

FFAG, The working marriage of magnets and dynamics

JB. LAGRANGE Imperial College, London

Small community.

"New" concept.

Unconventional magnets.

2

Outline

3

FFAG accelerators

- Definition History
- Setatron oscillations chromaticity

Scaling beam dynamics

- Gircular case
- Straight case

Outline

3

FFAG accelerators

- Definition History
- Setatron oscillations chromaticity

Scaling beam dynamics

- Gircular case
- Straight case

FFAG accelerator

FIXED FIELD ALTERNATING GRADIENT

It combines a static guide field like cyclotrons:

AND

a strong focusing.
like synchrotrons:

FFAG accelerator

2 types of FFAGs:

"Scaling" FFAG, non-linear field, constant tune.
 "Non-scaling" FFAG, linear optics, fast resonance crossing

e-model for non-scaling FFAG: EMMA (Daresbury, UK)

FFAG history

Ohkawa (1953), Kerst & Symon, Kolomenskii.

MURA project (1960s): e-model, induction acceleration.

No practical machine for 40 years.

Complicated magnetic field configuration: 3D design.
RF cavity: Variable frequency and high gradient

6

2000: first proton FFAG

FFAG history (Continued)

7

2003 Proton FFAG complex at Kyoto University

Return yoke-free magnets

FFAG RRstoffageneinued)

8

Muon accelerator: PRISM

C-shape magnets
large aperture
Challenging dynamics & design

Transverse motion in particle accelerators

Linearized equations of motion:

 $\frac{\partial^2 y}{\partial s^2} + K_y(s)y = 0 \qquad y = x \text{ or } z$

Periodic case: Hill's equations

General solution: $y = \sqrt{\epsilon}\sqrt{\beta(s)}\cos(\nu\phi(s) + \phi_0)$ **Betatron oscillations**: pseudo-harmonic oscillation of frequency ν (tune) and varying amplitude $\sqrt{\beta(s)}$.

9

Betatron resonances

Non-linear components are considered as perturbations of the linear equations of motion. Resonance conditions:

 ν_z

 $m_x\nu_x + m_z\nu_z = q,$

 $(m_x, m_z, q) \in \mathbb{N}^3$

Working point (ν_x, ν_z) positioned in the tune diagram.

 ν_x

Chromaticity: Variation of tune with respect to particle energy. Zero-chromaticity: Invariance of both horizontal and vertical tune with respect to energy. ¹⁰ JB Lagrange - Dynamics&Magnets - Dec. 2013

Outline

11

FFAG accelerators

- Definition History
- Setatron oscillations chromaticity

Scaling beam dynamics

- Gircular case
- Straight case

Invariance of the betatron oscillations

keep independent of momentum the transverse linearized equations of motion.

→ zero-chromatic system for any momentum range.

Circular case

Linearized equations of motion for a momentum *p*:

(*x*, *s*, *z*): curvilinear coordinates. $\begin{cases} \frac{d^2x}{d\Theta^2} + \frac{R^2}{\rho^2}(1-n)x = 0, & \text{New system of coordinates } (x, \Theta, z) \\ \frac{d^2z}{d\Theta^2} + \frac{R^2}{\rho^2}nz = 0. & \Theta = s/R \text{ with } R = \frac{1}{2\pi} \oint ds \\ n: \text{ field index} \end{cases}$ ρ : curvature radius

Independent of momentum *p*:

 $\begin{cases} \left(\frac{\partial (R/\rho)}{\partial p}\right)_{\Theta} = 0, \implies \text{Similarity of the reference trajectories.} \\ \left(\frac{\partial n}{\partial p}\right)_{\Theta} = 0. \implies \text{Invariance of the focusing strength.} \end{cases}$

Circular case

Spiral case: RACCAM

15

Magnet built by SIGMAPHI

Straight case

Linearized equations of motion for a momentum *p*:

 $\begin{cases} \frac{d^2x}{ds^2} + \frac{1-n}{\rho^2}x = 0, & (x, s, z): \text{ curvilinear coordinates} \\ \frac{d^2z}{ds^2} + \frac{n}{\rho^2}z = 0. & \rho: \text{ curvature radius} \end{cases}$

Independent of momentum *p*:

 $\begin{cases} \left(\frac{\partial \rho}{\partial p}\right)_s = 0, \quad \blacksquare \quad \text{Similarity of the reference trajectories} \\ \left(\frac{\partial n}{\partial p}\right)_s = 0. \quad \blacksquare \quad \text{Invariance of the focusing strength} \end{cases}$

Change of coordinates: introduction of average abscissa χ .

¹⁶ JB Lagrange - Dynamics&Magnets - Dec. 2013

Straight case

Introduction of normalized field gradient: $m = \frac{1}{B} \frac{dB}{d\chi}$

Invariance of the focusing strength gives condition on *m*: $m = m_1 + m_2 \tan \zeta(\chi)$

$$B(\chi, s) = B_0 e^{\left[m_1(\chi - \chi_0) + m_2 \int_{\chi_0}^{\chi} \tan \zeta(\chi) d\chi\right]} \mathcal{F}(s)$$

¹⁷ JB Lagrange - Dynamics&Magnets - Dec. 2013

Straight case

$$\zeta = const.$$
 \checkmark $m = const.$

$$B(X,Y) = B_0 e^{m(X-X_0)} \mathcal{F} \left(Y - (X-X_0) \tan \zeta\right)$$

¹⁸ JB Lagrange - Dynamics&Magnets - Dec. 2013

Straight experiment

➡Design and manufacturing of a straight scaling cell prototype, and measure of the horizontal phase advance for 2 different energies.

19

Use of 2 energies: 7 MeV and 11 MeV.

20

Straight Scaling FFAG cell design

- C-shape Magnets to have easy access to the pole.
 Cell able to move horizontally to match the different reference trajectories.
 - Rectangular magnets.

Type	FDF
<i>m</i> -value	$11 {\rm m}^{-1}$
Total length	$4.68 \mathrm{m}$
Length of F magnet	$15~\mathrm{cm}$
Length of D magnet	$30~{\rm cm}$
Max. B Field (D magnet)	$0.3~\mathrm{T}$
Max. B Field (F magnet)	$0.2 \mathrm{~T}$
Horizontal phase advance	87.7 deg.
Vertical phase advance	106.2 deg.

- Coils:
 - Max 3500 A.T/coil.

18 turns x 4 layers = 72 turns of 5 mm x 2 mm cross section wire.
 ~5 A/mm² — Indirect water cooling system.
 Power supply per magnet (D): 100 A, 30 V.
 Whole system power consumption: ~1 kW.

Magnet design Pole shape configured with POISSON, then TOSCA.

Magnetic field in D magnet (30 cm long). TOSCA model.

Magnetic field in F magnet (15 cm long). TOSCA model.

FIELD MEASUREMENT

Measured field map created

JB Lagrange - Dynamics&Magnets - Dec. 2013

23

Comparison TOSCA-Measure

Local m-value vs horizontal abscissa with field model (plain red), in TOSCA field map (black dashed) and in measured field map (mixed blue).

<u>Good agreement</u> (difference < 1%)

24

Particle tracking

Horizontal phase advances vs kinetic energy with field model (plain red), in TOSCA field map (black dashed) and in measured field map (mixed blue).

25

Experimental results

$$\tan \psi = -\alpha_1 - \frac{\pi 1 - 1}{x_1}$$

$$\overline{x_1} \quad (\text{mrad}) \quad \overline{\beta_1} \quad (\text{m}) \quad \overline{\alpha_1} \quad \psi_{\text{amm}} \quad (\text{deg}) \quad \psi_{\pi}$$

 $\beta_1 x'_1$

	$x_1 \pmod{x_1}$	x_1 (mrad)	β_1 (m)	α_1	$\psi_{exp.}$ (deg)	ψ_{TOSCA} (deg)
$\overline{11~{\rm MeV}}$	2.0	-2.4	17.7	-1.5	87.5 ± 3.3	87.5
$7 \mathrm{MeV}$	1.8	-2.1	11.7	-1.0	86.1 ± 9.6	87.6

 $\psi_{exp}(11 \text{ MeV})=87.5 \text{ deg}$ $\psi_{exp}(7 \text{ MeV})=86.1 \text{ deg}$

Straight scaling law clarified.

26

J.-B. Lagrange *et al*, "Straight scaling FFAG beam line", Nucl. Instr. Meth. A, vol. 691, pp. 55–63, 2012.

nuSTORM

Neutrinos from STORed Muons

(nuSTORM) with a muon storage ring is investigated for neutrino experiments (neutrino mixing matrix, sterile neutrinos). Neutrino flux Muon storage ring

Detector

Muons decay in neutrinos in the storage ring

• <u>Racetrack</u> to collect the maximum decayed neutrinos.

Conventional racetrack storage ring has small longitudinal acceptance.

Dramatically reduces the brightness at the detector.

Racetrack FFAG design

27

FFAG decay ring for nuSTORM

Large transverse acceptance (1000π mm.mrad) Large momentum acceptance ($\pm 16\%$, up to $\pm 25\%$)

²⁸ JB Lagrange - Dynamics&Magnets - Dec. 2013

Summary

- FFAGs have complicated magnetic field configuration, that require a strong collaboration between beam dynamics and magnet designs.
- Usually beam dynamics and magnet design are studied by the same people.
- You are welcome to join us for exciting challenges!

29

Thank you for your attention

back-up slides

Experimental measurement

$$\begin{pmatrix} x_1 \\ x'_1 \end{pmatrix} = \begin{pmatrix} \sqrt{\frac{\beta_1}{\beta_0}} \cos \psi & a_{12} \\ \frac{-\alpha_1 \cos \psi - \sin \psi}{\sqrt{\beta_1 \beta_0}} & a_{22} \end{pmatrix} \cdot \begin{pmatrix} x_0 \\ 0 \end{pmatrix}$$

Exit parameters to measure: x_1 , x'_1 , β_1 and α_1 .

For each energy, the beam is launched 3 times: • on the reference trajectory, • -10 mm off the reference trajectory, • +10 mm off the reference trajectory.

Experimental measurement

angle measurement scheme.

position and beta measurement from pictures without slit.

10

+10 mm

Experimental measurement

 α_1 measurement from

• The slope of the line x' vs. x_{slit} : $slope = -\left(\frac{\alpha}{\beta}\right)_{slit}$

the beta value

> Drift transfer matrix tracking to obtain α_1 .