Results of the PreSPEC Commissioning Run

M. Reese on behalf of the PreSPEC and AGATA collaborations

AG-Pietralla, TU-Darmstadt

Outline of Presentation

- In-beam γ-spectroscopy
- AGATA data analysis
- Particle identification and tracking in the target area
- Gamma spectra of ⁸⁰Kr: Fragmentation & Coulex
- Efficiency and beam properties
- Data analysis software

Experimental Challenges

- 1. Beam from accelerator (or in-flight separator)
- 2. Nuclear reaction in a fixed target
- 3. Excited reaction products leave the target (flight direction changes)
- 4. Emission of Doppler-shifted γ-Radiation

- Need γ-energy in the rest frame of the emitting nucleus (Doppler-correction)
- Need the tracks of particle and γ-ray
- Spectroscopic resolution depends on accurate track reconstruction of both, γ-ray and particle!

The PreSPEC-AGATA Performance Commissioning Run

Goals

- **Demonstrate performance** of AGATA at relativistic beam energies
- determine typical background and detection sensitivity
- Obtain first data for the **optimization** of Pulse-Shape Analysis and Gamma-Ray Tracking algorithms

Different Runs

- 0.4 mg/cm² Au target in central position
- 0.4 mg/cm² Au target 12cm downstream of center (51h, Coulex)
- 0.150 mg/cm² Be target in central position

(no decay inside the target)

(22h, Coulex) (51h, Coulex) (29h, Fragmentation)

⁸⁰Kr

AGATA Data Analysis, Calibration & PSA

- AGATA DAQ writes pre-amplifier traces to disk
- Improvement of pulse-shape analysis is possible after the experiment
- Not done (so far) with the performance commissioning data
- Results shown here are based on the online PSA
- final results should improve (resolution, efficiency) with optimized PSA

Particle Tracking & Identification at Secondary Target

FRS detectors

- 2 TPCs for particle trajectory
- 2 Ionization chambers for Z identification

LYCCA detectors

- 17 silicon DSSSD detectors for tracking and energy loss
- 144 CsI scintillators for particle energy
- 3 fast plastic scintillators for time of flight and tracking

Outgoing Particle Identification with LYCCA

TECHNISCHE UNIVERSITÄT DARMSTADT

Z identification with ΔE -E method:

- ΔE measured as energy loss in a planar Silicon-strip detector
- E measured as the energy deposition in a CsI stopper

DSSSD Calibration: Problem & Solution

n-side

p-side

LYCCA Double-Sided Silicon-Strip Detectors (DSSSD) measure for each particle after the target position (x,y) and energy-loss (ΔE).

- x,y important for Doppler-correction
- ∆E important for particle identification, calibration of individual strips required (512 channels)
- Individual strips are small (low statistics in singles spectra)
- Long calibration runs are needed with a mono energetic beam.

New algorithm to gain-match all strips within one module:

- all n-side strips are matched to one p-side strip
- all p-side strips are matched to the gain-matched n-side
- works with production beam without calibration run

Automatic DSSSD Calibration

DA

Definition of gain-matched DSSSD module:

For any pixel that was hit, p-side and n-side agree in the energy that was measured

Algorithm:

- For each pixel, determine the ratio between n-side and p-side amplitude $S_{pn} = An/Ap$
- Choose the calibration parameters (slopes) for p-side s_p and n-side s_n to minimize

$$\sum_{p,n} \left(\frac{S_{pn} - \frac{S_p}{S_n}}{\Delta Sp_n} \right)^2$$

- *s_p*, *sn* are then the best gain matching coefficients (assumption: no offset)
- Implementation is very robust and works without any human supervision!

Outgoing Particle Identification with LYCCA: Masses

Mass identification with time-of-flight (ToF) measurement:

- Time-of-flight between two fast scintillation detectors
- ToF vs. E (Csl) with condition on a single Element
- Projection along diagonal lines gives mass (or neutron number)

LYCCA ToF Detector calibration

- correlation bewtween the distance (particle PMT)
- after correcting for that Detector resolution is about $\frac{\Delta T_{PMT}}{\sqrt{N_{PMT}}} = 25 \text{ ps}$
- Individual PMT resolution can be determined with particle time as reference.
- The detector can measure intrinsic resolution by itself!

500

400

80Kr Secondary Fragmentation

616.6 keV 8.3 ps ⁸⁰Kr 2⁺, -+ 0⁺, TECHNISCHE UNIVERSITÄT DARMSTADT

⁸⁰Kr gated

The Location of Gamma Emission

Reminder: Doppler effect $E_{\text{laboratory}} = E_{\text{rest}} \frac{\sqrt{1-\beta^2}}{1-\beta\cos(\vartheta_{\text{lab}})}$

- For each detected gamma event: Guess the location of de-excitation along the particle trajectory.
- Gamma lines will appear if the de-excitation point is correct

Coulomb Excitation of ⁸⁰Kr on Gold

TECHNISCHE UNIVERSITÄT DARMSTADT

8

4

0

1 Coulomb excitation of ⁸⁰Kr 7 ¹⁹⁷Au: 547 keV (decay at rest) 0.9 6 0.8 5 $\cos(\theta)$ ⁸⁰Kr: 616 keV (v/c = 0.5) 30 0.7 100 25 3 0.6 20 0 y [mm] 2 15 -100 0.5 1 10 -200 5 e⁺e⁻ annihilation -300 0 -300 -200 -100 0 100 200 300 511 keV x [mm] ¹⁹⁷Au 7/2⁺ 3/2⁺ 547 keV (100 cts.) 100 2+ 616.7 keV 2+ 616.7 keV Intensity [counts / keV] 50 550 mb 0+ g.s. 0+ g.s. ⁸⁰ Kr 0 ⁸⁰ Kr ⁸⁰Kr 2⁺ 0⁺ 616 keV (1050 cts.) 100 FWHM ≈2% after Doppler v/c = 0.5correction 50 7/2+ 547 keV 0 3/2+ g.s. 700 750 500 550 600 650 800 850 900 950 1000 450 ¹⁹⁷Au E_{γ} [keV]

Analysis of Spectra: Special Software

Software (C. Stahl / M. Lettmann) describes and fits Doppler-broadened lineshape as function of gamma-ray energy and detection angle for a relativistic emitter, i.e. an excited exotic ion from the FRS.

Shapes are lifetime dependent. Lifetime measurements of excited states!

TECHNISCHE

Estimate number of Expected counts (no Gamma-Ray Tracking)

Expected number of counts

=
$$N_{part.} P_{excit.} eff_{part.} eff_{DAQ} eff_{AGATA}$$

= 370e6 * 5.8e-4 * 0.55 * 0.85 * 14x0.0021
= 3000
Observed number of counts = 1000

Observed number of counts = 1000

Time Structure of Beam

Data Analysis Software

An abstract view on data analysis of nuclear physics experiments:

- Data flow on a directed graph, event by event
- Data processing happens inside the graph nodes
- Flow can be conditional, based on properties of event-data
- Visualization of data in histograms

A Generic Solution

TECHNISCHE UNIVERSITÄT DARMSTADT

PreSPEC data analysis is running on a framework that focuses on the idea of a directed graph. **Framework connects two main components:**

- 1. Graph nodes are C++ classes, implementing a given interface
- 2. A script language that
 - allows to describe data flow between nodes
 - supports high-level data types (numbers, and lists of numbers)
 - can visualize selected parts of the data flow
 - has a simple syntax

The framework can be used as a backend of other programs, e.g. Go4

The main advantages:

- Algorithms can be implemented without knowing in what environment they will be used. They are guaranteed to work when used (and reused) inside the framework.
- Data analysis can be defined without knowing the details of an algorithm. Only the interface has to be known
- If visualization is script-based, definition (or modification) of new histograms doesn't require recompilation of the software

Summary & Outlook

- Experimental setup is working
- Data analysis is working
- Observation of new effects, that can be exploited in new kinds of experiments
- Software development

To Do

- Finalize the results with optimized AGATA-PSA
- Obtain final values for achievable resolution & efficiency
- Test lifetime analysis for the observed transitions
- Study the influence of particle time distribution in beam

Thanks to all people involved in the PreSPEC and AGATA project!

Thank you for your attention!