Measuring of the SIS100 Dipole Magnets

Anna Mierau

GSI Darmstadt

Workshop Beam Dynamics meets Magnets

2-4 December 2013 Darmstadt, Germany

Outlook

Introduction

- requirements for SIS100 bending magnets
- magnet design
- Magnetic field measurements for SIS100 sc-magnets
 - used convention for a field description
 - field parameters of interest
 - measuring methods and systems
- Magnetic field measurements for SIS100 FoS Dipole
- Magnetic field measurements for SIS100 series Dipole

Introduction: Requirements for SIS100 bending magnets

Radioactive beam program:

5-10¹¹ U²⁸⁺ ions per pulse, acceleration to 2.7 Gev/u

Antiproton production:

2.5·10¹³ protons per pulse, acceleration to 29 GeV

Bmax = 1.9 T, field err. B_n/B_m 6·10⁻⁴ dB/dt = 4 T/s , cycle frequency ~ 1 Hz vacuum pressure ~ 10^{-12} mbar

Magnet design

- iron dominated (super-ferric) magnets,
- superconducting coil (Nuclotron cable)
- cooling by two phase Helium @ 4.5 K
- cold vacuum chamber @ 15 K for a cryo pumping

Introduction: Design for SIS100 main Dipole

- ✓ Super-ferric window-frame, sector magnet
- ✓ superconducting (sc) coil
- ✓ Nuclotron type cable

Effective length L _{eff}	m	3.062
Usable aperture	mm x mm	60 x 120
Bending angle	0	3 1/3
Bending radius	m	52.632
B _{min}	Т	0.228
B _{max}	Т	1.9
$\Delta B/B_{main} \times 10^4$	units	< ± 6
dB/dt	T/s	4

Introduction: Beam Pipe for the SIS100

Design and requirements

- ✓ elliptical cross section
- ✓ Wall thickness 0.3 mm → eddy currents reduction
- mechanical support against implosion (Stiffening ribs)
- cooling of the beam pipe

 U^{28+} beam \rightarrow dyn. Vacuum $\sim 10^{-12}$ mbar

Beam Pipe as a cryopump T_{max} < 15 K

- ✓ reliable cooling with forced 2 phase ⁴He @ 4.5K
- minimum impact on the magnetic field quality in the beam area

B _{min}	Т	0.228
B _{max}	Т	1.9
Effective length L _{eff}	m	3.062
Usable aperture	mm x mm	60 x 120
Bending angle	0	3 1/3
Bending radius	m	52.632

- Introduction
 - requirements for SIS100 bending magnets
 - magnet design
- Magnetic field measurements for SIS100 sc- magnets
 - used convention for a field description
 - field parameters of interest
 - measuring methods and systems
- Magnetic field measurements for SIS100 FoS Dipole
- Magnetic field measurements for SIS100 series Dipole

Magnetic field measurements: used convention for a field description

Standart field description: Circular Multipoles

$$\vec{B}(\vec{r}) = (B_x, B_y, B_z)$$
 B_z constant

$$B(\mathbf{z}) = B_y + iB_x = \sum_{n=0}^{\infty} [B_n + iA_n] \left(\frac{\mathbf{z}}{R_{ref}}\right)^n$$

 B_n - normal multipole, A_n - "skew" multipole

 $R_{ref} = 50 - 70\%$ of the magnet aperture

$$b_n = \frac{B_n}{B_m} \qquad a_n = \frac{A_n}{B_m}$$

$$\mathbf{z} = y + ix = re^{\theta}$$

 $x = r\cos\theta, \qquad y = r\sin\theta$
 $0 \le r \le \infty \qquad -\pi \le \theta \le \pi$

m – Index of the main field component

m = 0	dipole	bending
m = 1	quadrupole	focusing
m = 2	sextupole	dispersion

Magnetic field measurements: used convention for a field description

Elliptic Multipoles

$$B(z) = \sum_{n=0}^{\infty} E_n \frac{\cosh[n(\eta + i\psi)]}{\cosh(n\eta_0)}$$

$$x = e \cosh \eta \cos \psi, \qquad 0 \le \eta \le \eta_0 < \infty$$

$$y = e \sinh \eta \sin \psi, \qquad -\pi \le 0 \le \pi$$

$$z = x + iy = e \cosh(\eta + i\psi), \qquad \eta_0 = \tanh^{-1}(ba)$$

- ✓ represent the field in the whole aperture of SIS 100
- ✓ give a concise error propagation for rotating coil measurements in elliptic aperture
- calculate circular multipoles within the ellipse

► see also: P.Schnizer et al. "Theory and Application of Plane Elliptic multipoles for Static Magnetic Fields", NIMA 607(3):505-516, 2009

Magnetic field measurements: Parameters of interest

- 1. New curve, Load line (B_0 vs. I), \rightarrow QA verification of magnet model, machine operation
 - Rotating coil probe
- 2. Field homogeneity (rel. harmonics) → machine operation
 - Rotating coil probe
 - Mapper with a hall probe

(check of the reproduced field quality at the magnet ends) → QA verification of the magnet model

- 3. Integral field Length → machine operation and tuning
 - Single Stretched Wire
 - Shaft of rotating coil
- 4. Impact of the vacuum chamber on the field quality → machine operation and tuning
 - stationary coil probe array on a holder (check for test pieces)

Magnetic field measurements: Using methods

Combining rotating coil probe measurements:

- main field strength
- ✓ field homogeneity (high order harmonics)

- field measured without a beam pipe
- anticryostat $R_{out} = 32$ mm, $R_{in} = 23.45$ mm
- rotating coil probe $R_{ref} = 17$ mm, I = 600mm,
- coil probe with dipole compensation windings
- measurements at the three lateral positions
- measurements for 5 longitudinal positions

Combining rotating coil probe measurements

data reconstruction for the reference ellipse

$$a = 45 \text{ mm}, b = 17 \text{ mm}$$

$$B_{i}(z) = \lambda \sum_{n=0}^{M} C_{n}^{c} \left(\frac{z}{R_{ref}}\right)^{n} + \left(1 - \lambda\right) \sum_{n=0}^{M} C_{n}^{l,r} \left(\frac{z - x_{n}}{R_{ref}}\right)^{n}$$

 C_n^c - measured multipoles for the central circles

 λ - weight function

$$\lambda(p) = 3p^2 - 2p^3$$
 $\lambda(p_0) = 0$, $\lambda(p_1) = 1$, $\lambda(p_0, p_1) = 0$

$$p = \begin{cases} 0, & \psi < p_0 \\ \frac{2\psi - \pi}{2p_0 - \pi}, & p_0 \le \psi \le \pi \end{cases}$$

▶ see also: P.Schnizer et al. "Theory and Application of Plane Elliptic multipoles for Static Magnetic Fields", NIMA 607(3):505-516, 2009

Combining rotating coil probe measurements

Measurement results for a SIS100 prototype dipole (S2LD)

Simulation: 3D Model of the SIS100 prototype dipole (straight magnet with a double layer coil) Vector Fields Opera[®], Measuring: rotating coil probe inside an anticryostat,

measurement err. for a main field ± 5 units

measurement err. for a $b_n \pm 0.2$ units

Magnetic field measurements: Using methods

<u>Mapper with a hall probe</u> → Check of the reproduced field quality at the magnet ends

Measurement results for a SIS100 prototype dipole (S2LD)

Field deviation in an area +/- 45 mm less than 2 units up to 1.75 T

Coil probe (center) agree well with Hall Probes @ (~1m)

- Introduction
 - requirements for SIS100 bending magnets
 - magnet design
- Magnetic field measurements for SIS100 sc- magnets
 - used convention for a field description
 - field parameters of interest
 - measuring methods and systems
- Magnetic field measurements for SIS100 FoS Dipole
- Magnetic field measurements for SIS100 series Dipole

Magnetic field measurements for FoS Dipole

Field measurements without a beam pipe

- 1. rotating coil probe inside an anticryostat $\rightarrow (\int Bdl, field quality)$
 - ✓ anticryostat $R_{out} = 32$ mm, $R_{in} = 23.45$ mm
 - ✓ rotating coil probe $R_{ref} = 17$ mm, I = 600mm
 - ✓ measurement over the overall magnet length
- "cold" rotating coil (CERN), mechanical adaptation GSI →
 (field quality@ magnet end, finalization for end block design)
 - \sim R_{ref} = 31 mm, I = 1200 mm
 - measurement at one magnet end

measurements coverage

solid black: magnet aperture, usable beam aperture

blue cold coil, (dashed – relocated positions)
green area covered by measurements with a coil
probe in the anticryostat

Magnetic field measurements for FoS Dipole

Field measurements without a beam pipe

- 3. Mapper with a Hall probe →(field quality@ magnet end, finalization for end block design)
 - ✓ magnet end parts
- 4. Single Stretched Wire → (∫Bdl after correction straight measurement line vs. curved beam trajectory)

Magnetic field measurements: Using methods

Field measurements inside a beam pipe

- stationary coil probe array on a holder (check for test pieces)
- short samples of the beam pipe
- measurements on the ramp in the SIS18 reference dipole (nc)
- measurements on the ramp in the SIS100
 FoS Dipole (sc)

Magnetic field measurements for FoS Dipole

	Value	Meas. Techn.	Application / user
Load line	B ₀	Rotating coil in anticryostat	QA verification of magnet models
Field quality (transverse restricted area without beam pipe)	b ₂	Rotating coil in anticryostat	MD/BD: $\int b_2 dl$ optimisation \rightarrow milling an optimised end block design
Field quality (full aperture without beam pipe)	c ₂ ,, c _n	Cold rotating coil, manual displacement (thermal cycle)	QA magnet design; BD: dynamic aperture calculation
Effective field length (static, dynamic)	∫BdI	Single stretched wire	QA: Yoke length variation MD: iron quality, magnet end chamfering SV: current pre-setting, eddy current compensation BD: closed orbit distortion, tune error (dynamic during acceleration)
Eddy currents	$\Delta B(x_i)$	5 stationary coils	BD: distortion during acceleration

_ SV - Set-Value generation, BD - beam dynamics, QA - quality assurance A. Mierau Workshop beam dynamics meets magnets. 2 - 4 December 2013,

- Introduction
 - requirements for SIS100 bending magnets
 - magnet design
- Magnetic field measurements for SIS100 sc- magnets
 - used convention for a field description
 - field parameters of interest
 - measuring methods and systems
- Magnetic field measurements for SIS100 FoS Dipole
- Magnetic field measurements for SIS100 series Dipole

Magnetic field measurements for SIS100 series Dipole

	Value	Meas. Techn.	Application / user
Effective field length (static)	∫BdI	Shaft of cold rotating coils	QA: Yoke length variation SV: current pre-setting BD: closed orbit distortion, magnet sorting, tune error
Field quality (transverse restricted area, without a beam pipe)	b ₂	Shaft of cold rotating coils	BD: random Δb_2 , magnet sorting (higher harmonics with low precision)
Field quality (full aperture without a beam pipe)	C ₂ ,, C _n	Cold rotating coil, manual displacement (thermal cycle)	BD: variation of harmonics in the series, dynamic aperture and resonance excitation

SV – Set-Value generation, BD – beam dynamics, QA – quality assurance

Thank you for your attention

