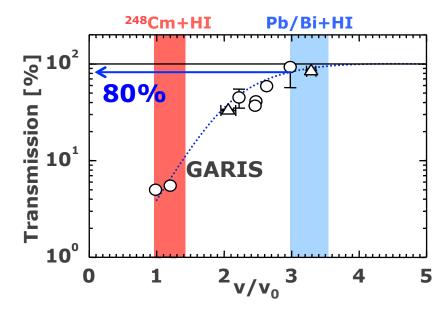

 $q_{ave} = 0.242 \ x \ (v/v_0) \ x \ Z^{1/3} + 2.19$

 $4.6 \le (v/v_0) \times Z^{1/3} \le 6.0, Z \ge 1027$

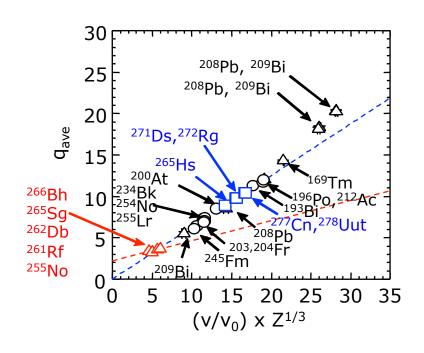
Application

266Bh

D. Kaji, et al., Proc. Radiochim. Acta 1, 105 (2011).

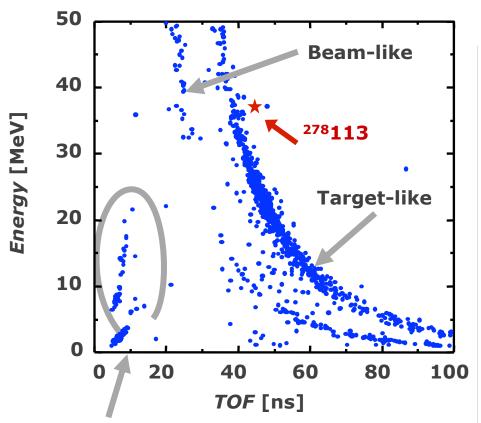


Operation of GARIS

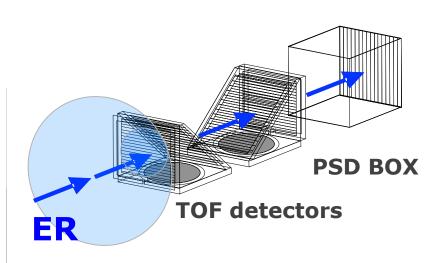

Magnetic field ($B\rho$) : 2.09 Tm (based on empirical formula of q_{ave})

Filled gas : He at 86 Pa

Transmission of GARIS: 80%



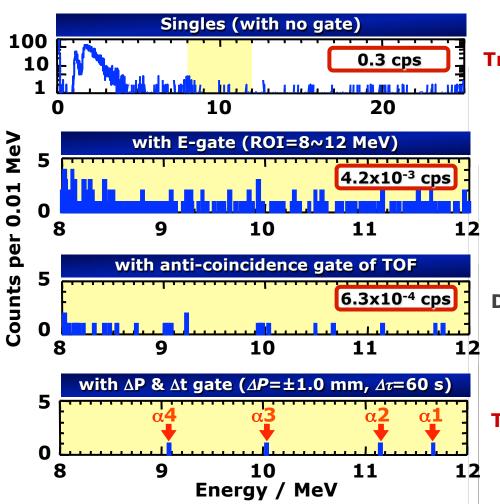
→ GARIS has the best performance for cold fusion reaction.



[Data quality]

TOF-Energy PLOT

Focal plane detector of GARIS


Light charged particles

we can obtain rough mass information.

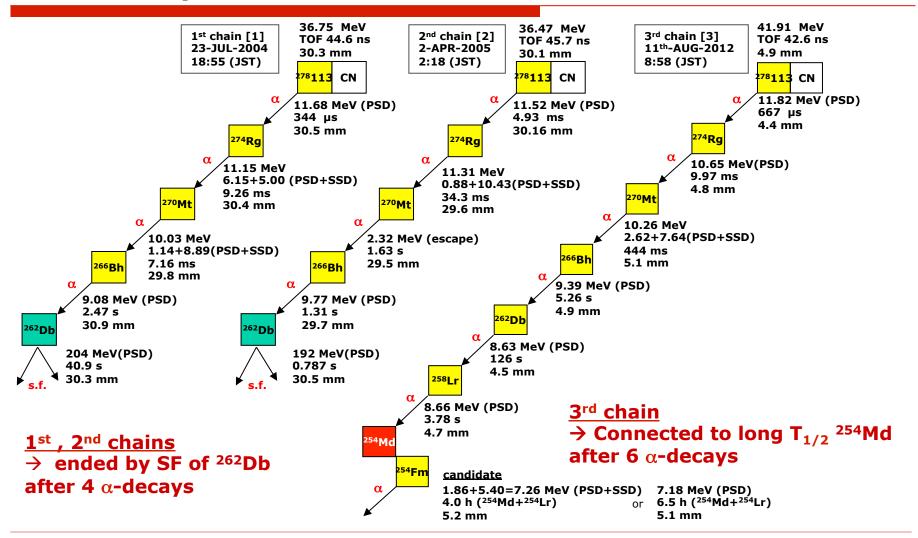
→ ER was clearly separated from BG particles.

Correlation analysis

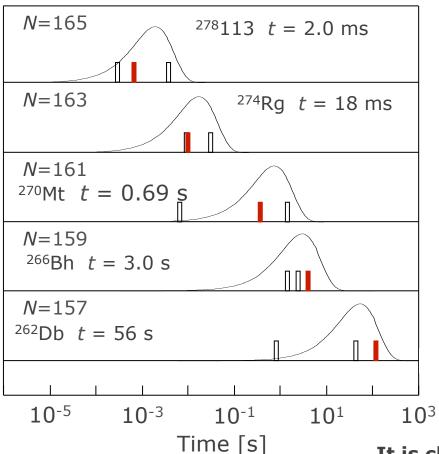
Trigger rate @ FPD was extremely low.

Decay-like event was also low rate.

There are no BG except for true events.


6th-MAR-2014

[3] K. Morita et al., JPSJ 81, 103201(2012).

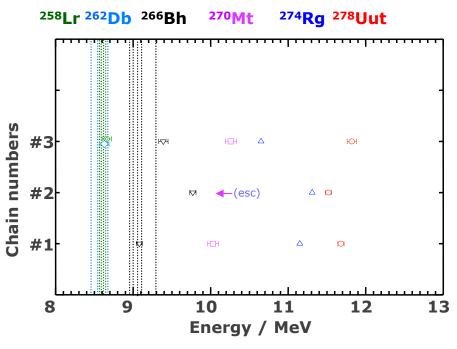

3 decay chains due to ²⁷⁸113

High quality experiment enables to observe

In order to check whether these chains are identical or not...

Decay time distributions (with Log scale)

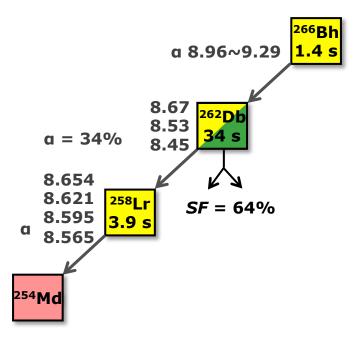
3rd : 2012


1st & 2nd : 2004, 2005

It is clear that all decay chains are identical.

In order to check whether these chains are identical or not...

α -decay energy distributions



However, IUAC/IUPAP JWP assessed that the statistics of ref. data are not enough.

1 event : 249 Bk(22 Ne,5n) 266 Bh @ LBNL

4 events: 243Am(26Mg,3n)266Bh @ IMP

Pure Appl. Chem. Vol.83, 1485 (2011).

Guide lines: reference data

²⁶⁶Bh : PRL 85, 2697(2000)

²⁶⁶Bh : Nucl. Phys. Rev. 23, 400 (2006)

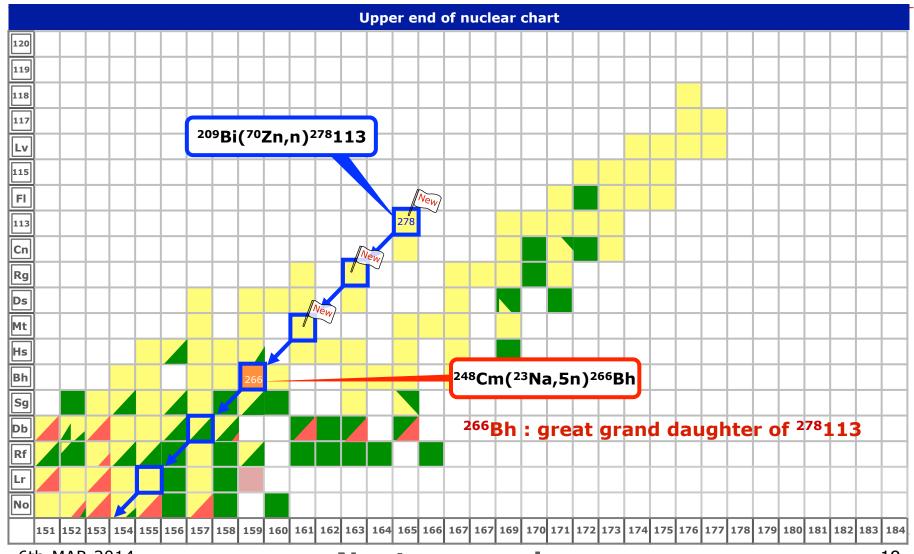
²⁶²Db & ²⁵⁸Lr: *Table of Isotopes 8th ed*, (Wiley and Sons, New York, 1996).

It looks like that

the 1st & 3rd chains are connected to know nuclide.

2 Cross bombardment by ²⁴⁸Cm(²³Na,5n)²⁶⁶Bh

Motivation


- To make strong the information on anchor nuclides in 113 decay chains
- To confirm results studied on reactions ²⁴⁹Bk(²²Ne,5n)²⁶⁶Bh at LBNL [1]
 & ²⁴³Am(²⁶Mg,3n)²⁶⁶Bh at IMP [2]

- [1] Wilk et al., PRL 85, 2697 (2000).
- [2] Z. Qin et al., Nucl. Phys. Rev. 23, 400 (2006)

[SHE Experiments with GARIS]

²⁴⁸Cm(²³Na,5n)²⁶⁶Bh

6th-MAR-2014

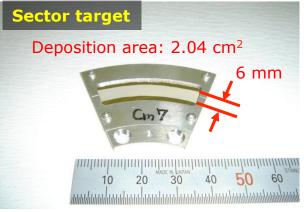
Neutron number

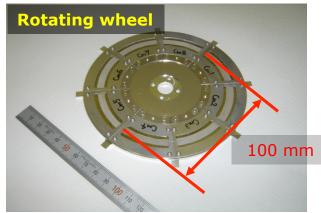
Target

Preparation

by Electrodeposition on 2 µm Ti backing foil Y. Kudo et al., RIKEN Accel. Prog. Rep. (2009).


Target thickness


 $0.35 \text{ mg/cm}^2 (as ^{248}\text{Cm}_2\text{O}_3)$


Isotopic abundance

96.64% ²⁴⁸Cm, 0.04% ²⁴⁷Cm, 3.17% ²⁴⁶Cm, 0.13% ²⁴⁵Cm, and 0.02% ²⁴⁴Cm

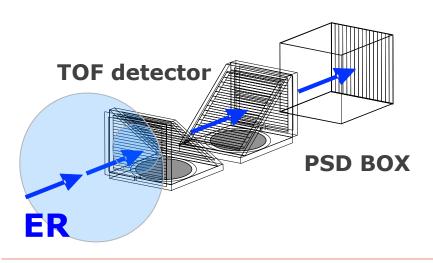
- → The 8 sector targets were mounted on a rotating wheel of 100 mm in diameter.
- → The wheel was rotated at 1000 rpm during irradiation.

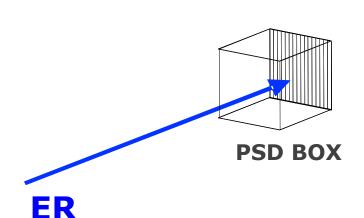
FPD for ²⁶⁶Bh search

We used PSD box without TOF detectors & beam ON/OFF method. Because...

- Recoil energy is too low to pass through MYLAR window of TOF.
- Counting rate during beam-ON is high.

Z=113 search

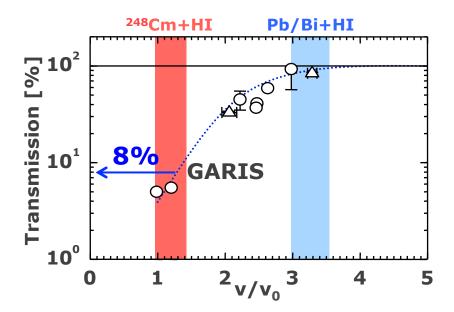

(Cold fusion)


→ Full-time beam ON

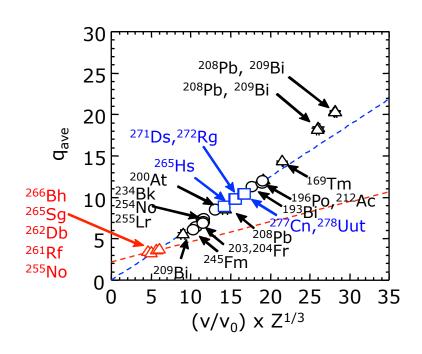
²⁶⁶Bh search

(Hot fusion)

Time Structure: 3 s Beam ON/3 s Beam OFF



Operation of GARIS


B ρ setting : 2.07~2.19 Tm (based on empirical formula of q_{ave})

Filled gas : He at 33 Pa

Transmission of GARIS: 8%

Transmission is not so high due to MS with filed gas for hot fusion.

Decay information

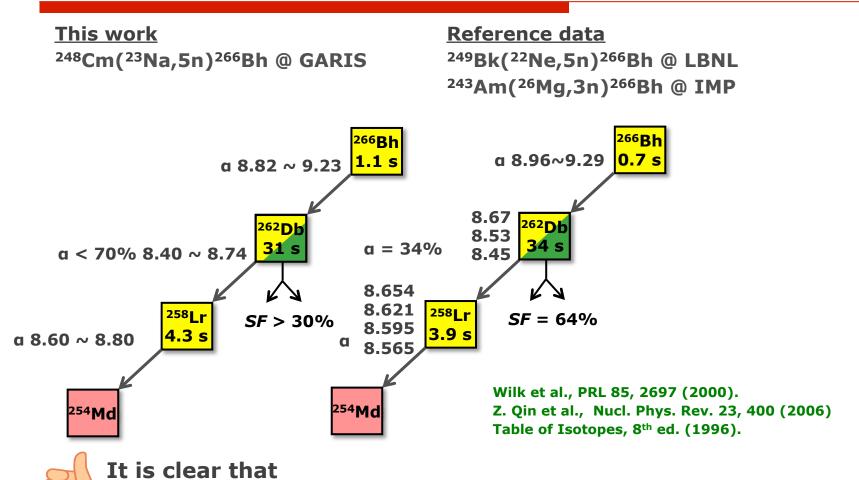
obtained in the reaction ²⁴⁸Cm(²³Na,xn)^{271-x}Bh

Table I. Summary of decay chains observed in the reaction of ²³ N	Na on 240Cm.
--	--------------

				140	10 1. Sun	illiary or d	iccuy ciiu	1113 00301	ved in the i	- Cuction of	iva on	CIII.		
ID	E_{beam} (MeV)	Strip	E(M) (MeV)	FWHM (MeV)	E(D) (MeV)	FWHM (MeV)	dPos (mm)	τ(D) (s)	E(GD) (MeV)	FWHM (MeV)	dPos (mm)	τ(GD) (s)	Group	Assignment
1	126 ^{a)}	2	9.05	0.11	8.71s)	0.18	-0.45	54.91	8.71	0.11	0.98	9.23	AC	$^{266}\mathrm{Bh} ightarrow ^{262}\mathrm{Db} ightarrow ^{258}\mathrm{Lr}$
2	130 ^{b)}	11	9.12 ^{s)}	0.16	8.74 ^{s)}	0.16	3.53	13.76	8.60	0.09	-7.16	9.36	AC	$^{266}\text{Bh} \rightarrow ^{262}\text{Db} \rightarrow ^{258}\text{Lr}$
3	132 ^{a)}	7	9.20	0.07	8.67	0.07	0.86	13.71	8.70 ^{s)}	0.14	-0.22	4.72	AC	$^{266}\text{Bh} \rightarrow ^{262}\text{Db} \rightarrow ^{258}\text{Lr}$
4	132 ^{a)}	7	8.82	0.07	8.54s)	0.14	1.45	95.45	8.69	0.07	-1.45	3.94	BC	$^{266}\mathrm{Bh} ightarrow ^{262}\mathrm{Db} ightarrow ^{258}\mathrm{Lr}$
5	132 ^{b)}	13	8.84 ^{s)}	0.12	8.42	0.05	-0.12	11.95	169.5 ^{s)}		-0.53	27.22	DGI	$^{267}\text{Bh} ightarrow ^{263}\text{Db} ightarrow ^{259}\text{Lr}$
6	130 ^{b)}	3	9.14	0.12	8.70	0.12	-0.06	66.23					A	$^{266}\text{Bh} \rightarrow ^{262}\text{Db} \text{ or } ^{258}\text{Lr}$
7	132 ^{a)}	6	9.23	0.07	8.65	0.07	0.43	22.04					A	$^{266}\text{Bh} \rightarrow ^{262}\text{Db}$ or ^{258}Lr
8	132 ^{a)}	8	9.14 ^{s)}	0.13	8.60	0.06	3.50	7.29					A	$^{266}\text{Bh} \rightarrow ^{262}\text{Db}$ or ^{258}Lr
9	132 ^{b)}	12	9.22 ^{s)}	0.11	8.61	0.04	-0.66	60.40					A	$^{266}\mathrm{Bh} ightarrow ^{262}\mathrm{Db}$ or $^{258}\mathrm{Lr}$
10	130 ^{b)}	10	8.60s)	0.17	8.70	0.10	-1.72	6.93					C	$^{262}\text{Db} \rightarrow ^{258}\text{Lr}$
11	130 ^{b)}	6	8.55	0.09	8.57	0.09	0.12	2.53					C	$^{262}\text{Db} \rightarrow ^{258}\text{Lr}$ tentative
12	130 ^{b)}	10	8.40	0.11	8.80 ^{s)}	0.18	2.99	3.73					C	$^{262}\text{Db} \rightarrow ^{258}\text{Lr}$
13	132 ^{a)}	4	8.43	0.10	8.69	0.10	-0.08	5.69					C	$^{262}\text{Db} \rightarrow ^{258}\text{Lr}$
14	132 ^{b)}	8	8.84	0.04	8.51	0.04	0.77	82.15					В	$^{266}\text{Bh} \rightarrow ^{262}\text{Db}$ tentative
15	126 ^{a)}	1	9.07	0.07	154.6 ^{s)}		0.52	5.67					Е	$^{266}\text{Bh} \rightarrow ^{262}\text{Db}$
16	130 ^{b)}	9	9.09 ^{s)}	0.15	157.9		-0.56	5.34					Е	$^{266}\mathrm{Bh} ightarrow ^{262}\mathrm{Db}$
17	132 ^{b)}	8	9.23	0.06	180.4		1.89	121.53					Е	$^{266}\mathrm{Bh} ightarrow ^{262}\mathrm{Db}$
18	126 ^{a)}	7	8.99	0.09	185.8 ^{s)}		0.16	8.42					F	$^{266}\text{Bh} \rightarrow ^{262}\text{Db}$ tentative
19	126 ^{a)}	11	8.97	0.05	157.1		1.53	141.86					F	$^{266}\text{Bh} \rightarrow ^{262}\text{Db}$ tentative
20	126 ^{a)}	12	8.95s)	0.13	162.8		-1.56	68.35					F	$^{266}\text{Bh} \rightarrow ^{262}\text{Db}$ tentative
21	126 ^{a)}	7	8.93	0.08	173.9 ^{s)}		0.61	84.30					F	$^{266}\text{Bh} \rightarrow ^{262}\text{Db}$ tentative
22	130 ^{b)}	7	8.97	0.08	131.1		-1.20	43.99					F	$^{266}\text{Bh} \rightarrow ^{262}\text{Db}$ tentative
23	132 ^{a)}	1	8.95	0.06	107.5		-0.06	151.36					F	$^{266}\text{Bh} \rightarrow ^{262}\text{Db}$ tentative
24	132 ^{b)}	13	8.98	0.04	162.8		-0.72	156.99					F	²⁶⁶ Bh → ²⁶² Db tentative
25	3152°) (or	rella	tion	Peve	ents	We	r 26.85	bse	rved	lin	tot	F	$^{266}\mathrm{Bh} ightarrow ^{262}\mathrm{Db}$ tentative
26				0.10	124.3 ^{s)}		0.14	112.21					Н	$^{267}\text{Bh} \rightarrow ^{263}\text{Db}$ tentative
27		eve	nts	wei	esas	ssigi	160	TO 8	deca	iy cr	nain	is a	ue i	OBh ^{26,6} Bh n ative
28	132 ^{b)}	-11	8.75	0.07	139.9 ^{s)}		-0.49	55.57					Н	$^{267}\mathrm{Bh} ightarrow ^{263}\mathrm{Db}$ tentative
29	132 ^{b)}	10	8.44	0.07	89.4		0.64	35.96					I	²⁶³ Db or ²⁵⁸ Lr
30	130 ^{b)}	12	8.84	0.04	173.8s)		0.76	176.77					G	$^{267}\mathrm{Bh} ightarrow^{263}\mathrm{Db}$ or $^{259}\mathrm{Lr}$
31	132 ^{a)}	7	8.09	0.07	161.7 ^{s)}		-1.52	294.39					J	not assigned
32	132 ^{b)}	14	8.09s)	0.13	164.8s)		0.28	208.30					J	not assigned

a) B ρ of GARIS was set to 2.19

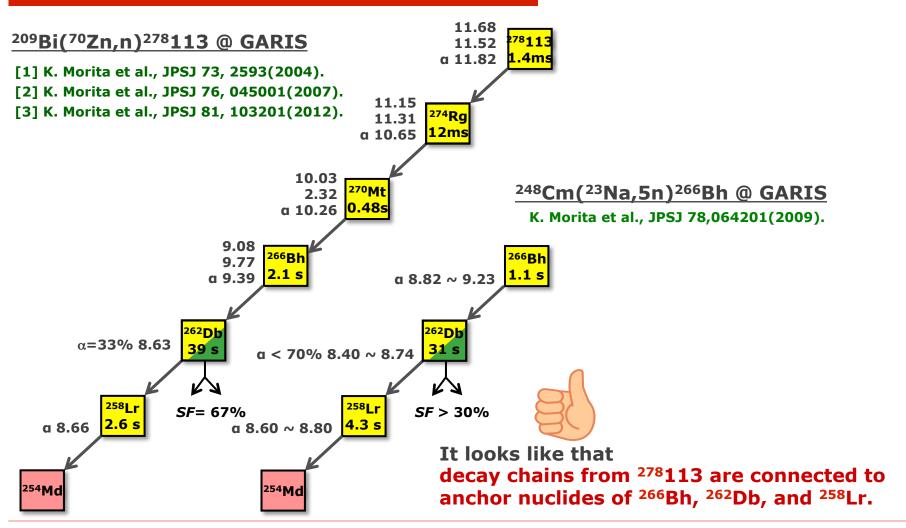
K. Morita, K. Morimoto, D. Kaji et al., JPSJ 78,064201(2009).



b) B ρ of GARIS was set to 2.07

s) Sum of PSD and SSD signals

Summary of decay chains due to ²⁶⁶Bh


& comparison with reference data reported by LBNL & IMP group

observed decay energies & half-lives well agree with reference data.

Compared with decay chains due to ²⁷⁸113

6th-MAR-2014

Summary

Experiments related to ²⁷⁸113

$$^{209}\text{Bi} + ^{70}\text{Zn} \rightarrow ^{278}113 + \text{n}$$

(2003 - 2012)

3 decay chains due to ²⁷⁸113 were observed during irradiation time of 576 days. The 1st & 2nd chains were ended by SF of ²⁶²Db.

The 3^{rd} chain was connected to long $T_{1/2}$ ²⁵⁴Md after 6 alpha decays.

Observed decay properties from 3 decay chains were consistent each other.

The productions of ²⁷⁸113 were clearly confirmed.

 248 Cm + 23 Na \rightarrow 266 Bh + 5n

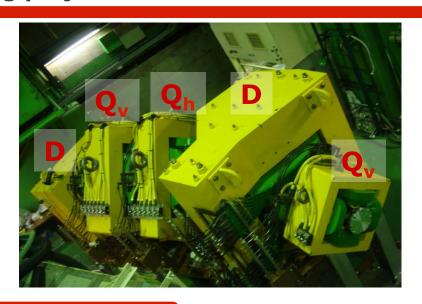
(2009)

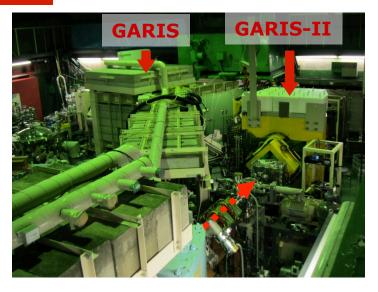
14 events were assigned to decay chains from ²⁶⁶Bh.

The identification was based on a genetic link to the known daughter nucleus ²⁶²Db by alpha-decay.

Decay chains from ²⁶⁶Bh were well established. Decay chains from ²⁷⁸113 were clearly connected to the anchor nuclides.

At last, the Z=113 search was finished in OCT-2012.




3 GARIS-II R&D

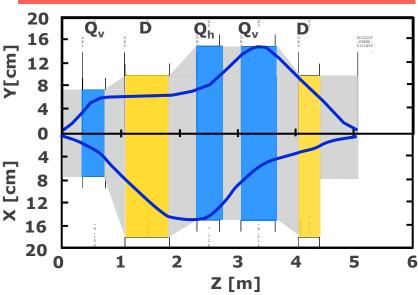
GARIS-II

New gas-filled recoil ion separator toward next generation SHE study Big project since the birth of GARIS @ 1992

Configuration Q_v -D- Q_h - Q_v -D \rightarrow 1st design & construction for SHE study (unique design)

Purpose Developed for actinide-based fusion study

Installation Exp. Hall @ RILAC facility


D. Kaji et al., NIM B317, 311 (2013).

Basic characteristics of GARIS-II

are given in table compared with GARIS

Beam envelope analyzed by TRANSPORT

[Ex.] ²³⁸U(⁴⁸Ca,3n)²⁸³Cn

Cross section : 2.5 pb *
Intensity : 1 puA

Target (x 2) : 500 ug/cm²

Trans. (x 2) : 70%

* Yu. Ts. Oganessian et al., Nucl. Phys. A 734, 195 (2004).

By assuming typical EXP conditions, Expected yield: 8 atoms/week

	GARIS	GARIS-II
Configuration	DQ_vQ_hD	$Q_v DQ_h Q_v D$
Bending angle	45° + 10°	30° + 7°
Path length	5.76 m	5.06 m
Solid angle	12.2 msr	18.5 msr
Max $B ho$	2.17 Tm	2.43 Tm
Dispersion	9.8 mm/%	19.3 mm/%
Filled gas	Не	He or He-H ₂

① Configuration: little bit change

Difference: 1st Q magnet for vert. focusing

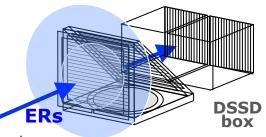
→ Enables a large solid angle

② Large solid angle gains 2 advantages about *target thickness* & *Trans*.

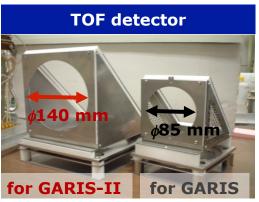
Yield is expected to be 4 times higher than GARIS

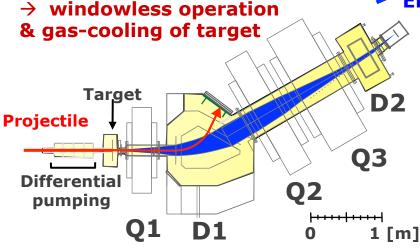
- ③ Max $B\rho$ becomes high (from 2.17 to 2.43 Tm). GARIS-II can use He-H₂ mixture as a filled gas.
- → The usage is important to reduce BG level.

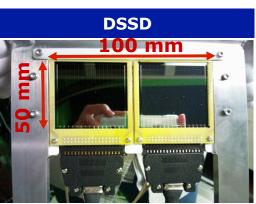
Devices around GARIS-II


Gas-cooled rotating target & Focal plane detector

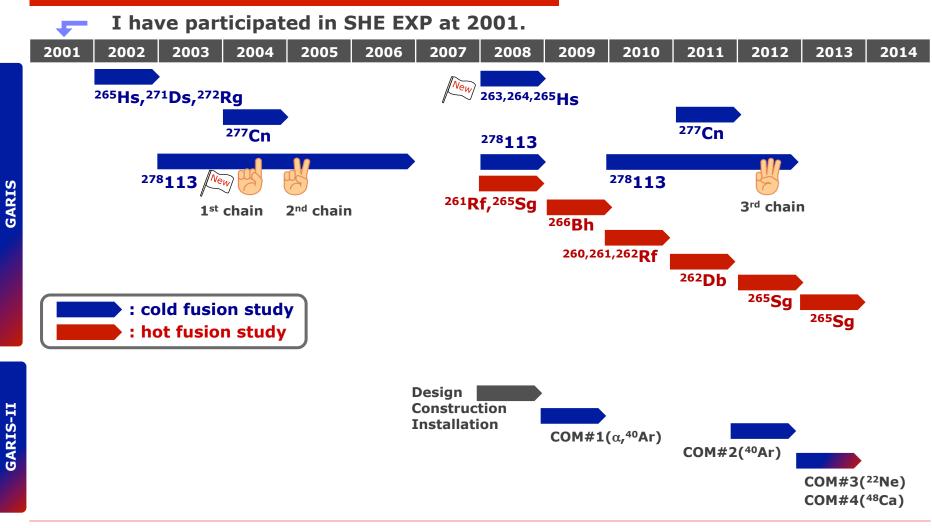
Gas cooled rotating target system to stand against high intense beam


Focal plane detector to identify ER & its successive decays




After passing through D2 magnet, ERs transit 0.5 um MYLAR as a vacuum foil and TOF detector, and later implanted into DSSD.

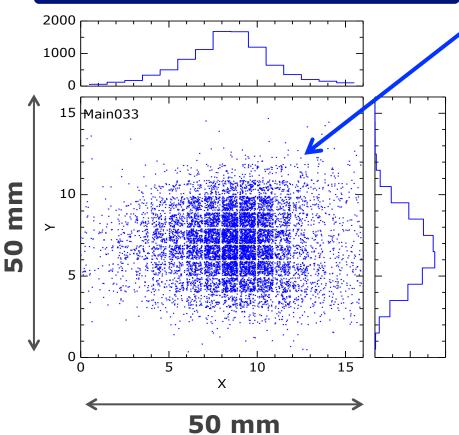
TOF detector



- D. Kaji et al., JPSJ (2013). [Proceedings of APPC12]
- D. Kaji et al., RIKEN Accel. Prog. Rep. 45, (2012).

Timeline

SHE experiments with GARIS-I/-II


6th-MAR-2014

[Performance of GARIS-II]

Solid angle

Image @ focal plane of GARIS-II

 α -particles moving from target to focal plane were implanted to FPD.

 Ω = 18.2 msr

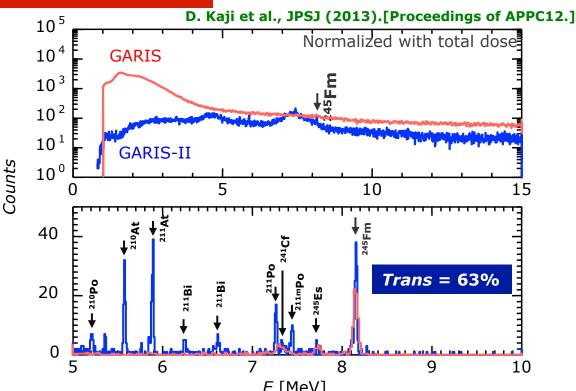
well agree with design value $(\Omega=18.5 \text{ msr})$

It is clear that GARIS-II has a large solid angle.

High Transmission under Low BG level

²⁰⁸Pb(⁴⁰Ar,3n)²⁴⁵Fm

⁴⁰Ar¹¹⁺, *E*=197 MeV


Beam ON/OFF: 5s/15s (x 616)

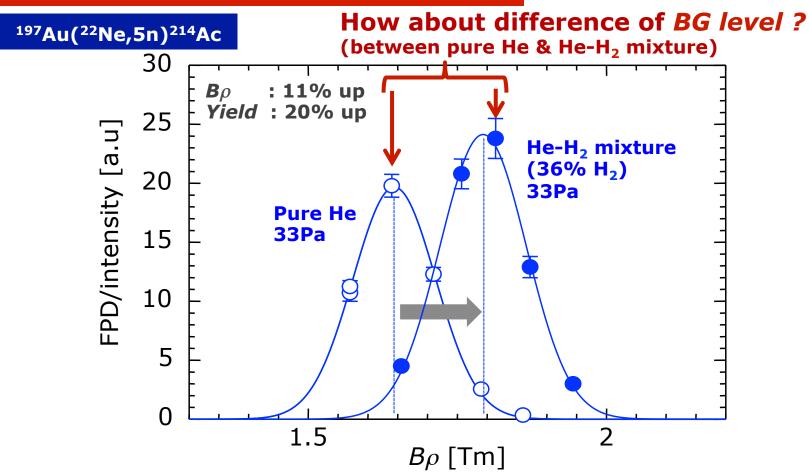
 $dose=2.4x10^{15}$

 $C/^{208}Pb = 60/280 \text{ ug/cm}^2$

 $P_{\rm He} = 70 \, \text{Pa}$

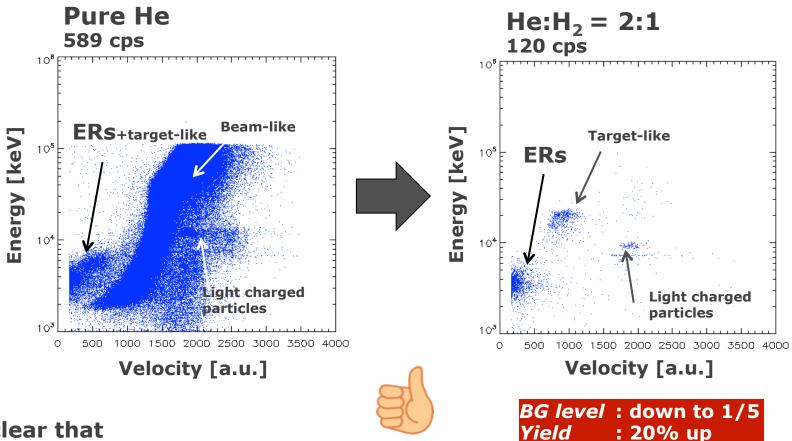
 $B\rho$ = 2.01 T·m

Succeeded in the observation of 254 Fm produced by 208 Pb(40 Ar,3n) 245 Fm.


Also observed α -peak due to ²⁴⁵Fm in singles!

Compared with data from GARIS

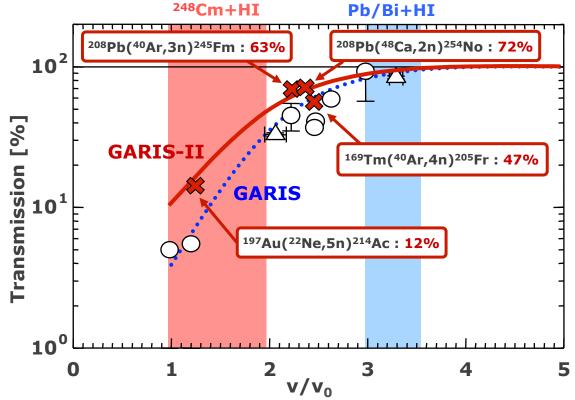
Trigger rate was about 5 times lower than GARIS, nevertheless Trans of GARIS-II was 1.5 times higher than GARIS.


1st trial by using He-H₂ mixture

At first, we searched for optimum ${\it B}\rho$ by using pure He. After that, we changed the filled gas.

Improvement of BG level

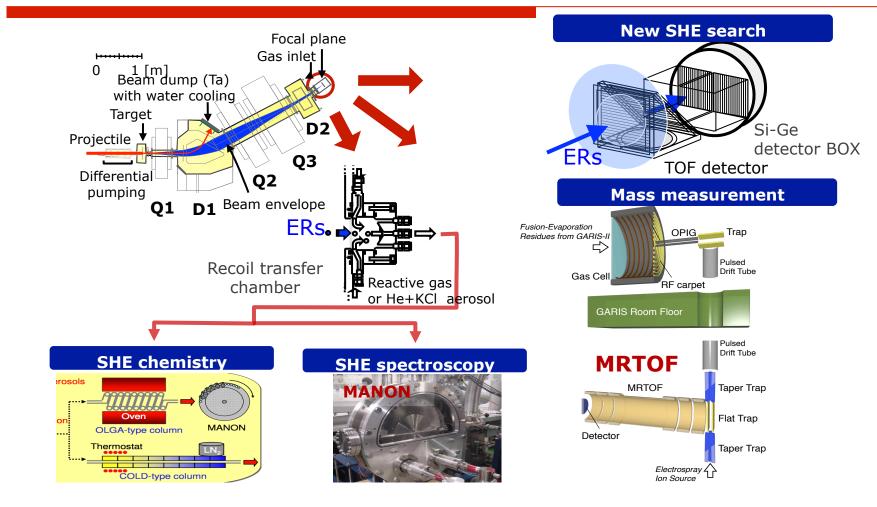
It is clear that He-H₂ mixture is very promising for SHE study.


 \rightarrow We will perform more feasibility tests by using He-H₂ mixture near future.

Summary

GARIS-II R&D

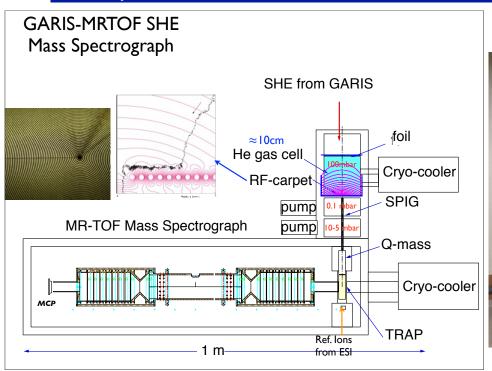
Performance of GARIS-II was investigated by using ⁴⁰Ar-,²²Ne-, ⁴⁸Ca-induced fusion reaction.



- ERs were collected to FPD by GARIS-II with high Trans under low BG.
- He-H₂ mixture is very promising for SHE study.

Experimental plans

GARIS-II will use for a new SHE search, precise mass measurement, SHE chemistry, SHE spectroscopy.

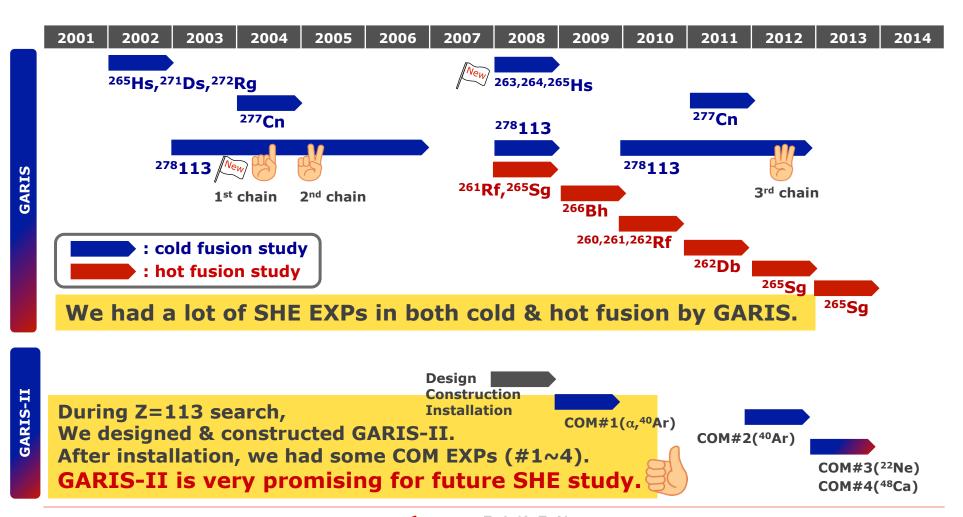


GARIS-II+MRTOF

Direct mass measurement gives the answer for assignment of SHE nuclides produced by hot fusion reactions

GARIS R&D team started to collabore with Wada's group @ RIKEN. MRTOF has already moved to just downstairs of GARIS-II. The 1st commissioning of GARIS-II+MRTOF will start in SEP-2014.

$T_{1/2}$ ~10ms nuclei with sub-ppm $\delta m/m$, Eff_{total} =1~30%



Summary

SHE experiments with GARIS-I/-II at RIKEN

6th-MAR-2014

Collaborators

Experiments related to ²⁷⁸113

RIKEN Nishina Center

K. Morita, K. Morimoto, D. Kaji, H. Haba, H. Hasebe, K. Katori, Y. Kudou, T. Ohnishi, K. Ozeki, A. Yoneda, A. Yoshida, Y. Wakabayashi

Tokyo University of Science

T. Sumita, K. Tanaka, J. Chiba

Saitama University

T. Akiyama, R. Sakai, S. Yamaki, T. Yamaguchi

Tohoku University

T. Suda, H. Kikunaga, T. Shinozuka

JAEA

H. Koura, S. Mitsuoka, K. Ooe, N. Sato, A. Toyoshima, K. Tsukada

Niigata University

S. Goto, M. Murakami, M. Murayama, H. Kudo,

YITP Kyoto University

T. Ichikawa,

University of Tsukuba

A. Ozawa, K. Sueki

Yamagata University

Y. Fujimori, K. Mayama, T. Mashiko ,S. Namai, M. Takeyama, F. Tokanai,

Osaka University

Y. Kasamatsu, Y. Kitamoto, Y. Komori, T. Kuribayashi, K. Matsuo, D. Saika, A. Shinohara, T. Takabe, Y. Tashiro, T. Yoshimura, E. Ideguchi

Kanazawa University

T. Nanri, D. Suzuki, I. Yamazaki, A. Yokoyama

Collaborators

GARIS-II R&D

D. Kaji

K. Morimoto

H. Haba

Y. Wakabayashi

Y. Kudou

M. Huang

A. Yoneda

K. Morita

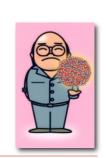
S. Goto

M. Murakami

T. Sumita

K. Tanaka

TOKYO UNIVERSITY OF SCIENCE


M Takeyama

S. Yamaki

Acknowledgements

We would like to thank Y. Yano, Kubo, O. Kamigaito, H. Okuno, M. Kase, N. Fukunishi, M. Fujinawa, E. Ikezawa, Y. Watanabe, Y. Uwamino, and H. Sakamoto for design, construction, and installation of GARIS-II.

- GARIS-II was constructed by Sumitomo Heavy Industry ltd.
- The experiment was performed at the RI Beam Factory operated by the RIKEN Nishina Center and CNS, University of Tokyo. The authors are grateful to the accelerator staff members for their cooperation and assistance during the experiment.

- This research was partially supported by a Grant-in-Aid for Specially Promoted Research, 19002005, 2007, from the Ministry of Education, Science, Sports and Culture, Japan.
- We would like to thank our family for continuous encouragement and hearty support.

Thank you for your kind attention!

