

Measuring of the SIS100 Dipole Magnets

Anna Mierau

GSI Darmstadt

Workshop Beam Dynamics meets Magnets

2-4 December 2013 Darmstadt, Germany

Outlook

- Introduction
 - requirements for SIS100 bending magnets
 - magnet design
- Magnetic field measurements for SIS100 sc-magnets
 - used convention for a field description
 - field parameters of interest
 - measuring methods and systems
- Magnetic field measurements for SIS100 FoS Dipole
- Magnetic field measurements for SIS100 series Dipole

Introduction: Requirements for SIS100 bending magnets

Radioactive beam program:

 $5 \cdot 10^{11} \text{ U}^{28+}$ ions per pulse, acceleration to 2.7 Gev/u

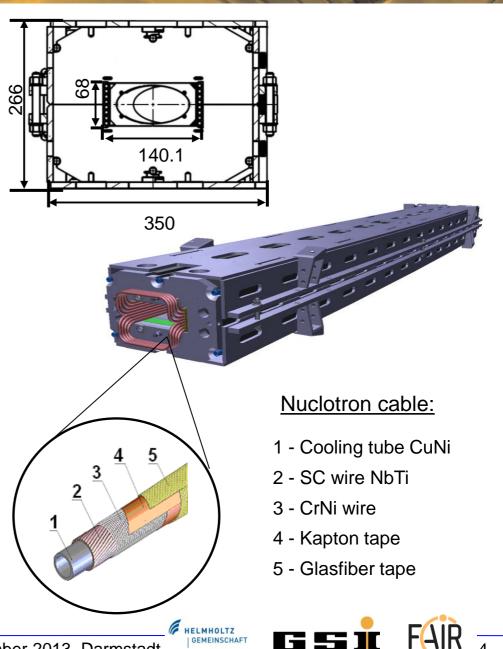
Antiproton production:

2.5.10¹³ protons per pulse, acceleration to 29 GeV

HELMHOLTZ

Bmax = 1.9 T, field err. $B_n/B_m 6 \cdot 10^{-4}$ dB/dt = 4 T/s , cycle frequency ~ 1 Hz vacuum pressure ~ 10^{-12} mbar

 \bigcirc

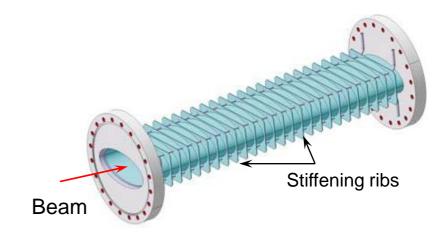

Magnet design

- iron dominated (super-ferric) magnets,
- superconducting coil (Nuclotron cable)
- cooling by two phase Helium @ 4.5 K
- cold vacuum chamber @ 15 K for a cryo pumping

Introduction: Design for SIS100 main Dipole

- ✓ Super-ferric window-frame, sector magnet
- ✓ superconducting (sc) coil
- ✓ Nuclotron type cable

m	3.062
mm x mm	60 x 120
o	3 1/3
m	52.632
Т	0.228
Т	1.9
units	< ± 6
T/s	4
	mm x mm ° m T T T units



Introduction: Beam Pipe for the SIS100

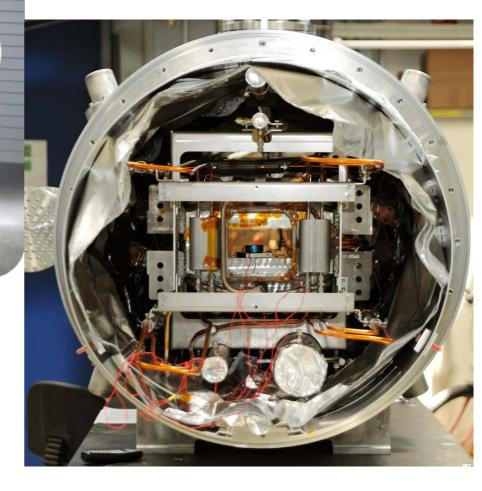
Design and requirements

- elliptical cross section
- ✓ Wall thickness 0.3 mm \rightarrow eddy currents reduction
- mechanical support against implosion (Stiffening ribs)
- cooling of the beam pipe

U²⁸⁺ beam \rightarrow dyn. Vacuum ~ 10⁻¹² mbar

$\mathbf{\nabla}$

Beam Pipe as a cryopump T_{max} < 15 K


- reliable cooling with forced 2 phase ⁴He @ 4.5K
- minimum impact on the magnetic field quality

HELMHOLTZ

GSI

in the beam area

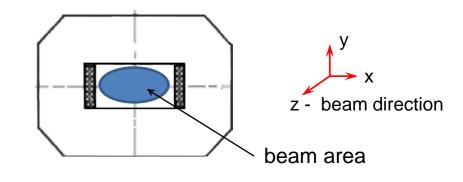
B _{min}	Т	0.228	
B _{max}	Т	1.9	
Effective length L _{eff}	m	3.062	
Usable aperture	mm x mm	60 x 120	
Bending angle	0	3 1/3	
Bending radius	m	52.632	

 $\mathbf{F}_{\mathbf{A}} = \mathbf{F}_{\mathbf{A}} =$

- Introduction
 - requirements for SIS100 bending magnets
 - magnet design
- Magnetic field measurements for SIS100 sc- magnets
 - used convention for a field description
 - . field parameters of interest
 - measuring methods and systems
- Magnetic field measurements for SIS100 FoS Dipole
- Magnetic field measurements for SIS100 series Dipole

FAIR =

Magnetic field measurements: used convention for a field description


Standart field description: Circular Multipoles

 $\vec{B}(\vec{r}) = (B_x, B_y, B_z)$ B_z constant

$$B(\mathbf{z}) = B_y + iB_x = \sum_{n=0}^{\infty} [B_n + iA_n] \left(\frac{\mathbf{z}}{R_{ref}}\right)^n$$

$$B_n$$
 - normal multipole, A_n - "skew" multipole
 R_{ref} = 50 – 70% of the magnet aperture

$$b_n = \frac{B_n}{B_m} \qquad a_n = \frac{A_n}{B_m}$$

 $\mathbf{z} = \mathbf{y} + i\mathbf{x} = re^{\theta}$

$$x = r \cos \theta, \qquad y = r \sin \theta$$
$$0 \le r \le \infty \qquad -\pi \le \theta \le \pi$$

m – Index of the main field component

m = 0	dipole	bending
<i>m</i> = 1	quadrupole	focusing
<i>m</i> = 2	sextupole	dispersion

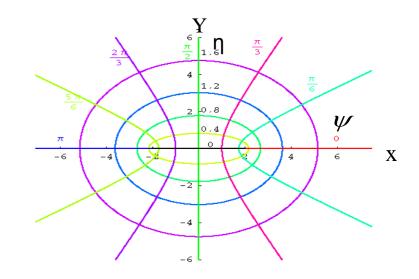
GSI

HELMHOLTZ

Magnetic field measurements: used convention for a field description

Elliptic Multipoles

$$B(z) = \sum_{n=0}^{\infty} E_n \frac{\cosh[n(\eta + i\psi)]}{\cosh(n\eta_0)}$$


$$\begin{aligned} x &= e \, \cosh \eta \, \cos \psi, & 0 \le \eta \le \eta_0 < \infty \\ y &= e \, \sinh \eta \, \sin \psi, & -\pi \le 0 \le \pi \\ z &= x + iy = e \, \cosh(\eta + i\psi), & \eta_0 = \tanh^{-1}(ba) \end{aligned}$$

HELMHOLTZ

- ✓ represent the field in the whole aperture of SIS 100
- give a concise error propagation for rotating coil measurements in elliptic aperture
- calculate circular multipoles within the ellipse

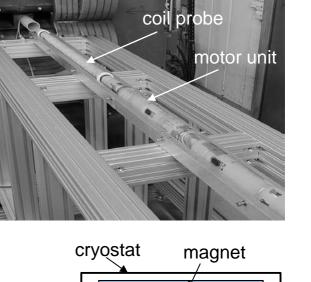
$$C_n (e/R_{ref})^n = \sum_{k=0}^M (E_k/\cosh(k\eta_0))t_{kn}$$

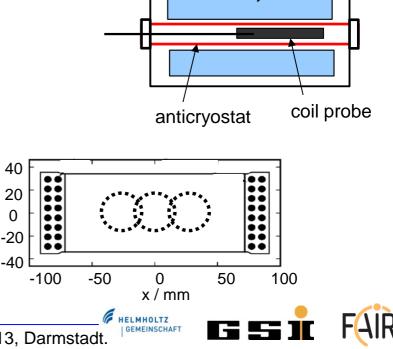
► see also: P.Schnizer et al. "Theory and Application of Plane Elliptic multipoles for Static Magnetic Fields", NIMA 607(3):505-516, 2009

Magnetic field measurements: Parameters of interest

- 1. New curve, Load line (B_0 vs. I), \rightarrow QA verification of magnet model, machine operation
 - Rotating coil probe
- 2. Field homogeneity (rel. harmonics) \rightarrow machine operation
 - Rotating coil probe
 - Mapper with a hall probe

(check of the reproduced field quality at the magnet ends) \rightarrow QA verification of the magnet model


- 3. Integral field Length \rightarrow machine operation and tuning
 - Single Stretched Wire
 - Shaft of rotating coil
- 4. Impact of the vacuum chamber on the field quality \rightarrow machine operation and tuning
 - stationary coil probe array on a holder (check for test pieces)

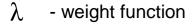

Magnetic field measurements: Using methods

Combining rotating coil probe measurements:

- ✓ main field strength
- field homogeneity (high order harmonics)

- field measured without a beam pipe
- anticryostat $R_{out} = 32$ mm, $R_{in} = 23.45$ mm
- rotating coil probe $R_{ref} = 17$ mm, I = 600 mm,
- coil probe with dipole compensation windings
- measurements at the three lateral positions
- measurements for 5 longitudinal positions

y / mm

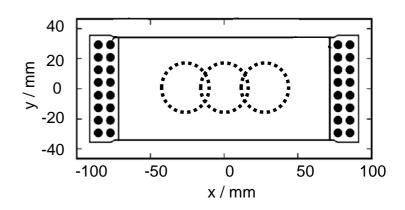

Combining rotating coil probe measurements

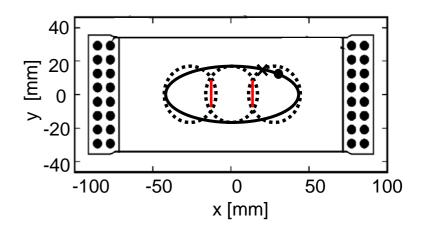
data reconstruction for the reference ellipse

a = 45 mm, *b* = 17 mm

$$B_i(z) = \lambda \sum_{n=0}^{M} C_n^c \left(\frac{z}{R_{ref}}\right)^n + (1-\lambda) \sum_{n=0}^{M} C_n^{l,r} \left(\frac{z-x_n}{R_{ref}}\right)^n$$

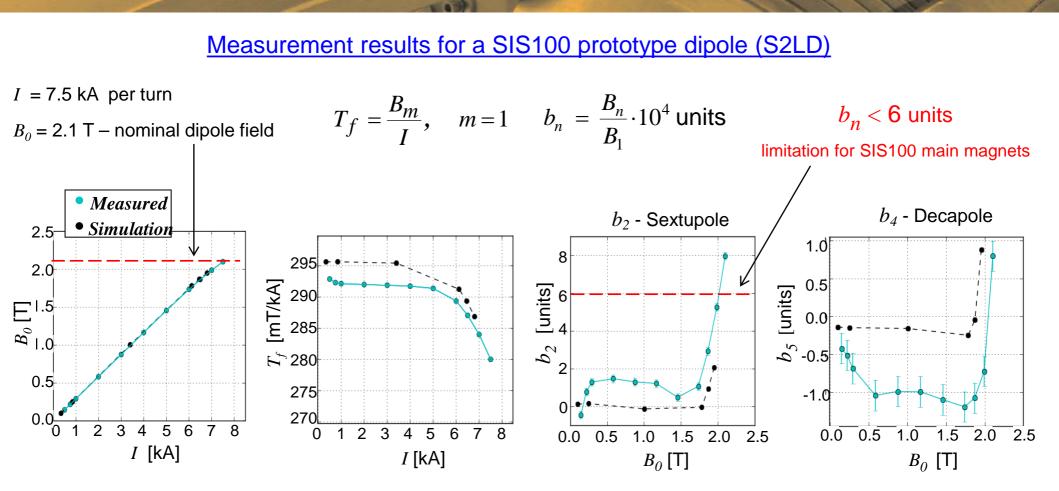
 $C_n^{l,r}$ - measured multipoles for the left and right circles C_n^c - measured multipoles for the central circles




$$\lambda(p) = 3p^2 - 2p^3 \quad \lambda(p_0) = 0, \ \lambda(p_1) = 1, \ \lambda(p_0, p_1) = 0$$

$$p = \begin{cases} 0, & \psi < p_0 \\ \frac{2\psi - \pi}{2p_0 - \pi}, & p_0 \le \psi \le \pi \end{cases}$$

► see also: P.Schnizer et al. "Theory and Application of Plane Elliptic multipoles for Static Magnetic Fields", NIMA 607(3):505-516, 2009


A. Mierau Workshop beam dynamics meets magnets. 2 - 4 December 2013, Darmstadt.

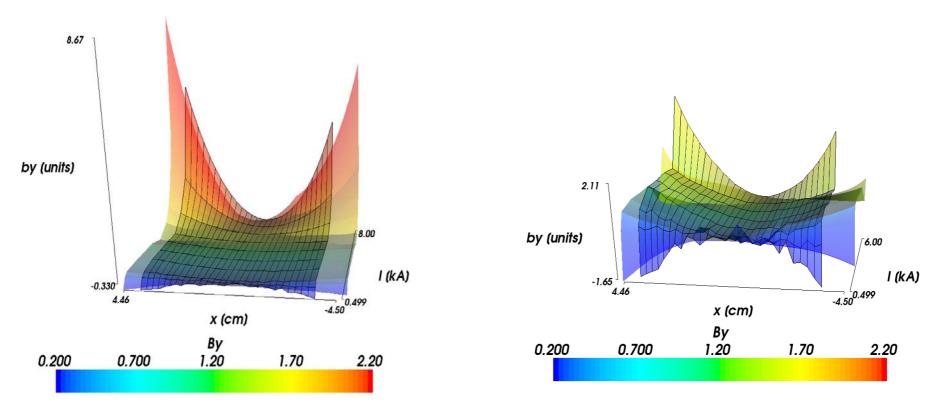
12

Combining rotating coil probe measurements

Simulation: 3D Model of the SIS100 prototype dipole (straight magnet with a double layer coil) Vector Fields Opera[®], Measuring: rotating coil probe inside an anticryostat,

HELMHOLTZ

measurement err. for a main field ± 5 units


```
measurement err. for a b_n \pm 0.2 units
```

Magnetic field measurements: Using methods

<u>Mapper with a hall probe</u> \rightarrow Check of the reproduced field quality at the magnet ends

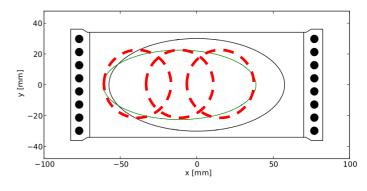
Measurement results for a SIS100 prototype dipole (S2LD)

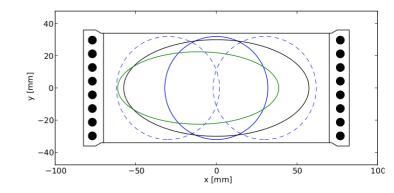
HELMHOLTZ

Field deviation in an area +/- 45 mm less than 2 units up to 1.75 T

Coil probe (center) agree well with Hall Probes @ (~1m)

- Introduction
 - requirements for SIS100 bending magnets
 - magnet design
- Magnetic field measurements for SIS100 sc- magnets
 - used convention for a field description
 - field parameters of interest
 - measuring methods and systems
- Magnetic field measurements for SIS100 FoS Dipole
- Magnetic field measurements for SIS100 series Dipole


FAIR


Magnetic field measurements for FoS Dipole

Field measurements without a beam pipe

- 1. rotating coil probe inside an anticryostat \rightarrow (JBdl, field quality)
 - ✓ anticryostat R_{out} = 32mm, R_{in} = 23.45mm
 - ✓ rotating coil probe R_{ref} = 17mm, *I* = 600mm
 - measurement over the overall magnet length
- "cold" rotating coil (CERN), mechanical adaptation GSI →
 (field quality@ magnet end, finalization for end block design)
 - ✓ R_{ref} = 31 mm, I = 1200 mm
 - measurement at one magnet end

measurements coverage

solid black: magnet aperture, usable beam

aperture

blue cold coil, (dashed – relocated positions)

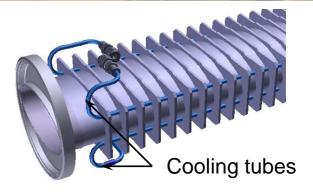
green area covered by measurements with a coil

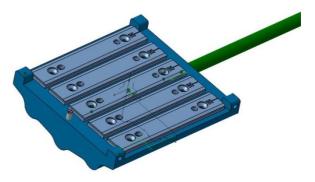
probe in the anticryostat

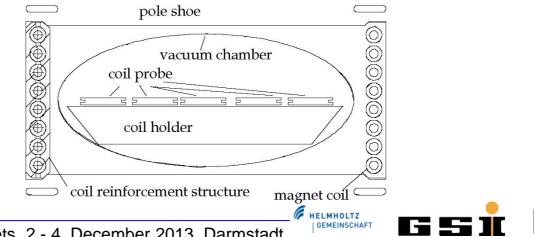
Magnetic field measurements for FoS Dipole

Field measurements without a beam pipe

- 3. Mapper with a Hall probe \rightarrow (field quality@ magnet end, finalization for end block design)
 - ✓ magnet end parts
- 4. Single Stretched Wire \rightarrow (JBdl after correction straight measurement line vs. curved beam trajectory)


FAIR


17


Magnetic field measurements: Using methods

Field measurements inside a beam pipe

- stationary coil probe array on a holder (check for test pieces)
- short samples of the beam pipe
- measurements on the ramp in the SIS18 reference dipole (nc)
- measurements on the ramp in the SIS100
 FoS Dipole (sc)

Magnetic field measurements for FoS Dipole

	Value	Meas. Techn.	Application / user
Load line	B ₀	Rotating coil in anticryostat	QA verification of magnet models
Field quality (transverse restricted area without beam pipe)	b ₂	Rotating coil in anticryostat	MD/BD: $\int b_2 dl$ optimisation \rightarrow milling an optimised end block design
Field quality (full aperture without beam pipe)	c ₂ ,, c _n	Cold rotating coil, manual displacement (thermal cycle)	QA magnet design; BD: dynamic aperture calculation
Effective field length (static, dynamic)	∫BdI	Single stretched wire	 QA: Yoke length variation MD: iron quality, magnet end chamfering SV: current pre-setting, eddy current compensation BD: closed orbit distortion, tune error (dynamic during acceleration)
Eddy currents	$\Delta B(x_i)$	5 stationary coils	BD: distortion during acceleration

_ SV – Set-Value generation, BD – beam dynamics, QA – quality assurance A. Mierau Workshop beam dynamics meets magnets. 2 - 4 December 2013,

Dormetodt

- Introduction
 - requirements for SIS100 bending magnets
 - magnet design
- Magnetic field measurements for SIS100 sc- magnets
 - used convention for a field description
 - field parameters of interest
 - measuring methods and systems
- Magnetic field measurements for SIS100 FoS Dipole
- Magnetic field measurements for SIS100 series Dipole

FAIR

Magnetic field measurements for SIS100 series Dipole

	Value	Meas. Techn.	Application / user
Effective field length (static)	∫BdI	Shaft of cold rotating coils	QA: Yoke length variation SV: current pre-setting BD: closed orbit distortion, magnet sorting, tune error
Field quality (transverse restricted area, without a beam pipe)	b ₂	Shaft of cold rotating coils	BD: random Δb ₂ , magnet sorting (higher harmonics with low precision)
Field quality (full aperture without a beam pipe)	c ₂ ,, c _n	Cold rotating coil , manual displacement (thermal cycle)	BD: variation of harmonics in the series, dynamic aperture and resonance excitation

SV – Set-Value generation, BD – beam dynamics, QA – quality assurance

HELMHOLTZ

Thank you for your attention

